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For a viable cislunar space infrastructure, the transfer trajectories between various types
of host orbits require reasonable maneuver costs and flight times. Multiple transfer design
frameworks are presented that leverage the hyperbolic invariant manifolds associated with
quasi-periodic orbits to uncover transfers between periodic orbits with different stability
properties. The two problems addressed by the described framework are (i) transfers between
nearly/marginally stable periodic orbits that lack useful hyperbolic manifolds and (ii) transfers
between unstable periodic orbits in the same orbit family. Quasi-periodic orbits, when applied
to the design of transfers between an 𝐿2 9:2 NRHO and a DRO (both stable orbits), yield two
types of transfers: two-maneuver interior-type and three-maneuver exterior-type transfers. The
selected QPOs leveraged to design the transfer pathways assist in realizing a greater number
of transfer options that are of lower maneuver cost than the solutions derived from their
underlying periodic orbits. For the unstable periodic orbits, two strategies are utilized to design
transfers. Firstly, locally fuel-optimal transfers are computed between 𝐿1 halo orbits and they
unveil a linear correlation between the total maneuver cost and the difference in out-of-plane
amplitude of the departure and arrival orbits. Secondly, another strategy utilizes the unstable
manifolds associated with QPOs to design 1-parameter families of solutions. The geometry
and maneuver cost of the QPO-derived solutions are comparable to the locally fuel-optimal
transfers. Additionally, the QPO-informed transfers assist in realizing connections between a
larger range of departure and arrival locations.

I. Introduction
There is a renewed interest in returning to the Moon and establishing a sustainable space economy in the cislunar

region from a number of governmental agencies and private companies [1–5]. Currently, the main focus for NASA’s
strategy is a space station, i.e., Gateway, in an 𝐿2 9:2 synodic resonant Near-Rectilinear Halo Orbit (NRHO) to enable
frequent transfers between Orion, lunar landers, and other future cislunar space assets [6]. In addition, in the recent
Artemis 1 mission, the Orion vehicle leveraged a Distant Retrograde Orbit (DRO) to remain in the vicinity of the Moon
to test the vehicle’s capabilities [7]. But there are multiple periodic orbits of interest, and to create a viable cislunar
space infrastructure, transfer trajectories between various host orbits require different design frameworks for various sets
of applications.

For a viable space economy, the transfer trajectories require reasonable maneuver costs and flight times, as well as
operational feasibility. Due to the variety of host orbits and the infinite solution space, it is worthwhile to leverage
fundamental dynamical structures. Preliminary trajectory design in the multi-body regime is challenging due to the
complex interplay of the Earth and Moon gravity. However, the Circular Restricted Three-Body Problem (CR3BP)
simplifies the analysis by relying on foundational dynamical behaviors. The flow in the CR3BP is characterized by
equilibrium, periodic, and quasi-periodic solutions, and their associated invariant manifolds [8]. The stable/unstable
manifolds for the generally well-behaved solutions in the CR3BP model allow for the design of complex transfer
geometries as exemplified by the GENESIS [9] and the 2010 ARTEMIS mission [10]. Various classes of transfers
are rooted in the different dynamical structures to deliver initial guesses incorporating mission-specific operational
constraints and yield desired geometries in higher-fidelity models.

This investigation proposes multiple trajectory design frameworks that leverage the hyperbolic invariant manifolds
associated with 2-dimensional quasi-periodic orbits (QPOs) to construct transfers between different types of periodic
orbits. These frameworks address two distinct problems: (i) transfers between nearly/marginally stable periodic
orbits that lack useful hyperbolic manifolds, and (ii) transfers between unstable spatial periodic orbits within the same
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orbit family, which possess hyperbolic manifolds. The formulated step-by-step frameworks reduce the complexity of
employing the 5-dimensional manifolds associated with the 2-parameter family of QPOs to design feasible transfer
geometries. Initial guesses for the design problems are identified through an events function that leverages the continuous
representations of periodic orbits and Poincaŕe maps. For transfers between nearly/marginally stable periodic orbits,
two types of geometries—interior-type and exterior-type—are uncovered through differential correction schemes.
These pathways, informed by QPOs, link departure and arrival orbits through two/three impulsive maneuver transfers.
Additionally, locally fuel-optimal geometries are realized by employing an optimization scheme. Subsequently, the
transfer trajectories that are constructed through QPOs are compared with the ones that are informed by periodic orbits
underlying the selected QPOs. The transfers between unstable periodic orbits in the same family are constructed via
the unstable manifolds associated with QPOs. The QPO-derived transfers are compared with the locally fuel-optimal
transfers that are generated through the initial guess design strategy proposed by Gómez et al. [11]. The presented
frameworks provide methodologies that leverage the stable and unstable manifolds associated with QPOs to enhance the
known transfer options between different types of periodic orbits.

II. Background

A. Dynamical Model
The Circular Restricted Three-Body Problem (CR3BP) describes the motion of a body (𝑃3) with insignificant

mass, i.e. a spacecraft, under the gravitational influence of two centrobaric bodies (𝑃1, 𝑃2) that revolves around a
common barycenter. The two primary bodies are assumed to revolve around their barycenter in circular orbits. Due
to the negligible mass of 𝑃3, it does not impact the motion of the two primaries and potentially moves in any spatial
dimension. The equations of motion of the model are commonly expressed in a rotating frame with 𝑥-axis as the line
joining the greater mass primary to the smaller mass primary, 𝑧-axis is defined parallel to the 𝑃1 − 𝑃2 orbital angular
momentum vector, and �̂�-axis is along a direction such that the three axes form a dextral orthogonal triad. The equations
are non-dimensionalized through three characteristic quantities: (i) sum of the mass of 𝑃1 (𝑚1) and 𝑃2 (𝑚2), (ii) distance
between 𝑃1 − 𝑃2, and (iii) a time quantity that yields a unity non-dimensional value for the gravitational constant. The
non-dimensional equations of motion as viewed by an observer in the rotating frame are expressed as,

𝑥 : ¥𝑥 − 2 ¤𝑦 − 𝑥 = − (1 − `) (𝑥 + `)
𝑟3

13
− `(𝑥 − 1 + `)

𝑟3
23

(1)

�̂� : ¥𝑦 + 2 ¤𝑥 − 𝑦 = − (1 − `)𝑦
𝑟3

13
− `𝑦

𝑟3
23

(2)

𝑧 : ¥𝑧 = − (1 − `)𝑧
𝑟3

13
− `𝑧

𝑟3
23

(3)

where, (𝑥, 𝑦, 𝑧, ¤𝑥, ¤𝑦, ¤𝑧) are the position and velocity components of the spacecraft with respect to the 𝑃1 − 𝑃2 barycenter,
` is the mass parameter defined as 𝑚2

𝑚1+𝑚2
, and 𝑟13 and 𝑟23 denote the distance of the spacecraft from 𝑃1 and 𝑃2,

respectively. The equations are time-independent as a result of the choice of the reference frame. There exists no
analytical solution to the model, however, particular solutions are determined by leveraging the dynamical systems
theory. The equations have three types of particular solutions: stationary, periodic, and quasi-periodic solutions. There
are five stationary solutions of CR3BP termed the Lagrange points. The periodic and quasi-periodic solutions exist as
families of periodic and quasi-periodic orbits. The particular solutions and their corresponding stable and unstable
manifolds assist in defining a part of the global dynamics of the system.

An integral of motion for the system exists and the energy-like quantity is denoted as Jacobi Constant (𝐽𝐶). The
integration constant is expressed as,

𝐽𝐶 = 2
(
𝑥2 + 𝑦2

2
+ 1 − `

𝑟13
+ `

𝑟23

)
− ( ¤𝑥2 + ¤𝑦2 + ¤𝑧2) (4)

The above expression reveals the bounds for the natural motion of a spacecraft with a specific 𝐽𝐶 value. The quantity is
constant for all the states along a ballistic trajectory. Consequently, two states with the same 𝐽𝐶 value may be linked by
a maneuver-free trajectory.
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B. Periodic Orbits
Periodic orbits are fundamental dynamical structures in the CR3BP, characterized by repeating geometries after a

finite period, and exist in families characterized by a single parameter. The orbits are described by a single fundamental
frequency that is associated with their period. Hence, any state on a periodic orbit is alternatively represented as a single
parameter, that is the propagation time (𝜏PO) along the orbit from an initial state. The 1-parameter families of periodic
orbits are constructed via differential corrections and continuation processes, as detailed by Grebow [12]. For instance,
fig. 1(a) depicts the 𝐿1 northern halo orbit family generated through such a procedure. The periodic nature of these
orbits makes them an attractive choice for mission design.

The periodic orbits often possess unstable and stable manifolds that potentially assist in the construction of transfers
between different regions of the space domain. The motion of a periodic orbit and the region surrounding it are
characterized by a State Transition Matrix (STM) associated with the CR3BP equations of motion. A special case of an
STM that is computed for one period of a periodic orbit state is termed the monodromy matrix. The eigenanalysis of the
monodromy matrix reveals the Lyapunov stability of the orbit and assists in the approximation of the corresponding
invariant manifolds. The six eigenvalues (_𝑖 , 𝑖 ∈ [1, 6]) of the monodromy matrix appear as reciprocal pairs due to the
symplectic nature of the model. Additionally, one of the three pairs is unity and is labelled the trivial pair [13]. An
eigenvalue located away from the unit circle indicates hyperbolic local dynamics, while an eigenvalue that lies on the
unit circle signifies bounded motion along a higher-period or higher-dimensional orbit. A stability index is defined to
alternatively represent the information offered by the eigenvalues and it is expressed as,

a𝑖 =
1
2
( |_𝑖 | +

1
|_𝑖 |

) (5)

Where, a𝑖 corresponds to the stability index of _𝑖 . The indices for 𝑖 = 1 and 𝑖 = 2 pertain to the first and second
non-trivial eigenvalue pairs, respectively. A value of a𝑖 equal to one for multiple adjacent orbit family members signals
the presence of nearby higher-dimensional orbits. Whereas, a value of a𝑖 greater than one indicates the existence of
associated hyperbolic invariant manifolds. The stability indices for the 𝐿1 halo orbits, as visualized in fig. 1(a), are
plotted in fig. 1(b). The center, stable, and unstable invariant manifolds associated with a periodic orbit are locally
approximated as a perturbation along the center, stable, and unstable eigenvectors, respectively. The linear approximation
of the center manifolds serves as an initial guess for the construction of quasi-periodic orbits. The linear estimation of
the stable and unstable invariant manifolds assists in the identification of flows that naturally depart and arrive at the
orbit. For a periodic orbit (Γ), the stable (𝑊𝑆 (Γ)) and unstable (𝑊𝑈 (Γ)) invariant manifolds are each a 2-dimensional
smooth surface of solutions that are computationally approximated as a collection of stable and unstable manifold arcs.
A local unstable manifold state (𝑢𝑥0) associated with a periodic orbit state (𝑥PO (𝜏PO)) is approximated as,

𝑢𝑥
0 = 𝑥PO (𝜏PO) ± ∇𝑢

�̄�𝑢

|�̄�𝑢 |
(6)

where, �̄�𝑢 is an unstable eigenvector associated with the 𝑥PO (𝜏PO) state and ∇𝑢 is a step-off factor that scales the
magnitude of the perturbation along the eigenvector. It is apparent that due to two choices of the direction of perturbation
in eq. (6), the expression results in two values for the local manifold state, 𝑊𝑈+

𝑙𝑜𝑐
(𝑥PO (𝜏PO)) and 𝑊𝑈−

𝑙𝑜𝑐
(𝑥PO (𝜏PO)). The

local unstable manifold states are propagated forward in time to construct manifold arcs and this procedure is repeated
for several periodic orbit states around the orbit with a common ∇𝑢 value. The collection of 𝑊𝑈+ (𝑥PO (𝜏PO)) and
𝑊𝑈− (𝑥PO (𝜏PO)) manifold arcs generated through multiple orbit states deliver an approximation of the two halves of
the 2-dimensional unstable manifold, 𝑊𝑈+ (Γ) and 𝑊𝑈− (Γ). The two half-unstable manifolds combined define the
global unstable manifold associated with a periodic orbit. The same strategy is employed but with stable eigenvectors
to approximate the two halves of the 2-dimensional stable manifold, 𝑊𝑆+ (Γ) and 𝑊𝑆− (Γ). The stable and unstable
manifolds generated through the described strategy are illustrated for an 𝐿1 halo orbit in fig. 2. The stable and unstable
manifolds associated with a periodic orbit may assist in the construction of low maneuver cost pathways towards and
away from the orbit.

The Floquet theory provides a powerful framework for analyzing the linear variational dynamics near a periodic
orbit [14]. From the theory, an STM between any two states (ΦΦΦ(𝜏, 𝜏0)) on a periodic orbit is decomposed into the
following form,

ΦΦΦ(𝜏, 𝜏0) = 𝐹 (𝜏)e𝐵(𝜏−𝜏0 )𝐹−1 (𝜏0) (7)

where, 𝐹 (𝜏0) denotes a matrix that consists of the eigenvectors of the orbit state at 𝜏0, 𝐵 represents a Jordan canonical
matrix comprising of the Poincaŕe exponents of the orbit, and 𝐹 (𝜏) signifies a matrix that contains the Floquet modes
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associated with a periodic orbit state at 𝜏 time downstream from an initial state at 𝜏0. The Poincaŕe exponents ([𝑖) are
related to the eigenvalues of a periodic orbit with a period (P) as,

[𝑖 =
1
P

ln(_𝑖) (8)

The 𝐹 (𝜏0) matrix for a periodic orbit of type saddle x center is written in terms of the eigenvectors as,

𝐹 (𝜏0) = [�̄�𝑜 �̄� 𝑓 �̄�𝑢 �̄�𝑠 �̄�𝑐,𝑟 �̄�𝑐,𝑖] (9)

where, the six eigenvectors in the above-presented order correspond to the along orbit, generalized, unstable, stable, real
component of the center and imaginary component of the center eigenvector. Since the geometric multiplicity of the
trivial eigenvalue pair is one it is challenging to compute the generalized eigenvector. The methodology described by
Williams and Howell is leveraged to identify the generalized eigenvector [15]. The associated e𝐵(𝜏−𝜏0 ) matrix for a
periodic orbit of type saddle x center is determined as,

e𝐵(𝜏−𝜏0 ) =



1 𝜖 0 0 0 0
0 1 0 0 0 0
0 1 e[3 (𝜏−𝜏0 ) 0 0 0
0 1 0 e−[3 (𝜏−𝜏0 ) 0 0
0 1 0 0 cos(Im[[5] (𝜏 − 𝜏0)) sin(Im[[5] (𝜏 − 𝜏0))
0 1 0 0 −sin(Im[[5] (𝜏 − 𝜏0)) cos(Im[[5] (𝜏 − 𝜏0))


(10)

where, 𝜖 is an arbitrarily small number, [3 represents the Poincaŕe exponent related to the unstable eigenvector, and
Im[[5] denotes the imaginary component of the Poincaŕe exponent associated with the complex center eigenvalue. The
Floquet modes associated with an orbital state are computed by rearranging the terms in eq. (7) as,

𝐹 (𝜏) = ΦΦΦ(𝜏, 𝜏0)𝐹 (𝜏0)e−𝐵(𝜏−𝜏0 ) (11)

The six P-periodic Floquet modes offer a convenient representation of the eigenvectors associated with periodic orbits
and are employed by multiple authors for the formulation of stationkeeping and transfer design strategies [11, 14, 16].

(a) Configuration plot
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Fig. 1 The 𝐿1 northern halo orbit family members in the Earth-Moon system and stability indices, where
crimson: family members with at least one non-trivial 2-dimensional center subspace

C. Quasi-Periodic Orbits
Quasi-periodic orbits are non-repeatable but bounded particular solutions of the CR3BP that are characterized by

𝑛-fundamental frequencies (𝑛 ≥ 2) that are not commensurate. The focus of this investigation is limited to QPOs that are
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Fig. 2 The stable and unstable global manifolds associated with an 𝐿1 halo orbit

described by two fundamental frequencies. The two key parameters linked to a QPO are the stroboscopic time period
(𝑇0) that defines the time it takes for a trajectory to complete one revolution around a QPO, and the rotation angle (𝜌0)
that denotes the latitudinal shift in a quasi-periodic trajectory after every revolution of the orbit. The two fundamental
frequencies are related to the stroboscopic time period and the rotation angle through the following expressions,

𝜔𝑇0 =
2𝜋
𝑇0 (12)

𝜔𝜌0 =
𝜌0

𝑇0 =
𝜌0𝜔𝑇0

2𝜋
(13)

where, 𝜔𝑇0 represents the longitudinal frequency and 𝜔𝜌0 denots the latitudinal frequency. Since the two fundamental
frequencies are constant, any phase state on a QPO is alternatively expressed as a pair of angular variables (\𝑇0 , \𝜌0 ) as
depicted in fig. 3. The two angles linearly evolve with the propagation time, 𝜏, from a state (\𝑇0 (0), \𝜌0 (0)) on a QPO
and they are defined as,

\𝑇0 (𝜏) = \𝑇0 (0) + 𝜔𝑇0𝜏 (14)
\𝜌0 (𝜏) = \𝜌0 (0) + 𝜔𝜌0𝜏 (15)

The angular representation is helpful in succinctly describing any phase state on a QPO and has been leveraged to realize
various applications by a number of authors [8, 17, 18]. However, the angles as commonly defined do not preserve
the information about the natural flow along the orbit, i.e., it is not straightforward to identify if two states on a QPO
lie along a common short time of flight (TOF) quasi-periodic trajectory. Hence, the definition of the latitudinal angle
is altered such that all the QPO states that lie within one stroboscopic time period downstream of an initial state are
represented by the latitudinal angle of the initial state. This new latitudinal angle is denoted as the modified latitudinal
angle, Ω𝜌0 . It is evident that the Ω𝜌0 value for all the states that lie one revolution downstream from an initial state is
constant, whereas, the \𝜌0 value for the states evolve as a function of propagation time. For the states that are more than
one revolution downstream from an initial state, their Ω𝜌0 values are updated by the number of revolutions downstream
they lie times the rotation angle. It is straightforward to ascertain if a short TOF quasi-periodic trajectory connects the
two states if they either have the same Ω𝜌0 value or the difference in their Ω𝜌0 values is a small integer multiple of the
rotation angle of the QPO. Hence, in this investigation \𝑇0 and Ω𝜌0 are employed to alternatively represent the phase
states of a QPO.

A number of characteristics of the flow along a QPO are uncovered by identifying an image of the orbit that crosses
through a stroboscopic map with the same time period as the 𝑇0 value of the QPO. The generated image is identified as
an invariant curve, and it assists in realizing that an initial state on the curve when propagated till the next crossing of
the stroboscopic map does not return to the initial state albeit shifted along the invariant curve by the rotation angle of
the QPO. This characteristic is formulated as an invariance constraint for a differential corrections scheme to construct
QPOs and it was first proposed by Gómez and Mondelo [19], and later refined by Olikara and Scheeres [20]. Specifically,
the differential corrections scheme described by Olikara and Scheeres termed the GMOS algorithm is employed in this
investigation [20]. The initial guess for an invariant curve is delivered by the approximation of the center manifold
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associated with a periodic orbit state through the following expression,

𝑥∗𝑐 = 𝑥∗PO + ∇
(Re[�̄�𝑐]cos(\𝜌0 ) − Im[�̄�𝑐]sin(\𝜌0 ))√︃

𝑣2
𝑐,𝑥 + 𝑣2

𝑐,𝑦 + 𝑣2
𝑐,𝑧

(16)

Where, 𝑥∗PO represents a state on the periodic orbit, ∇ denotes the step-off distance from the periodic orbit state (measured
in unit length), �̄�𝑐 signifies the complex center eigenvector associated with 𝑥∗PO and Re[�̄�𝑐] and Im[�̄�𝑐] are the real and
imaginary components of the eigenvector, and \𝜌0 is an arbitrary latitudinal angle ∈ [0, 2𝜋). The eq. (16) is utilized to
compute 𝑁 states and they collectively approximate the invariant curve. The 𝑁 states are computed for a fixed ∇ value
but for different latitudinal angles given as,

\̄𝜌0 =

[
0

2𝜋
𝑁

. . .
2𝜋(𝑁 − 2)

𝑁

2𝜋(𝑁 − 1)
𝑁

]
; \𝜌0 ,𝑖 =

2𝜋(𝑖 − 1)
𝑁

, 𝑖 = 1, 2, . . . , 𝑁 (17)

The basepoint of the 𝑁 states is modified from the barycenter of the system to the selected periodic orbit state as,

�̄�1
𝑖 = 𝑥∗𝑐, \

𝜌0 ,𝑖
− 𝑥∗PO, 𝑖 ∈ [1, 𝑁] (18)

where, �̄�1
𝑖
= [𝑢1

𝑥,𝑖
𝑢1
𝑦,𝑖

𝑢1
𝑧,𝑖

𝑢1
¤𝑥,𝑖 𝑢

1
¤𝑥,𝑖 𝑢

1
¤𝑧,𝑖]𝑇 represents the 𝑖th state on the invariant curve. To differentially correct the

initial guess the following representation of the invariance constraint is leveraged,

(R−𝜌0 ) (T0
U) − U = 0 (19)

where, U is a matrix that comprises of the �̄�1
𝑖

states, T0U is defined in a similar manner as U but comprises of states that
are computed by propagating the �̄�1

𝑖
states for one 𝑇0 value, and R−𝜌0 signifies a rotation operator that removes the 𝜌0

rotation of the propagated states, so that the corrected propagated states after the −𝜌0 rotation match the initial states.
The expanded form of the 𝑇0U matrix is written as,

T0U =



𝑇0 �̄�1𝑇
1

𝑇0 �̄�1𝑇
2
...

𝑇0 �̄�1𝑇
𝑁−1

𝑇0 �̄�1𝑇
𝑁


=



𝑇0𝑢1
𝑥,1

𝑇0𝑢1
𝑦,1

𝑇0𝑢1
𝑧,1

𝑇0𝑢1
¤𝑥,1

𝑇0𝑢1
¤𝑦,1

𝑇0𝑢1
¤𝑧,1

𝑇0𝑢1
𝑥,2

𝑇0𝑢1
𝑦,2

𝑇0𝑢1
𝑧,2

𝑇0𝑢1
¤𝑥,2

𝑇0𝑢1
¤𝑦,2

𝑇0𝑢1
¤𝑧,2

...
...

...
...

...
...

𝑇0𝑢1
𝑥,𝑁−1

𝑇0𝑢1
𝑦,𝑁−1

𝑇0𝑢1
𝑧,𝑁−1

𝑇0𝑢1
¤𝑥,𝑁−1

𝑇0𝑢1
¤𝑦,𝑁−1

𝑇0𝑢1
¤𝑧,𝑁−1

𝑇0𝑢1
𝑥,𝑁

𝑇0𝑢1
𝑦,𝑁

𝑇0𝑢1
𝑧,𝑁

𝑇0𝑢1
¤𝑥,𝑁

𝑇0𝑢1
¤𝑦,𝑁

𝑇0𝑢1
¤𝑧,𝑁


(20)

where, 𝑇0 �̄�1
𝑖

denote the states that lie one stroboscopic time period downstream from the �̄�1
𝑖

states. The U matrix is
shaped in the same manner as the 𝑇0U matrix represented in eq. (20). The rotation operator, R−𝜌0 , is constructed via
the discrete Fourier series representation of the states that approximate the invariant curve. The Fourier coefficients
corresponding to the 𝑇0 �̄�1

𝑖
states are phase-shifted by −𝜌0 and the resultant coefficients are transformed to the phase space

to deliver the rotation operator. The discrete Fourier coefficients, T0C0, associated with the 𝑇0 �̄�1
𝑖

states are determined as,
𝑇0C0 = (D) (T0U) (21)

where, D represents the discrete Fourier transform and is defined as,

D =
1
𝑁

e−i�̄�𝑇 \̄
𝜌0 (22)

=
1
𝑁



e−i(− 𝑁−1
2 )0 e−i(− 𝑁−1

2 ) 2𝜋
𝑁 . . . e−i(− 𝑁−1

2 ) 2𝜋 (𝑁−1)
𝑁

...
...

...

e−i(−1)0 e−i(−1) 2𝜋
𝑁 . . . e−i(−1) 2𝜋 (𝑁−1)

𝑁

e−i(0)0 e−i(0) 2𝜋
𝑁 . . . e−i(0) 2𝜋 (𝑁−1)

𝑁

e−i(1)0 e−i(1) 2𝜋
𝑁 . . . e−i(1) 2𝜋 (𝑁−1)

𝑁

...
...

...

e−i( 𝑁−1
2 )0 e−i( 𝑁−1

2 ) 2𝜋
𝑁 . . . e−i( 𝑁−1

2 ) 2𝜋 (𝑁−1)
𝑁


(23)
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The \̄𝜌0 values are given by eq. (17) and the �̄� for odd-valued 𝑁 is written as,

�̄� =

[
−𝑁 − 1

2
. . . − 1 0 1 . . .

𝑁 − 1
2

]
(24)

The Fourier coefficients are phase-shifted through a phase-shift operator that adds the desired change in phase to the
phase of the coefficients. The phase-shift operator to accomplish a phase change of −𝜌0 value is expressed as,

Q−𝜌0 = e−i�̄�𝜌0
I𝑁×𝑁 =


ei(− 𝑁−1

2 )−𝜌0 0 . . . 0
0 ei(− 𝑁−1

2 +1)−𝜌0
. . . 0

...
...

. . .
...

0 0 . . . ei( 𝑁−1
2 )−𝜌0


(25)

where, I𝑁×𝑁 is the identity matrix of size 𝑁 × 𝑁 . The outlined discrete Fourier transform and the phase-shift operator
are combined to define the rotation operator as,

(R−𝜌0 ) (T0
U) = (D−1Q−𝜌0D) (T0

U) (26)

The details behind the construction of design and constraint vectors, Jacobian matrix and other considerations for
the GMOS algorithm are elucidated by McCarthy [8] and Jain [21]. The 2-dimensional QPOs exist in 2-parameter
families of orbits. The biparametric family of a QPO is decomposed into three subsets: constant mapping time, constant
frequency ratio, and constant energy family that comprises of QPOs with common 𝑇0, 𝜌0, and 𝐽𝐶 values, respectively,
as depicted in fig. 4. The three subsets of the biparametric family are constructed through the GMOS algorithm
[8, 20, 21] and a constant energy family of 𝐿4 quasi-axials orbits generated through the algorithm is illustrated in fig. 5.
The constant energy families of QPOs are extensively employed in this investigation to design transfer pathways.

Fig. 3 Phase states on a QPO defined by \𝑇0 and
\𝜌0 angles. Fig. 4 Schematic of a 2-dimensional solution surface

representing the biparametric family of QPOs.

The stable and unstable manifolds associated with QPOs assist in the identification of transfer pathways. The
Lyapunov stability and a first-order linear approximation of the hyperbolic invariant manifolds corresponding to a QPO
are determined through the eigenanalysis of a monodromy-like matrix. The matrix akin to the monodromy matrix
renders a state on the QPO as a fixed point and the matrix is evaluated as,

DGqpo = (R−𝜌0 ⊗ I)�̃�(𝑇0, 0) (27)

where, R−𝜌0 is the rotation operator as mentioned in eq. (19), ⊗ signifies the Kronecker delta product, I denotes an
identity matrix of size 6×6, and �̃�(𝑇0, 0) represents a block diagonal matrix comprising of STMs of the 𝑇0 �̄�1

𝑖
states with

respect to the �̄�1
𝑖

states. The eigenvalues, _︸︷︷︸, of the DGqpo matrix, size 6𝑁 × 6𝑁 , assist in assessing the Lyapunov

stability of the orbit. The 6𝑁 eigenvalues when plotted on a complex plane appear as six concentric circles as depicted
for an 𝐿1 quasi-lyapunov orbit in fig. 6. It is evident that the 6𝑁 eigenvalues are reducible to six values corresponding to
the radius of the concentric circles, and are also described by the six eigenvalues of a Floquet matrix representation
of DGqpo as outlined by Jorba [22], Baresi et al. [23], and McCarthy [8]. The six Floquet matrix eigenvalues are
approximated as positive real eigenvalues with no imaginary component along each concentric circle. The reduced
eigenvalues exist as reciprocal pairs, similar to that of a periodic orbit. Two pairs of eigenvalues are unity, and the third
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2

3

(a) 𝑇0 vs 𝜌0 (b) Congiguration space plot of 3

Fig. 5 𝑇0 vs 𝜌0 plot of a constant energy family of QPOs with 𝐽𝐶avg=1.97268 originating from an 𝐿4 axial
orbit (𝐽𝐶=1.97268, 𝑇0=27.33317 days) in the Earth-Moon system. A QPO identified as 3 in the 𝑇0 vs 𝜌0 plot is
visualized in the configuration space on the right.

pair, if hyperbolic, suggests the presence of associated stable and unstable manifolds. The stable and unstable manifolds
corresponding to a QPO are 3-dimensional and are approximated via the 6𝑁 stable and unstable eigenvectors associated
with the reduced hyperbolic eigenvalue pair. The pair of eigenvectors are expressed as,

qpo�̄�𝑆 =



qpo�̄�𝑆,1

qpo�̄�𝑆,2
...

qpo�̄�𝑆,𝑁−1

qpo�̄�𝑆,𝑁


; qpo�̄�𝑈 =



qpo�̄�𝑈,1

qpo�̄�𝑈,2
...

qpo�̄�𝑈,𝑁−1

qpo�̄�𝑈,𝑁


(28)

where, qpo�̄�𝑆 and qpo�̄�𝑈 represent the 6𝑁 stable and unstable eigenvectors, repectively, and qpo�̄�𝑆,𝑖 and qpo�̄�𝑈,𝑖 signify
the stable and unstable eigenvector associated with the �̄�1

𝑖
state. The local stable and unstable manifolds associated with

an invariant curve, sampled using �̄�1 states, are approximated as,

qpo𝑥
∗
𝑆,𝑖 = 𝑥∗PO + �̄�1

𝑖 ± ∇ qpo�̄�𝑆,𝑖√︃
qpo𝑣

2
𝑆,𝑖,𝑥

+qpo 𝑣
2
𝑆,𝑖,𝑦

+qpo 𝑣
2
𝑆,𝑖,𝑧

(29)

qpo𝑥
∗
𝑈,𝑖 = 𝑥∗PO + �̄�1

𝑖 ± ∇ qpo�̄�𝑈,𝑖√︃
qpo𝑣

2
𝑈,𝑖,𝑥

+qpo 𝑣
2
𝑈,𝑖,𝑦

+qpo 𝑣
2
𝑈,𝑖,𝑧

(30)

where, qpo𝑥
∗
𝑆,𝑖

and qpo𝑥
∗
𝑈,𝑖

denote the local stable and unstable manifold approximation associated with the �̄�1
𝑖

state, and
∇ denotes a step-off factor with length units. This procedure is repeated to approximate the local hyperbolic manifold
states corresponding to other invariant curves around the torus. The collection of local unstable manifold states linked
to various invariant curves, serves as an estimate of the local unstable manifold associated with a QPO. Then, the
3-dimensional unstable manifold is approximated as the set of the unstable manifold arcs that are generated by flowing
the local unstable manifold states forward in time. The same methodology is followed to compute local stable manifold
states to estimate the stable manifold. The positive-half unstable manifold approximated through the described technique
is plotted for an 𝐿2 quasi-vertical orbit in fig. 7. Since, the stable and unstable manifolds are 3-dimensional, any state
on the manifold may be parameterized as the step-off location (\𝑇0 , Ω𝜌0) of its corresponding manifold arc and the
propagation time along the manifold arc from the approximated local manifold state to the desired state. The stable and
unstable manifolds inform the design of transfer pathways towards and away from a QPO.

8



−3 −2 −1 0 1 2 3
Re[ λ︸︷︷︸]

−2

−1

0

1

2

I
m

[
λ ︸︷
︷︸

]

Fig. 6 The spectrum of eigenvalues of DGqpo of an 𝐿1quasi-Lyapunov orbit.

(a) (b)

Fig. 7 Approximation of positive-half unstable manifold associated with an 𝐿2 quasi-vertical orbit(green)
(𝐽𝐶avg = 3.04647, 𝑇0 = 16.82590 days) in the Earth-Moon system. The global unstable manifold trajectories
(black) associated with 𝑁 = 55 states, for ∇𝑢 = 50 km, emanating from an invariant curve (purple) are depicted
in the plots. Additionally, the surface of manifold states (red) generated at 19.95786 days, and 30.39736 days
along the manifold are visualized in figs. 7(a) and 7(b), respectively.

III. Transfers Between Stable Periodic Orbits
The construction of transfers between nearly/marginally stable periodic orbits is challenging due to the absence

of useful natural flows that depart and arrive at the orbits. The pathways that link two orbits with a reasonable flight
time may necessitate costly maneuvers to overcome inherent difference in their geometry and compensate for the lack
of practical stable/unstable hyperbolic invariant manifolds. A sample case for this problem is the design of a transfer
from an 𝐿2 9:2 synodic resonant southern Near Rectilinear Halo Orbit (NRHO) to a moon-centered planar Distant
Retrograde Orbit (DRO), as illustrated in fig. 8. In this scenario, a DRO at the same energy level as the NRHO is chosen
as the arrival orbit. The 𝐿2 9:2 NRHO is nearly stable, and the selected DRO is marginally stable, as indicated by the
stability indices provided in table 1. A common metric to approximate the lowest transfer cost between two orbits
is the theoretical minimum Δ𝑉 (TMDV) [24]. The metric assumes that the orbits possess natural flows linked by a
single impulsive maneuver, resulting in a Δ𝑉 of 0 m/s for the two selected orbits at the same energy level. However,
the absence of stable/unstable manifolds associated with the DRO necessitates an insertion maneuver. This scenario
motivates the use of at least one other dynamical structure to inform the transfer design process.

For the sample case of a general NRHO to DRO scenario, multiple solutions have been constructed by several
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Table 1 Initial conditions, period, 𝐽𝐶 value and stability indices of an 𝐿2 9:2 southern NRHO and a DRO.

Orbit 𝑥0 [nd] 𝑧0 [nd] ¤𝑦0 [nd] P [nd] 𝐽𝐶 a1 a2

𝐿2 9:2 southern NRHO 1.02203 -0.18210 -0.10327 1.51120 3.04649 1 1.32301
DRO 0.91009 0 0.48639 1.08309 3.04649 1 1

Fig. 8 An 𝐿2 9:2 NRHO (orange) and a DRO (yellow) in the Earth-Moon system.

authors. McCarty et al. use monotonic basin hopping to locate a feasible exterior transfer, such that the transfer traverses
the far side of the Earth [25]. Lantoine considers a patched model approach that incorporates the solar perturbation,
DPO family, and a grid search to produce exterior-type transfer geometries [26]. Vutukuri utilizes resonant periodic
orbits and tangential maneuvers for recognition of exterior-type transfers [27]. Pritchett et al. and Prado et al. develop
interior-type transfer solutions using low-thrust in the periodic orbit chaining process [28, 29]. Zimovan-Spreen et al.
compute interior-type transfer pathways by orbit chaining higher-period 𝐿2 halo orbits and their associated manifolds,
as well as exterior-type solutions by including resonant orbits in the orbit chain [30]. In addition, Muralidharan and
Howell leverage stretching directions corresponding to the departure and arrival orbits to constrain the computation
of interior and exterior type class of solutions [31]. The various strategies rely on different dynamical structures to
influence the result, so an approach is proposed where the hyperbolic invariant manifolds corresponding to intermediate
periodic/quasi-periodic orbits are leveraged to inform the design of transfers.

The formulated methodology leverages the natural flow, as well as stable and unstable manifolds associated with
intermediate orbits to uncover two types of transfers: interior-type and exterior-type transfers. The interior-type transfers
lie in the interior region of the system and the exterior-type transfers traverse through the far-side of the Earth as depicted
in figs. 9 and 10. Both types of transfers require a departure and an arrival impulsive maneuver, and the exterior-type
transfers employ an additional impulsive maneuver on the far-side of the Earth. The construction of the transfers is
decomposed into the design of three/six segments for interior-type/exterior-type transfers that are informed by the stable
and unstable manifolds associated with one/two selected intermediate orbits. The segments that depart and arrive at an
intermediate orbit are constructed independent of each other and the two segments are linked by a bridging arc. The
design of a bridging arc is informed by the natural flow along a selected intermediate orbit. The various segments are
stitched together through a differential corrections scheme to result in two/three maneuver interior-type/exterior-type
solutions. Additionally, locally fuel-optimal solutions for the two types of transfers are identified by employing an
interior-point method.

The intermediate orbits are selected to possess the same 𝐽𝐶 value as the departure and arrival orbits, as well as
useful stable and unstable invariant manifolds. This criterion aids in reducing the dimensionality of the problem, and
the associated maneuvers are solely required to accomplish geometry change and not expended on energy change. The
intermediate orbits employed in this investigation to demonstrate the framework include 𝐿2 vertical, 𝐿2 quasi-vertical,
𝐿2 P2HO2, and 𝐿2 quasi-P2HO2 orbits. Additionally, a planar 3:4 sidereal Resonant Periodic Orbit (RPO) and a Distant
Prograde Orbit (DPO) are utilized as the second intermediate orbit for the construction of exterior-type transfers as
represented in fig. 10. Due to the simplifying assumption associated with the 𝐽𝐶 value of the intermediate orbits, the
orbits of interest offered by a 2-parameter family of a QPO narrows down to a 1-parameter constant energy family
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Fig. 9 Interior-type transfer schematic.

Fig. 10 Exterior-type transfer schematic.

at the same energy level as the departure/arrival orbit. Consequently, the 5-dimensional solutions encompassed by
the stable/unstable manifolds associated with the 2-parameter family of a QPO reduce to 4-dimensional solutions
corresponding to stable/unstable manifolds of a constant energy family. The relevant characteristics of the selected
intermediate periodic orbits appear in table 2, and the orbits are visualized in fig. 11. The characteristics of the constant
energy family of 𝐿2 quasi-vertical and 𝐿2 quasi-P2HO2 orbits, at the same 𝐽𝐶 value as the departure/arrival orbit,
employed in this investigation are depicted in figs. 12 and 13, respectively. It is notable that the evolution of the QPOs
along the two selected constant energy families is marked by the monotonic decrease in their associated rotation angle.
The subsequent sections provide a systematic framework for the computation of the multiple segments of the two transfer
types, as well as strategies to link the segments to generate transfers. The various selected intermediate orbits assist in
assessing a number of solution basins that exist for the sample case, as well as allow for comparison between geometries
constructed via QPOs and their underlying periodic orbits.

A. Inbound Segment to the Arrival Orbit
The inbound segment to the arrival periodic orbit from an intermediate orbit is constructed to lie on the unstable

manifold associated with the intermediate orbit. The design of the segment is initiated by identifying unstable manifold
arcs that cross the vicinity of the arrival orbit. The potential candidates of the segment are differentially corrected
such that the converged trajectory lies on the unstable manifold corresponding to the intermediate orbit and is position
continuous with an arrival orbit state. To narrow down the solutions offered by the 1-parameter constant energy family
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Table 2 Initial conditions, period, 𝐽𝐶 value, and stability indices of the selected intermediate periodic orbits.

Orbit 𝑥0 [nd] 𝑧0 [nd] ¤𝑦0 [nd] P [nd] 𝐽𝐶 a1 a2

𝐿2 vertical 1.05442 -0.19361 0.08128 3.87705 3.04649 1 303.83937
𝐿2 southern P2HO2 1.02578 0.059137 0.50201 4.20255 3.04649 1 45.64766

Planar 3:4 RPO 0.97615 0 1.40837 16.86499 3.04649 1 228.36123
DPO 1.02731 0 0.72419 4.50999 3.04649 1 619.95934

(a) An 𝐿2 vertical (green) and an 𝐿2 P2HO2
(navy).

(b) A planar 3:4 RPO (green) and a DPO
(navy).

Fig. 11 Selected intermediate periodic orbits with the same 𝐽𝐶 value as an 𝐿2 9:2 NRHO (𝐽𝐶 = 3.04649).

Fig. 12 A constant energy family of 𝐿2 quasi-vertical orbits with the same 𝐽𝐶 value as an 𝐿2 9:2 NRHO (𝐽𝐶 =
3.04649). Plot of the evolution of 𝜌0 and 𝑇0 values of the QPOs along the family, and a member (green) with 𝜌0 =
0.42259 rad along its the underlying periodic orbit (yellow).

of an intermediate QPO, a representative member of the family is selected that delivers significantly different geometries
than derived from its underlying periodic orbit. The initial guesses generated by various members of the constant energy
family are compared through a visualization technique to identify a candidate intermediate QPO. The differentially
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Fig. 13 A constant energy family of 𝐿2 quasi-P2HO2 orbits with the same 𝐽𝐶 value as an 𝐿2 9:2 NRHO (𝐽𝐶 =
3.04649). Plot of the evolution of 𝜌0 and 𝑇0 values of the QPOs along the family, and a member (green) with 𝜌0 =
1.59184 rad along its the underlying periodic orbit (yellow).

corrected segments constructed through the unstable manifolds associated with intermediate periodic and quasi-periodic
orbits exist as locally unique and local 1-parameter family of solutions due to the dimensionality of their manifolds.

1. Initial Guess
The initial guess for the segment is obtained by recording the first crossings of the unstable manifold arcs near

the arrival periodic orbit. The unstable manifold associated with an intermediate periodic/quasi-periodic orbit is
approximated through the technique detailed in section II.B/section II.C. To identify the first crossings of the manifold
arcs, an events function is leveraged that employs a continuous representation of the DRO constructed through the
strategy described by Jain [21]. The manifold states with a position discontinuity of less than 4000 km and a velocity
discontinuity of at most 700 m/s are considered. The initial guesses realized through the aforementioned procedure are
demonstrated for an 𝐿2 vertical orbit and 𝐿2 quasi-vertical orbits. The manifold arcs and manifold states associated with
the 𝐿2 vertical orbit that cross in the proximity of the DRO are visualized in fig. 14. It is apparent from the plot that
there are three local solution basins. Similarly, the manifold states of interest corresponding to the 𝐿2 quasi-vertical
orbit with 𝜌0=0.42259 rad are depicted in fig. 15. Notably, the QPO offers many more solutions than its underlying
periodic orbit. The difference in the number of initial guesses generated by intermediate periodic orbit and QPO are a
result of the difference in their unstable manifold dimensionality.

To assess the initial guess generated through an intermediate QPO and to compare the guesses derived from the
various members of its constant energy family, an alternative visualization technique to fig. 15 is employed. The
proposed visualization method represents the identified manifold states on a 2-dimensional heat map with the two axes
as the modified latitudinal angle (Ω𝜌0 ) and the longitudinal angle (\𝑇0 ), as described in section II.C, associated with the
manifold step-off location on the QPO. The manifold states are colored by the position and velocity discontinuity with
their nearest arrival orbit states. The heat map representation of the manifold states in fig. 15 associated with the 𝐿2
quasi-vertical orbit with 𝜌0=0.42259 rad is depicted in fig. 16. The heat map visual offers a more straightforward method
to assess the initial guess than the plot in fig. 15. The outlined initial guess generation and visualization strategies are
employed to compare the initial guesses obtained from the other members of the 𝐿2 quasi-vertical constant energy
family. The heat map representation of the guesses generated by a number of 𝐿2 quasi-vertical orbits with 𝜌0 = 0.51490,
0.60913 and 0.64859 rad are presented in figs. 17 to 19, respectively. It is apparent from figs. 16 to 19 that there is a
smooth decrease in velocity discontinuities as the 𝐿2 quasi-vertical orbits evolve along their constant energy family,
marked by the decrease in their associated rotation angle. The decrease in the velocity discontinuities is indicative
of the change in the manifold arc geometries. Consequently, the quasi-vertical orbit with the smallest rotation angle
(𝜌0 = 0.42259 rad), plotted in fig. 12, amongst the constructed constant energy family members is employed for the
construction of the segment. Subsequently, the initial guesses marked by the black and red curves in fig. 16 are selected
to construct low maneuver cost 1-parameter families of solutions.

13



1

2 3

1

2
3

Fig. 14 Unstable manifold arcs (red) on the left and manifold states (black) on the right associated with an 𝐿2
vertical orbit (green) that crosses near a DRO (orange).

Fig. 15 Unstable manifold states (black) associated with an 𝐿2 quasi-vertical orbit (𝜌0 = 0.42259 rad) that cross
near a DRO (orange).
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(b) Velocity discontinuity

Fig. 16 Position and velocity discontinuities between the unstable manifold states associated with an 𝐿2
quasi-vertical orbit (𝜌0 = 0.42259 rad) and their corresponding nearest arrival orbit states.

2. Differential Correction
A differential corrections strategy is leveraged to correct an identified initial guess such that the resultant geometry is

an unstable manifold arc associated with a selected intermediate orbit and position continuous with an arrival orbit state.
Consequently, the velocity discontinuity with the arrival orbit state is overcome through a single impulsive maneuver.
The time of flight and the step-off location of a manifold arc on the intermediate orbit, as well as the arrival orbit
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Fig. 17 Position and velocity discontinuities between the manifold states corresponding with an 𝐿2 quasi-vertical
orbit (𝜌0 = 0.51490 rad) and their corresponding nearest arrival orbit states.
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Fig. 18 Position and velocity discontinuities between the manifold states corresponding with an 𝐿2 quasi-vertical
orbit (𝜌0 = 0.60913 rad) and their corresponding nearest arrival orbit states.
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Fig. 19 Position and velocity discontinuities between the manifold states corresponding with an 𝐿2 quasi-vertical
orbit (𝜌0 = 0.64859 rad) and their corresponding nearest arrival orbit states.

state, are allowed to vary during the corrections process. The differential corrections procedure is formulated as a
Newton-Raphson method. The design (�̄�) and constraint vectors (�̄� ( �̄�)) for solutions derived from an intermediate
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QPO are formulated as,

�̄� =


T

𝜏arr

𝜏int

Ω𝜌0


; �̄� ( �̄�) =


𝑢𝑥
T
𝜏int ,Ω𝜌0

− 𝑥
𝜏arr
arr

𝑢𝑦
T
𝜏int ,Ω𝜌0

− 𝑦
𝜏arr
arr

𝑢𝑧
T
𝜏int ,Ω𝜌0

− 𝑧
𝜏arr
arr

 (31)

where, T corresponds to the time of flight of a manifold arc and 𝜏arr represents the propagation time along the arrival
periodic obit from an initial state, 𝑥arr, on the orbit. The last two elements of the design vector, 𝜏int and Ω𝜌0 denote the
step-off state, 𝑥𝜏int ,Ω𝜌0 , on an intermediate QPO that approximates a local unstable manifold state, 𝑢𝑥𝜏int ,Ω𝜌0 . Specifically,
𝜏int denotes the propagation time along a QPO from an initial invariant curve to the invariant curve on which the step-off
location lies and Ω𝜌0 represents the modified latitudinal angle of the step-off location. The 𝑢𝑥

T
𝜏int ,Ω𝜌0

, 𝑢𝑦
T
𝜏int ,Ω𝜌0

and

𝑢𝑧
T
𝜏int ,Ω𝜌0

components represent the 𝑥, 𝑦 and 𝑧 positions of an unstable manifold state, 𝑢𝑥T𝜏int ,Ω𝜌0
. The 𝑢𝑥

T
𝜏int ,Ω𝜌0

state is
computed by propagating the 𝑢𝑥𝜏int ,Ω𝜌0 state for time T. The local manifold state, 𝑢𝑥𝜏int ,Ω𝜌0 , is approximated through the
following expression,

𝑢𝑥𝜏int ,Ω𝜌0 = 𝑥𝜏int ,Ω𝜌0 + ∇𝑢

ΦΦΦ𝜏int ,Ω𝜌0 �̄�𝑢√︃
(ΦΦΦ𝜏int ,Ω𝜌0 �̄�𝑢)𝑇 (ΦΦΦ𝜏int ,Ω𝜌0 �̄�𝑢)

(32)

where, ∇𝑢 signifies the step-off factor, �̄�𝑢 is a 6 × 1 unstable eigenvector associated with a state on a QPO on an initial
curve at Ω𝜌0 angle, and ΦΦΦ𝜏int ,Ω𝜌0 is the STM propagated from an initial state on a QPO to 𝑥𝜏int ,Ω𝜌0 . The step-off factor is
assumed to be constant during the differential corrections process. The Jacobian matrix for eq. (56) is formulated as,

DF( �̄�) =



𝑢 ¤𝑥T𝜏int ,Ω𝜌0
−¤𝑥𝜏arr

arr

𝜕

(
𝑢𝑥
T
𝜏int ,Ω𝜌0

)
𝜕𝜏int

𝜕

(
𝑢𝑥
T
𝜏int ,Ω𝜌0

)
𝜕Ω

𝜌0

𝑢 ¤𝑦T𝜏int ,Ω𝜌0
−¤𝑦𝜏arr

arr

𝜕

(
𝑢𝑦
T
𝜏int ,Ω𝜌0

)
𝜕𝜏int

𝜕

(
𝑢𝑦
T
𝜏int ,Ω𝜌0

)
𝜕Ω

𝜌0

𝑢 ¤𝑧T𝜏int ,Ω𝜌0
−¤𝑧𝜏arr

arr

𝜕

(
𝑢𝑧
T
𝜏int ,Ω𝜌0

)
𝜕𝜏int

𝜕

(
𝑢𝑧
T
𝜏int ,Ω𝜌0

)
𝜕Ω

𝜌0


(33)

where, the first and second column elements are the velocity components of the propagated manifold state and the
downstream arrival orbit state. The third and fourth columns comprise of the partial derivatives of the downstream
manifold state with respect to the 𝜏int and Ω𝜌0 , respectively. These two partial derivatives are rewritten in an expanded
form similar to the ones derived by McCarthy et al. [32] as,

𝜕

(
𝑢𝑥
T
𝜏int ,Ω𝜌0

)
𝜕𝜏int

= 𝜙𝜙𝜙𝑀 (T, 0)
𝜕

(
𝑢𝑥𝜏int,Ω

𝜌0

)
𝜕𝜏int

(34)

𝜕

(
𝑢𝑥
T
𝜏int ,Ω𝜌0

)
𝜕Ω𝜌0

= 𝜙𝜙𝜙𝑀 (T, 0)
𝜕

(
𝑢𝑥𝜏int,Ω

𝜌0

)
𝜕Ω𝜌0

(35)
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The 𝜙𝜙𝜙𝑀 (T, 0) matrix is an STM that maps the first-order linear variations of the 𝑢𝑥𝜏int,Ω
𝜌0

state to a downstream state at

time T. The expanded form of
𝜕

(
𝑢 �̄�𝜏int,Ω

𝜌0

)
𝜕𝜏int

is expressed as,

𝜕 (𝑢𝑥𝜏int ,Ω𝜌0 )
𝜕𝜏int

= ¤̄𝑥𝜏int,Ω
𝜌0

+ ∇𝑢

©«
¤Φ¤Φ¤Φ𝜏int ,Ω𝜌0 �̄�𝑢√︃

(ΦΦΦ𝜏int,Ω
𝜌0
�̄�𝑢)𝑇 (ΦΦΦ𝜏int ,Ω𝜌0 �̄�𝑢)

−
ΦΦΦ𝜏int ,Ω𝜌0 �̄�𝑢 ( ¤Φ¤Φ¤Φ𝜏int ,Ω𝜌0 �̄�𝑢)𝑇 (ΦΦΦ𝜏int ,Ω𝜌0 �̄�𝑢)

2((ΦΦΦ𝜏int ,Ω𝜌0 �̄�𝑢)𝑇 (ΦΦΦ𝜏int ,Ω𝜌0 �̄�𝑢))
3
2

−
ΦΦΦ𝜏int ,Ω𝜌0 �̄�𝑢 (ΦΦΦ𝜏int ,Ω𝜌0 �̄�𝑢)𝑇 ( ¤Φ¤Φ¤Φ𝜏int ,Ω𝜌0 �̄�𝑢)

2((ΦΦΦ𝜏int ,Ω𝜌0 �̄�𝑢)𝑇 (ΦΦΦ𝜏int ,Ω𝜌0 �̄�𝑢))
3
2

ª®¬

(36)

where, ¤Φ¤Φ¤Φ𝜏int ,Ω𝜌0 is the time derivative of matrix ΦΦΦ𝜏int ,Ω𝜌0 . The partial derivative
𝜕

(
𝑢 �̄�𝜏int,Ω

𝜌0

)
𝜕Ω

𝜌0
is written as,

𝜕

(
𝑢𝑥𝜏int,Ω

𝜌0

)
𝜕Ω𝜌0

=

𝜕

(
𝑥𝜏int,Ω

𝜌0

)
𝜕Ω𝜌0

+ ∇𝑢

𝜕

(
ΦΦΦ𝜏int ,Ω𝜌0 �̄�𝑢

(√︃
(ΦΦΦ𝜏int,Ω

𝜌0
�̄�𝑢)𝑇 (ΦΦΦ𝜏int ,Ω𝜌0 �̄�𝑢)

)−1
)

𝜕Ω𝜌0
(37)

It is evident that the above partial derivative requires the computation of
𝜕

(
ΦΦΦ𝜏int ,Ω𝜌0

)
𝜕Ω

𝜌0
term, which is challenging due to

the lack of an analytical expression as noted by McCarthy et al. [32]. A different method than the ones formulated
by McCarthy et al. [8, 32] is adopted to evaluate eq. (37) that relies on the construction of an unstable eigenvector
spectrum of the invariant curve on which 𝑥𝜏int,Ω

𝜌0
state lies. The partial derivative, eq. (37), is rewritten as,

𝜕

(
𝑢𝑥𝜏int,Ω

𝜌0

)
𝜕Ω𝜌0

=

𝜕

(
𝑥𝜏int,Ω

𝜌0

)
𝜕Ω𝜌0

+ ∇𝑢

𝜕

(
�̄�𝑢

(√︁
�̄�𝑇
𝑢 �̄�𝑢

)−1
)

𝜕Ω𝜌0
(38)

=

𝜕

(
𝑥𝜏int,Ω

𝜌0

)
𝜕Ω𝜌0

+ ∇𝑢
©«

𝜕�̄�𝑢

𝜕Ω
𝜌0√︁

�̄�𝑇
𝑢 �̄�𝑢

−
�̄�𝑢

((
𝜕�̄�𝑢

𝜕Ω
𝜌0

)𝑇
�̄�𝑢 + �̄�𝑇

𝑢
𝜕�̄�𝑢

𝜕Ω
𝜌0

)
2(�̄�𝑇

𝑢 �̄�𝑢)
3
2

ª®®®®¬
(39)

where, �̄�𝑢 = ΦΦΦ𝜏int,Ω
𝜌0
�̄�𝑢 is an unstable eigenvector corresponding to the step-off state, 𝑥𝜏int,Ω

𝜌0
. The derivative of the

step-off state with respect to Ω𝜌0 is given as,

𝜕

(
𝑥𝜏int,Ω

𝜌0

)
𝜕Ω𝜌0

= diag[i�̄�]ei�̄�Ω
𝜌0 C0 (40)

Recall, �̄� is defined in eq. (24), and C0 matrix comprises the Fourier coefficients corresponding to the states that describe
the initial invariant curve on the QPO, similar to eq. (21). The partial derivative of the unstable eigenvector with
respect to the modified latitudinal angle in eq. (39) is evaluated using the Fourier coefficients of the unstable eigenvector
spectrum associated with the invariant curve of the intermediate QPO that comprises of 𝑥𝜏int,Ω

𝜌0
state,

𝜕�̄�𝑢

𝜕Ω𝜌0
= diag[i�̄�]ei�̄�Ω

𝜌0 C𝑢 (41)
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The C𝑢 matrix consists of the Fourier coefficients of the unstable eigenvector spectrum and is computed through the
following,

C𝑢 = DW𝑢 (42)

where, D denotes the discrete Fourier transform operator as defined in eq. (23), and V𝑢 matrix comprises of the unstable
eigenvectors of the states that approximate the invariant curve, which is 𝜏int downstream from the initial invariant curve,
and it is structured similar to eq. (20). The downstream eigenvector spectrum is computed through the block diagonal
STM, Φ̃̃Φ̃Φ(𝜏int, 0), which is similar to the one mentioned in eq. (27), and unstable eigenvector spectrum of the initial
invariant curve, V𝑢, through the following expression,

W𝑢 = Φ̃̃Φ̃Φ(𝜏int, 0)V𝑢 (43)

It is evident that the shooting method formulation in eq. (56) is underconstrained, hence, the solutions are determined
through the minimum-norm update formulation of the Newton-Raphson method.

For an intermediate QPO, the differential corrections scheme for construction of an inbound segment, eq. (33),
comprises 1-dimensional null-space. Hence, the solutions exist as a 1-parameter family and are generated through the
pseudo-arc length continuation scheme. This scheme is employed for the construction of local families of solutions with
the initial guess identified in fig. 12 through the selected 𝐿2 quasi-vertical orbit. Two distinct families of solutions in
region 1, as highlighted in fig. 16, and its mirror configuration about the 𝑥 − �̂� plane are constructed and represented
in fig. 20. The solutions obtained through the initial guess in region 2, marked in fig. 16, are not plotted in fig. 20 as
they lead to higher maneuver cost solutions with multiple options that traverse through the surface of the Moon. A few
members of the families marked by 1’ and 2 as depicted in fig. 20 are visualized in the configuration space in fig. 21.
The outlined initial guess generation methodology is utilized to select an 𝐿2 quasi-P2HO2 orbit with 𝜌0 = 1.59184 rad,
plotted in fig. 13 as the representative member of its constant energy family. The initial guess derived from the selected
𝐿2quasi-P2HO2 orbit is employed to uncover the solutions depicted in fig. 22. The 1-parameter family of segments
generated through intermediate QPOs afford transfer options to mission designers to select the pathways that meet any
desired operational constraints.
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Fig. 20 Differential corrected inbound segments to the arrival orbit constructed through the initial guess
obtained in fig. 16. The solutions in the local basins 1’ and 2’ are mirror configurations of the options in local
basins 1 and 2 about the 𝑥 − �̂� plane.

For intermediate periodic orbits, a similar differential corrections procedure as that for an intermediate QPO is
developed with the difference that a single parameter is required to describe the step-off location of a manifold arc. The
design and constraint vector for the scheme are formulated as,

�̄� =


T

𝜏arr

𝜏int

 ; �̄� ( �̄�) =

𝑢𝑥
T
𝜏int − 𝑥

𝜏arr
arr

𝑢𝑦
T
𝜏int − 𝑦

𝜏arr
arr

𝑢𝑧
T
𝜏int − 𝑧

𝜏arr
arr

 (44)

where, T, 𝜏arr, and (𝑥𝜏arr
arr , 𝑦

𝜏arr
arr , 𝑧

𝜏arr
arr ) represent the quantities as previously defined for the intermediate QPO case. The

𝜏int captures the step-off location of a manifold arc in terms of the propagating time from an initial state along the
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(a) Solutions of the local basin 1’. (b) Solutions of the local basin 2

Fig. 21 Transfer geometries corresponding to the local basin 1’ and 2 as highlighted in fig. 20. The local
solutions generated with an 𝐿2 quasi-vertical orbit (green) as the intermediate orbit require a single maneuver
(pink/black in the left/right plot) to overcome the velocity discontinuity with the arrival orbit (orange). The time
of flight of the segments ranges from 26.8 to 28.1 days.

intermediate periodic orbit. The 𝑢𝑥
T
𝜏int state is an unstable manifold state that is computed by propagating a local

manifold state corresponding to the 𝑥𝜏int step-off location for time T. The local manifold state, 𝑢𝑥𝜏int , is approximated
through the following expression,

𝑢𝑥𝜏int = 𝑥𝜏int + ∇𝑢

ΦΦΦ𝜏int �̄�𝑢√︁
(ΦΦΦ𝜏int �̄�𝑢)𝑇 (ΦΦΦ𝜏int �̄�𝑢)

(45)

where, ∇𝑢 represents a step-off factor (dimensionless), �̄�𝑢 corresponds to a 6 × 1 unstable eigenvector associated with
the initial state of an intermediate orbit, and ΦΦΦ𝜏int is the STM that maps the first-order effect of variations in the initial
state of an orbit to 𝑥𝜏int state. The manifold step-off factor is assumed to be constant during the differential corrections
process. The Jacobian matrix of the differential corrections scheme is given by,

DF( �̄�) =


𝑢 ¤𝑥T𝜏int −¤𝑥𝜏arr

arr
𝜕(𝑢𝑥T𝜏int )
𝜕𝜏int

𝑢 ¤𝑦T𝜏int −¤𝑦𝜏arr
arr

𝜕(𝑢𝑦T𝜏int )
𝜕𝜏int

𝑢 ¤𝑧T𝜏int −¤𝑧𝜏arr
arr

𝜕(𝑢𝑧T𝜏int )
𝜕𝜏int


(46)

The first and the second column of the Jacobian matrix are the velocity components of 𝑢𝑥
T
𝜏int and 𝑥

𝜏arr
arr , respectively. The

elements in the third column correspond to the variation in the position of the downstream manifold state with respect to
the change in the step-off location on the intermediate periodic orbit. The partial derivative of the change in downstream
manifold state with respect to 𝜏int is expressed as,

𝜕 (𝑢𝑥T𝜏int )
𝜕𝜏int

= 𝜙𝜙𝜙𝑀 (T, 0)
𝜕 (𝑢𝑥𝜏int )
𝜕𝜏int

(47)

where, 𝜙𝜙𝜙𝑀 (T, 0) is an STM that captures the impact of change in 𝑢𝑥𝜏int state on the 𝑢𝑥
T
𝜏int state. The derivative of 𝑢𝑥𝜏int

with respect to 𝜏int is written as,

𝜕 (𝑢𝑥𝜏int )
𝜕𝜏int

= ¤̄𝑥𝜏int + ∇𝑢

(
¤Φ¤Φ¤Φ𝜏int �̄�𝑢√︁

(ΦΦΦ𝜏int �̄�𝑢)𝑇 (ΦΦΦ𝜏int �̄�𝑢)
−
ΦΦΦ𝜏int �̄�𝑢 (( ¤Φ¤Φ¤Φ𝜏int �̄�𝑢)𝑇 (ΦΦΦ𝜏int �̄�𝑢) + (ΦΦΦ𝜏int �̄�𝑢)𝑇 ( ¤Φ¤Φ¤Φ𝜏int �̄�𝑢))

2((ΦΦΦ𝜏int �̄�𝑢)𝑇 (ΦΦΦ𝜏int �̄�𝑢))
3
2

)
(48)
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(a) Heat map representation (b) Configuration space plot

Fig. 22 Inbound segments obtained through the unstable manifold associated with an 𝐿2 quasi-P2HO2 orbit
(green) plotted on a heat map and configuration space. The time of flight of the segments ranges from 46.8 days
to 47.2 days.

where, ¤Φ¤Φ¤Φ𝜏int is the time derivative of matrix ΦΦΦ𝜏int . The partial derivatives in the third column of the Jacobian matrix,
eq. (46), are the first three components of eq. (47). The shooting method, eq. (44), is fully constrained, hence, the
initial guess from a manifold arc of an intermediate periodic orbit leads to a locally unique solution. The initial guess
obtained from the 𝐿2 vertical orbit in fig. 14 are fed to the corrections scheme and the resultant solutions are plotted in
fig. 23(a). Similarly, the initial guess is generated for 𝐿2 P2HO2 orbit, 3:4 RPO and DPO and their converged segments
are visualized in figs. 23(b), 24(a) and 24(b), respectively. The transfer maneuver costs and flight times for the segments
generated through the four selected intermediate orbits are tabulated in tables 3 to 6. Recall that the RPO and DPO are
only employed as the second intermediate orbit for the design of the exterior-type transfrs. It is notable that the transfer
geometries realized through 𝐿2 vertical and 𝐿2 P2HO2 orbits are more fuel-expensive than the solutions obtained
from their QPO counterparts. Additionally, the two intermediate QPOs offer many more options than their underlying
periodic orbits.

B. Outbound Segment from the Departure Orbit
The design of the outbound segment from the departure orbit to an intermediate orbit follows a similar approach to

the inbound segment. However, it incorporates stable manifold arcs associated with the intermediate orbit, in contrast to
the unstable manifold arcs employed in the inbound segment. Additionally, the solutions are position continuous with
the departure orbit, rather than the arrival orbit, as in the case of the inbound segment. A continuous representation of
the NRHO is generated in the same manner as that for the DRO to formulate an events function to identify potential
candidates of the stable manifold arcs. The differential corrections schemes described for the the inbound segment
are leveraged with the noted difference of the use of stable manifold arcs and departure orbit. Consistent with the
inbound segments, solutions derived from intermediate periodic orbits are locally unique and those constructed through
intermediate QPOs appear as 1-parameter family of solutions. The inherent difference in the solution space offered by
the two types of orbit is linked to the dimensionality of their stable manifolds.

The single maneuver outbound segments realized from the selected intermediate periodic and quasi-periodic orbits
are plotted in the configuration space and their associated maneuver costs are tabulated. The solutions derived from
the 𝐿2 vertical and 𝐿2 P2HO2 orbits are depicted in fig. 25, and their associated costs are provided in tables 7 and 8.
Each of the two intermediate periodic orbits gives rise to two locally unique outbound segments. The two previously
selected intermediate QPOs, 𝐿2 quasi-vertical (rad=0.42259 rad) and 𝐿2 quasi-P2HO2 (rad=1.59184 rad), uncover
multiple 1-parameter families of segments as represented in figs. 26 and 27. It is of note that only the low maneuver
cost solutions that maintain a perilune distance greater than the radius of the Moon are considered. It is evident from the
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1

2 3

(a) Derived from the 𝐿2 vertical orbit

1

2

(b) Derived from the 𝐿2 P2HO2 orbit

Fig. 23 Three and two converged inbound segments informed by an 𝐿2 vertical and 𝐿2 P2HO2, respectively.
The segments require a single impulsive maneuver (black) to overcome the velocity discontinuity with the DRO.
The maneuver costs and flight times for the 𝐿2 vertical and 𝐿2 P2HO2 are tabulated in table 3 and table 4,
respectively.

visuals that the two intermediate QPOs offer more solutions with lower maneuver-costs compared to ones generated
from their underlying periodic orbits.

C. Interior-type Transfers
The interior-type pathways, with reasonable maneuver cost and flight times, between the departure and arrival orbit

are designed by stitching an outbound segment from the departure orbit, a bridging arc, and an inbound segment to the
arrival orbit. The construction of the outbound and inbound segments are informed by the stable and unstable manifolds
associated with a selected intermediate orbit as elucidated in sections III.A and III.B, respectively. The two segments
are linked by a bridging arc that is generated by leveraging the natural flow of the intermediate orbit. Thereafter, the
three segments are differentially corrected for full-state continuity such that the resultant geometry only requires a
departure and an arrival maneuver to connect the two orbits as illustrated in fig. 9. The differential corrections scheme
is defined to vary the time of flight of the segments, as well as the departure and arrival locations. Subsequently, the
corrected solution is seeded as an initial guess to a multiple shooting transcribed optimization scheme to identify locally
fuel-optimal transfers.

Due to the repeatable geometry of a periodic orbit, it is feasible to link any pair of outbound and inbound segments
that are derived from an intermediate periodic orbit to design interior-type transfers. The design of a bridging arc is
initiated by flowing the outbound segment from the departure orbit forward in time for a time period ascertained by the
difference in the step-off location of the local manifold states corresponding to the outbound and inbound segments.
The step-off location of the stable and unstable manifold states that serve as the initial state for their respective segments
are represented in terms of the propagation time from an initial state along the orbit and expressed as 𝜏int,dep and 𝜏int,arr,
respectively. The estimate for the flight of time of the bridging arc is evaluated as,

𝔗PO = mod(Pint + 𝜏int,arr − 𝜏int,dep, Pint) (49)

where, where, 𝔗PO denotes the approximate flight time of the bridging arc and Pint represents the period of the
intermediate periodic orbit. The modulo operator, mod, ensures that the bridging arc flight time does not exceed the
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1

2

(a) Derived from the 3:4 RPO (b) Derived from the DPO

Fig. 24 Two converged inbound segments informed by an 3:4 RPO and a DPO, respectively. The segments
require a single impulsive maneuver (black) to overcome the velocity discontinuity with the DRO. The maneuver
costs and flight times for the RPO and DPO are tabulated in table 5 and table 6, respectively.

1
2

(a) Derived from the 𝐿2 vertical orbit

1
2

(b) Derived from the 𝐿2 P2HO2 orbit

Fig. 25 Two converged outbound segments informed by an 𝐿2 vertical and 𝐿2 P2HO2, respectively. The segments
require a single impulsive maneuver (black) to overcome the velocity discontinuity with the DRO. The maneuver
costs and flight times for the 𝐿2 vertical and 𝐿2 P2HO2 are tabulated in table 7 and table 8, respectively.
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(a) Heat map representation (b) Configuration space plot of family 1

Fig. 26 Outbound segments obtained through the stable manifold arcs associated with an 𝐿2 quasi-vertical
orbit (green) plotted on a heat map and family 1 is plotted in the configuration space. The departure maneuver
locations in the configuration space are marked by the pink dots. The time of flight of the segments ranges from
26.8 to 28.1 days.

period of the intermediate orbit. It is apparent from the formulation that the bridging arc is full-state continuous with
the outbound segment but discontinuous with the inbound segment. Hence, the aforementioned differential corrections
scheme is employed to link the three segments to construct a two-maneuver transfer that connects the two orbits. The
lowest maneuver cost outbound and inbound segments designed via the 𝐿2 vertical orbit and 𝐿2 P2HO2 orbit, as
tabulated in tables 3, 4, 7 and 8, are selected to realize the interior-type transfers depicted in fig. 28.

The design of the bridging arc to link the outbound and inbound segments constructed through the stable and
unstable manifolds associated with an intermediate QPO is complicated due to the non-repeatable nature of QPO. For the
construction of low maneuver cost and short TOF solutions, the choice of outbound and inbound segments is narrowed
down to segments with step-off locations that lie in the immediate upstream or downstream of each other. Consider
the step-off location on the QPO associated with the local manifold state corresponding to the outbound and inbound
segment be represented as 𝑥int,dep and 𝑥int,arr, respectively. The 𝑥int,dep and 𝑥int,arr states are alternatively expressed as
(\𝑇0 ,dep, Ω𝜌0 ,dep) and (\𝑇0 ,arr, Ω𝜌0 ,arr). To identify the segments that meet the desired criteria, the following expression
is employed,

Ω𝜌0 ,arr ≈ mod(Ω𝜌0 ,dep + nrev𝜌
0, 2𝜋) (50)

where, nrev is an integer number that represents the number of revolutions around a QPO that an 𝑥int,dep state is propagated
to attain the desirable Ω𝜌0 ,arr value. The selection of 𝑥int,dep and 𝑥int,arr states is biased to satisfy the eq. (50) with a small
value of nrev to uncover a bridging arc with a short TOF. For an identified value of nrev, the TOF of the bridging arc is
estimated as,

𝜏QPO =
𝑇0

2𝜋
(\𝑇0 ,arr − \𝑇0 ,dep) + nrev𝑇

0 (51)

where, 𝜏QPO denotes the TOF of the bridging arc. For an 𝐿2 quasi-vertical orbit, the outbound and inbound segments
as represented on a heatmap in figs. 20 and 26 are overlaid on a common plot, as presented in fig. 29(a), to identify
potential candidates for the identification of suitable segment pairings. A pair of 𝑥int,dep and 𝑥int,arr are selected for
the quasi-vertical orbit that satisfies eq. (50) for a value of nrev=1 as illustrated in fig. 29(a). The stable manifold arc
associated with the selected 𝑥int,dep is propagated forward for 𝜏QPO evaluated through eq. (51) to get an initial guess for
the briding arc. The three selected segments are connected through the described differential corrections scheme to
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(a) Heat map representation (b) Configuration space plot of family 1

Fig. 27 Outbound segments obtained through the stable manifold arcs associated with an 𝐿2 quasi-P2HO2
orbit (green) plotted on a heat map and family 1 is plotted in the configuration space. The departure maneuver
locations in the configuration space are marked by the pink dots. The time of flight of the segments ranges from
44.3 to 46.03 days.

reveal the interior-type transfer visualized in fig. 31(a). A similar strategy is leveraged to design a transfer through an 𝐿2
quasi-P2HO2 orbit. The heat map representation of the outbound and inbound segments are overlaid in fig. 29(b), and it
is evident that the identified 𝑥int,arr state does not lie in the immediate downstream, rather in the immediate upstream of
the 𝑥int,dep state. The specified outbound and inbound segments are plotted in the configuration space in fig. 30, and it is
apparent that the two segments follow a common pathway as they approach and depart the orbit. Hence, it is feasible to
connect the segments by modifying the flight time of the two segments such that the end states of the two segments
lie in their vicinity. This strategy does not explicitly require a bridging arc to connect the two altered segments, and
the differentially corrected geometry appears in fig. 31(b). The members of other 1-parameter families of segments
may be linked to result in alternate differentially corrected geometries derived from the manifold associated with an
intermediate QPO. In general, the inbound and outbound segments, as well as the two-maneuver transfers derived from
the selected intermediate QPOs, result in a greater number and lower maneuver cost solutions than their counterparts
constructed from their underlying periodic orbits.

An optimization scheme is employed to uncover the locally fuel-optimal solutions that leverage the differentially
corrected solutions as the initial guess. An interior point method, IPOPT [33], is utilized as the optimization technique
with an objective function that minimizes Δ𝑉2

dep + Δ𝑉2
arr. The optimization scheme is a multiple shooting transcription

of the differential corrections strategy described to link the three segments. Hence, the time of flight, as well as the
departure and arrival locations are allowed to vary during the optimization process. The locally fuel-optimal two
maneuver interior-type transfers for the differentially corrected solutions generated through an 𝐿2 P2HO2 and an 𝐿2
quasi-vertical orbit as visualized in figs. 28(b) and 31(a) appear in figs. 32(a) and 32(b). The presented systematic
framework assists in realizing the multiple local solution basins that are fundamentally characterized by the selected
intermediate orbits.

D. Exterior-type Transfers
The exterior-type transfers link the departure orbit to the arrival orbit through a pathway that traverses through the

far side of the Earth. The design of this type of transfer is informed by the stable and unstable manifolds associated with
two intermediate orbits as depicted in fig. 10. The construction of the transfer is decomposed into the generation of six
segments: an outbound segment from the departure orbit to the first intermediate orbit, a bridging arc along the first
intermediate orbit, a segment from the first intermediate orbit to the far side of the Earth (IO1Earth), a segment from the
far side of the Earth to a second intermediate orbit (EarthIO2), a bridging arc along the second intermediate orbit, and
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(a) Informed by an 𝐿2 vertical orbit, Δ𝑉tot = Δ𝑉dep +
Δ𝑉arr = 197.810 + 535.494 = 733.304 m/s, TOF = 75.745
days

(b) Informed by an 𝐿2 P2HO2 orbit, Δ𝑉tot = Δ𝑉dep +
Δ𝑉arr = 103.387 + 602.444 = 708.831 m/s, TOF = 64.946
days

Fig. 28 Interior-type transfers informed by intermediate periodic orbits. The blue, green, and red colored
portions of the full-state continuous trajectory are post differential correction remnants of the initial guess of the
three segments.

(a) 𝐿2 quasi-vertical orbit, 𝜌0 = 0.42259 rad. (b) 𝐿2 quasi-P2HO2 orbit, 𝜌0 = 1.59184 rad.

Fig. 29 Angular variable representation of stable and unstable manifold step-off locations corresponding to
families of differentially corrected outbound and inbound segments constructed through an 𝐿2 quasi-vertical
orbit and an 𝐿2 quasi-P2HO2 orbit.

an inbound segment to the arrival orbit from the second intermediate orbit. The design of the outbound and inbound
segments follows the same procedure as outlined in sections III.A and III.B. Additionally, the IO1Earth and EarthIO2
segments are constructed via the stable and unstable manifolds associated with the intermediate orbits. The bridging
arcs are designed by leveraging the natural flow along the intermediate orbit. After the identification of the options for
the six segments, they are connected via a differential corrections scheme to obtain three maneuver transfers, and the
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Fig. 30 Plot of an outbound and inbound segment corresponding to the selected 𝑥int,dep and 𝑥int,dep states in
fig. 29(b).

(a) Informed by an 𝐿2 quasi-vertical orbit, Δ𝑉tot = Δ𝑉dep
+ Δ𝑉arr = 153.213 + 292.010 = 445.223 m/s, TOF = 69.938
days.

(b) Informed by an 𝐿2 quasi-P2HO2 orbit, Δ𝑉tot = Δ𝑉dep
+ Δ𝑉arr = 7.815 + 473.403 = 481.217 m/s, TOF = 73.944
days

Fig. 31 Interior-type transfers informed by intermediate quasi-periodic orbits. The blue, green, and red colored
portions of the full-state continuous trajectory are post-differential correction remnants of the initial guess of the
three segments.

corrections procedure is transcribed into an optimization scheme to construct locally fuel-optimal solutions.
The IO1Earth and EarthIO2 segments are identified through the unstable and stable manifold arcs associated with

the first and second intermediate orbits, respectively, that reach the far side of the Earth. For an intermediate QPO,
a subset of its associated 3-dimensional unstable/stable manifold is employed for the IO1Earth/EarthIO2 segment
design. The unstable/stable manifold arcs that emanate from step-off locations that lie within a single revolution
downstream/upstream from the step-off state associated with the outbound/inbound segment are utilized for the
construction of the IO1Earth/EarthIO2 segment. This design choice narrows down the options offered by the manifolds
of a QPO, as well as assists in constructing a bridging arc with short TOF that connects the segments that depart and
arrive at the orbit. No such reduction in solution space is needed for manifolds associated with an intermediate periodic
orbit. A pair of unstable and stable manifold arcs associated with the first and the second intermediate orbits is selected
such that the states of the arcs that lie on the far side of the Earth have a minimal position and velocity discontinuity. A
Poincaŕe map with hyperplane at 𝑦 = 0 is employed to capture the manifold states that cross the far side of the Earth as
illustrated for the unstable manifold arcs corresponding to an 𝐿2 vertical orbit in fig. 33. Then, a K-Nearest Neighbors
(KNN) algorithm is leveraged to identify the unstable and stable manifold arcs that have small position and velocity
discontinuity, similar to the approach detailed by Pritchett [28] and LaFarge [34]. The search space of the algorithm is
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(a) Informed by an 𝐿2 P2HO2 orbit, Δ𝑉tot = Δ𝑉dep +
Δ𝑉arr = 232.164 + 231.569 = 463.733 m/s, TOF = 45.314
days.

(b) Informed by an 𝐿2 quasi-vertical orbit, Δ𝑉tot = Δ𝑉dep
+ Δ𝑉arr = 220.288 + 141.960 = 362.245 m/s, TOF = 82.448
days.

Fig. 32 Interior-type locally fuel-optimal transfers initiailzed by two feasible solution, figs. 28(b) and 31(a), that
are characterized by an 𝐿2 P2HO2 and 𝐿2 quasi-vertical orbit. The blue, green, and red colored portions of the
full-state continuous trajectory are post-optimization remnants of the three colored arcs along the initial guess.

populated with the position and velocity components of the manifold states and the position components are scaled by a
factor of 10. Thereafter, the L2 norm of the difference between the six components of the unstable and stable manifold
states is utilized as the search criteria to deliver the candidates for the IO1Earth and EarthIO2 segments.

Fig. 33 Unstable manifolds (red) associated wih an 𝐿2 vertical orbit (green) propagated till the first crossing of
a Poincáre map at y=0 on the far side of the Earth.

The design of the bridging arcs is informed by the natural flow along an intermediate orbit. The segments
that approach and depart an intermediate periodic orbit are linked via a bridging arc that is constructed through
the strategy discussed in section III.C. The estimate of the time of flight of the arc is determined through eq. (49).
Since the IO1Earth/EarthIO2 segment associated with an intermediate QPO is designed to lie in the immediate
downstream/upstream of the outbound/inbound segment, the departing and approaching segments are straightforwardly
constructed by bridging arc with an approximate TOF given by eq. (51).

The identified six segments are stitched together through a differential corrections scheme to reveal three maneuver
exterior-type transfers. The corrections scheme is formulated to overcome the position and velocity discontinuity between
all the segments, except for the velocity discontinuity between the IO1Earth and EarthIO2 segments. Additionally,
the segments are constrained to be position continuous with the departure and arrival orbit. Hence, the three velocity
discontinuities, between the departure orbit state and the first segment, IO1Earth and EarthIO2 segments, the last
segment and arrival orbit state, are overcome via three impulsive maneuvers. The time of flight of the segments, as well
as the departure and arrival orbit locations, are allowed to vary during the corrections process. The resultant geometries
uncovered through the selected intermediate orbits are plotted in figs. 34(a), 35(a), 36(a) and 37(a). It is apparent from
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the presented results that the solutions informed by intermediate QPOs result in lower maneuver cost options than the
ones leveraging their underlying periodic orbits.

The locally fuel-optimal solutions are realized by optimizing the differentially corrected solutions with an objective
function that minimizes |Δ𝑉dep |2 + |Δ𝑉 |2 + |Δ𝑉arr |2. The optimization scheme is a transcription of the described
differential corrections scheme along with the defined objective function. The geometries uncovered by the optimization
scheme with the solutions plotted in figs. 34(a), 35(a), 36(a) and 37(a) as the initial guesses are visualized in figs. 34(b),
35(b), 36(b) and 37(a). The interior-point method, IPOPT, does compute lower maneuver cost solutions for the four
cases than the ones constructed through the differential corrections scheme. It is notable that the maneuver cost of the
geometries derived from the QPOs are comparable to the cost of transfers designed by Vutukuri [27] by leveraging
resonant orbits and tangential maneuvers, as well as to the cost of solutions determined by Muralidharan et al. [31]
through the stretching directions associated with the departure and arrival orbits. The proposed framework that
incorporates QPOs as an option provides a modular and systematic approach to design low-cost transfer pathways
between stable periodic orbits.

(a) Differentially corrected transfer, Δ𝑉tot = Δ𝑉dep + Δ𝑉 +
Δ𝑉arr = 273.622 + 203.583 + 425.671 = 902.876 m/s, TOF
= 99.844 days.

(b) Optimized transfer, Δ𝑉tot = Δ𝑉dep + Δ𝑉 + Δ𝑉arr =
261.105 + 108.795 + 153.828 = 523.729 m/s, TOF = 115.161
days

Fig. 34 Exterior-type differentially corrected and optimized transfers informed by an 𝐿2 vertical orbit and a 3:4
RPO. The outbound segment from an NRHO to the far side of the Earth (blue) requires a maneuver to overcome
the velocity discontinuity with the inbound segment from the far side of the Earth to a DRO (red).

(a) Differentially corrected transfer, Δ𝑉tot = Δ𝑉dep + Δ𝑉

+ Δ𝑉arr = 130.789 + 16.231 + 472.628 = 619.649 m/s, TOF
= 127.534 days.

(b) Optimized transfer, Δ𝑉tot = Δ𝑉dep + Δ𝑉 + Δ𝑉arr =
86.254 + 105.437 + 58.414 = 250.106 m/s, TOF = 135.018
days.

Fig. 35 Exterior-type differentially corrected and optimized transfers informed by an 𝐿2 quasi-vertical orbit
and a 3:4 RPO. The outbound segment from an NRHO to the far side of the Earth (blue) requires a maneuver to
overcome the velocity discontinuity with the inbound segment from the far side of the Earth to a DRO (red).
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(a) Differentially corrected transfer, Δ𝑉tot = Δ𝑉dep + Δ𝑉

+ Δ𝑉arr = 103.549 + 88.261 + 366.775 = 558.585 m/s, TOF
= 150.697 days.

(b) Optimized transfer, Δ𝑉tot = Δ𝑉dep + Δ𝑉 + Δ𝑉arr =
62.064 + 17.768 + 113.701 = 193.534 m/s, TOF = 174.708
days.

Fig. 36 Exterior-type differentially corrected and optimized transfers informed by an 𝐿2 P2HO2 orbit and a
DPO. The outbound segment from an NRHO to the far side of the Earth (blue) requires a maneuver to overcome
the velocity discontinuity with the inbound segment from the far side of the Earth to a DRO (red).

(a) Differentially corrected transfer, Δ𝑉tot = Δ𝑉dep + Δ𝑉

+ Δ𝑉arr = 20.759 + 73.338 + 400.426 = 494.524 m/s, TOF
= 179.871 days.

(b) Optimized transfer, Δ𝑉tot = Δ𝑉dep + Δ𝑉 + Δ𝑉arr =
6.033 + 82.995 + 29.289 = 118.318 m/s, TOF = 220.296
days.

Fig. 37 Exterior-type differentially corrected and optimized transfers informed by an 𝐿2 quasi-P2HO2 orbit
and a DPO. The outbound segment from an NRHO to the far side of the Earth (blue) requires a maneuver to
overcome the velocity discontinuity with the inbound segment from the far side of the Earth to a DRO (red).

IV. Transfers Between Unstable Periodic Orbits in the Same Family
The design of low maneuver cost transfer pathways with reasonable time of flights between spatial periodic orbits

in the same Lagrange point family that possess stable and unstable invariant manifolds may be challenging due to
the difference in their energy levels. Even if the hyperbolic manifolds associated with the type of periodic orbits
under consideration are useful, due to the difference in their energy levels, the manifolds might not uncover locally
fuel-optimal transfer options with feasible flight times. There are multiple classes of solutions to this problem that are
described by various investigations. Davis et al. leverage the invariant manifolds associated with the departure and
arrival periodic orbits to construct mass optimal solutions with long flight times. The geometries uncovered by Davis et
al. make multiple revolutions around the libration point and the second primary. Prado et al., as well as Pritchett et
al. use the concept of orbit chaining with multiple members of the same family to construct low-thrust interior-type
multiple-revolution transfers [28, 29]. McCarthy incorporates a QPO torus that crosses the departure and arrival orbits
in the design process to produce a two-maneuver interior-type multiple-revolution solution [8]. Bell relies on primer
vector theory to construct two and three-maneuver interior-type direct transfers, i.e., transfers that do not complete a
revolution around the originating Lagrange point of the periodic orbit family [35]. Gómez et al. construct similar
solutions as Bell by employing the Floquet modes of the departure and arrival orbits to inform the design process [11].
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The numerous classes of transfers establish feasible solutions with varied desirable characteristics.
A proposed framework leverages the unstable manifolds associated with QPOs to extend the known solutions to

the problem scenario. Additionally, the constructed solutions are compared with the locally fuel-optimal geometries,
and the initial guess for the optimal transfers is obtained from the methodology described by Gómez et al. [11]. The
proposed strategy uncovers 1-paramter family of two-maneuver direct transfers for select departure and arrival orbit.
The framework is illustrated for transfers between 𝐿1 northern halo orbits in the Earth-Moon system, plotted in fig. 38(a).
It is notable that the out-of-plane amplitude (𝐴𝑧 , z-component of the apolune state) of the 𝐿1 halo orbits increase
monotonically and there are multiple tangent bifurcations across the family as depicted in fig. 38(b). Hence, the 𝐿1 halo
orbits may be alternatively represented by their 𝐴𝑧 values. More specifically, transfers from a departure halo orbit with
𝐴𝑧 = 10,000 km to halo orbits with higher 𝐴𝑧 values are constructed through the two strategies and then compared. It is
also noted that the fuel optimal transfers and their initial guess illuminate a linear relationship between the maneuver
cost and 𝐴𝑧 value of the arrival orbits that are even remarked by Bell [35] and Gómez et al. [11]. The QPO derived
pathways enhance the two-maneuver direct transfer options uncovered by the optimization strategy.
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(b) 𝐴𝑥 vs 𝐴𝑧 hodograph and stability information

Fig. 38 Configuration plot and 𝐴𝑥 vs 𝐴𝑧 hodograph of the 𝐿1 northern halo orbits in the Earth-Moon system.
The orbits are marked by their stability characteristics in the hodograph and the 𝐴𝑧 = 10,000 km departure orbit
appears in black in the configuration plot.

A. Locally Fuel-Optimal Transfers
Locally fuel-optimal transfers are devised through initial guesses identified via stable and along orbit Floquet modes

of the chosen departure and arrival orbits, as described by Gómez et al. [11]. To elucidate the initial guess generation
strategy, consider two closely spaced unstable orbits of the same family. An arbitrary two-maneuver direct transfer (Δ�̄�1,
Δ�̄�2) connects these orbits, as illustrated in fig. 39. The 𝑥

dep
𝜏1 and 𝑥arr

𝜏2 states in the schematic correspond to states on
the departure and arrival orbit. The two states are 𝜏1 and 𝜏2 propagation time downstream of their respective orbits’
states that cross the 𝑥 − 𝑧 plane with ¤𝑦 > 0, and it is assumed that 𝜏1<𝜏2. Since the two orbits are near each other the
𝑥

dep
𝜏2 and 𝑥arr

𝜏2 states are similar. Gomez et al. propose that the fuel-optimal transfers are governed by the stable and
the along orbit Floquet modes of arrival orbit states. Hence, the post-second maneuver transfer state is expressed as
𝑥arr
𝜏2 + 𝛾𝑠𝑒

arr
𝑠 (𝜏2) + 𝛾𝑜𝑒

arr
𝑜 (𝜏2), where 𝑒arr

𝑠 (𝜏2) and 𝑒arr
𝑜 (𝜏2) denote the stable and along orbit Floquet modes of the arrival

orbit at 𝜏2 and are computed through the procedure described in section II.B. The 𝛾𝑠 and 𝛾𝑜 are the linear coefficients of
the two Floquet modes. The transfer is alternatively expressed in terms of the two maneuvers,

𝑥
dep
𝜏2 +ΦΦΦ(𝜏2, 𝜏1) [0̄ Δ�̄�1]𝑇 + [0̄ Δ�̄�2]𝑇 = 𝑥arr

𝜏2 + 𝛾𝑠𝑒
arr
𝑠 (𝜏2) + 𝛾𝑜𝑒

arr
𝑜 (𝜏2) (52)
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where, ΦΦΦ(𝜏2, 𝜏1) represents the STM that maps the impact of linear variations on 𝑥
dep
𝜏1 to 𝑥

dep
𝜏2 state. The transfer

representation on the left is derived by propagating the post-first maneuver state, 𝑥dep
𝜏1 + [0̄ Δ�̄�1]𝑇 , till 𝜏2 time to obtain

the 𝑥
dep
𝜏2 +ΦΦΦ(𝜏2, 𝜏1) [0̄ Δ�̄�1]𝑇 state and then adding the second maneuver. The Floquet mode coefficients’ values are

sought to minimize total maneuver cost and satisfy eq. (52), providing an initial guess.
The Floquet mode-constrained initial guess design strategy, given by eq. (52), is linearized to identify locally optimal

departure and arrival locations that result in locally fuel-optimal transfers and to generalize the formulation for different
arrival orbits. A parameter 𝛽 is introduced to represent the periodic orbits in their continuous 1-parameter family.
Consequently, a departure orbit is denoted by 𝛽 and a nearby arrival orbit is represented as 𝛽 + Δ𝛽. Thus, the eq. (52) is
rewritten in terms of 𝛽 as,

𝑥
𝛽
𝜏2 +ΦΦΦ(𝜏2, 𝜏1) [0̄ Δ�̄�1]𝑇 + [0̄ Δ�̄�2]𝑇 = 𝑥

(𝛽+Δ𝛽)
𝜏2 + 𝛾𝑠𝑒

(𝛽+Δ𝛽)
𝑠 (𝜏2) + 𝛾𝑜𝑒

(𝛽+Δ𝛽)
𝑜 (𝜏2) (53)

For a small Δ𝛽 value, the above equation is expanded as,

��𝑥
𝛽
𝜏2 +ΦΦΦ(𝜏2, 𝜏1) [0̄ Δ�̄�1]𝑇 + [0̄ Δ�̄�2]𝑇 =��𝑥

𝛽
𝜏2 +

𝜕𝑥
𝛽
𝜏2

𝜕𝛽
Δ𝛽 +𝑂 [(Δ𝛽)2]

+𝛾𝑠

(
𝑒
𝛽
𝑠 (𝜏2) +

𝜕𝑒
𝛽
𝑠 (𝜏2)
𝜕𝛽

Δ𝛽

)
+𝛾𝑜

(
𝑒
𝛽
𝑜 (𝜏2) +

𝜕𝑒
𝛽
𝑜 (𝜏2)
𝜕𝛽

Δ𝛽

) (54)

The partial derivative terms, 𝜕�̄�
𝛽
𝑠 (𝜏2 )
𝜕𝛽

and 𝜕�̄�
𝛽
𝑜 (𝜏2 )
𝜕𝛽

, are neglected as for 𝑂 [𝛾𝑠/𝑜] = 𝑂 [Δ𝛽] their contribution is 𝑂 [(Δ𝛽)2].
The simplified form of eq. (54) is written as,

ΦΦΦ(𝜏2, 𝜏1) [0̄ Δ�̄�1]𝑇 + [0̄ Δ�̄�2]𝑇 =

(
𝜕𝑥

𝛽
𝜏2

𝜕𝛽
+ 𝛾𝑠

Δ𝛽
𝑒
𝛽
𝑠 (𝜏2) +

𝛾𝑜

Δ𝛽
𝑒
𝛽
𝑜 (𝜏2)

)
Δ𝛽 (55)

All the terms in the above equation are a function of the departure orbit, 𝛽, and the information about the arrival orbit is
solely encapsulated by Δ𝛽. The solutions to the equation for a fixed value of Δ𝛽 may be extrapolated for a range of Δ𝛽
values corresponding to nearby arrival orbits. It is straightforward to realize that for a fixed departure orbit and Δ𝛽

value, the formulated 6-dimensional expression in eq. (55) comprise of ten parameters: Δ�̄�1, Δ�̄�2, 𝜏1, 𝜏2, 𝛾𝑠 and 𝛾𝑜.
Since the defined problem is underconstrained, values of 𝛾𝑠 and 𝛾𝑜 are computed for fixed 𝜏1 and 𝜏2 values that result in
the minimum total maneuver cost. An interior point method, IPOPT [33], is employed to ascertain the values of 𝛾𝑠 and
𝛾𝑜 that minimizes an objection function defined as |�̄�1 |2+|�̄�2 |2. The optimization process is repeated for a range of 𝜏1
and 𝜏2 values to uncover the optimization landscape of the problem to enable the recognition of initial guesses to local
solution basins.

The outlined initial guess strategy is leveraged to construct transfers from the selected departure orbit to orbits with
higher 𝐴𝑧 values. For the 𝐿1 halo orbit family, the 𝛽 parameter is defined as the 𝐴𝑧 value of the orbits. For the departure
𝐿1 halo orbit, 𝛽 = 𝐴𝑧 = 10,000 km, the solutions to the formulated equation, eq. (55), are determined for Δ𝛽 = 1 [nd].
The 𝜏1 and 𝜏2 values are cast as the mean anomaly of the orbit and represented as \𝜏1 and \𝜏2 in degrees. The departure
location, \𝜏1 , is varied from 0◦ to 360◦ and the corresponding arrival location, \𝜏2 , is varied from \𝜏1 to \𝜏1 + 360◦ to
compute the optimization landscape. The resultant performance surface for the initial guess is represented on a heat map
in fig. 40, where the solutions are colored by the total maneuver cost in m/s per 1,000 km Δ𝛽. The initial guess for the
time of flight of the transfers is approximated as the difference between 𝜏1 and 𝜏2 values corresponding to their \𝜏1 and
\𝜏2 values. It is apparent from the heat map that multiple solution basins exist for the problem, so the focus is narrowed
down to solutions with shorter TOF as marked by the red curve in fig. 40. Bell and Gomez et al. identify that the
maneuver magnitudes of the two maneuvers of the optimal transfers are similar for transfers between 𝐿1 halo orbits in
the Sun-Earth system [11, 35]. This additional information is leveraged to reduce the options in a local basin to one with
comparable maneuver costs of the first and second maneuver, marked by pink dots in fig. 40. A solution represented by
a pink dot in the basin A and B as depicted in the heat map inform the design of locally optimal transfers.

The locally fuel-optimal transfers are constructed by feeding selected initial guesses to an optimization scheme with
an objection function that minimizes |�̄�1 |2+|�̄�2 |2. The optimization scheme delivers a transfer that is position continuous
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Fig. 39 Initial guess design strategy schematic

Fig. 40 Optimization landscape for the initial
guesses from 𝐴𝑧 = 10,000 km halo orbit. Two
solution basins of interest are marked as A and B.

with the departure and arrival orbit, and locally fuel-optimal. The time of flight, as well as the departure and arrival orbit
locations, are allowed to vary during the optimization process. To illustrate the efficacy of the described initial guess
generation strategy, two guesses that correspond to the two different solution basins as depicted in fig. 40 are optimized
for an arrival orbit with 𝐴𝑧 value of 20,000 km, which corresponds to a Δ𝛽 value of 10,000 km = 0.02601 [nd]. The
initial guess and the optimized transfer geometries are visualized in fig. 41, and the departure and arrival locations of
the optimized transfers are plotted on the heat map representation in fig. 42. It is evident from fig. 41 that the initial
guess constructed through the described strategy well approximates the geometries of the local optimal transfers.

(a) Solution basin A (b) Solution basin B

Fig. 41 Initial guess (blue) and optimized transfer (red) geometries to traverse from a halo orbit with 𝐴𝑧 =
10,000 km (black) to 𝐴𝑧 = 20,000 km (orange)

The identified initial guess in solution basin B is extrapolated for a range of Δ𝛽 values to design transfers from the
halo orbit with 𝐴𝑧 = 10,000 km to halo orbits with higher 𝐴𝑧 values. The optimized pathways designed via the selected
initial guess are plotted in fig. 43, and the maneuver costs approximated from the initial guess and the theoretical min Δ𝑉

values, as well as cost of the locally optimal transfers, are presented in fig. 44. Additionally, the maneuver magnitudes
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(a) Solution basin A (b) Solution basin B

Fig. 42 Zoomed-in view of the optimization landscape presented in fig. 42 that depicts the initial guess (red) and
optimized transfer (orange) that connects halo orbit with 𝐴𝑧 = 10,000 km to 20,000 km

of the two maneuvers for the optimal transfers are depicted in fig. 45. It is evident from fig. 44 that the cost of initial
guess and optimal transfers are higher than the TMDV values, which is the expected behavior, and the initial guess
well predicts the cost of optimal transfers up till the halo orbit with 𝐴𝑧 ≈ 75,000 km. The linear relationship between
the maneuver cost and the difference in the 𝐴𝑧 values of the departure and arrival orbits, as remarked by Bell [35]
and Gomez et al. [11], is notable in fig. 44 for transfers from the 𝐴𝑧 = 10,000 km to 𝐴𝑧 ⪅ 75,000 km. The change
in the linear relationship between the total maneuver cost and 𝐴𝑧 for halo orbit with 𝐴𝑧 value greater than ≈ 75, 000
km may be attributed to the distinct change in the geometry of the halo orbits as well the presence of multiple tangent
bifurcations as depicted in fig. 45. Due to the presence of multiple tangent bifurcations for the part of the halo orbit
family where the members evolve more rapidly in 𝐴𝑥 than in 𝐴𝑧 may go through a fundamental change in the direction
of stable and along orbit Floquet modes that would require a modification to the linear approximation made in eq. (54)
to more accurately approximate the maneuver cost for the arrival halo orbits with 𝐴𝑧 values greater than ≈ 75,000 km.
Nonetheless, the outlined initial guess strategy serves as a good first estimation of the two maneuvers and flight times
from the selected departure orbit to arrival orbits with similar characteristics. This initial guess generation technique is
extendable to the design of transfers to arrival orbits with 𝐴𝑧 values smaller than the departure orbit, and the symmetry
of the CR3BP model can be exploited to generate transfers that evolve from the arrival orbits to the departure orbit, as
well as for transfers between 𝐿1 southern halo orbit counterparts of the presented northern halo orbits. The optimal
transfers constructed from the departure to a few arrival orbits are compared with the transfer trajectories derived from
QPOs.

B. Quasi-Periodic Orbits Informed Transfers
The unstable manifolds associated with QPOs are leveraged to design families of two-maneuver direct transfers

between unstable orbits in the same orbit family. The design of the transfers initiates by selecting candidate QPOs
and identifying their corresponding manifold arcs that cross the vicinity of the departure and arrival orbits. Then a
differential corrections scheme is employed to realize two-maneuver direct transfers with the key constraint that each
transfer is a segment of an unstable manifold arc corresponding to a QPO. The initial guess generation strategy and
differential corrections procedure are an extension of the methodologies described in section III.A. For the direct
comparison of QPO-derived transfers with the fuel-optimal transfers, presented in section IV.A, the QPOs are selected
to possess the same 𝐽𝐶 value as their optimal transfer counterpart generated for a pair of departure and arrival orbit.

The potential candidates for the unstable manifold arcs that cross the vicinity of a departure and an arrival orbit
are identified through an events function that leverages a continuous representation of the two orbits. The continuous
representation of departure and arrival orbits are generated through the strategy described by Jain [21]. For a selected
QPO, the associated unstable manifold arcs are approximated through the strategy described in section II.C. Then by
employing the events function, the unstable manifold arcs that have a position discontinuity with a deparute orbit state
of less than 5000 km are recorded. This procedure is repeated to identify unstable manifold arcs that reach the proximity
of an arrival orbit. Thereafter, the manifold arcs that are common to the list of manifold arcs that cross in the vicinity of
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Fig. 43 Locally fuel-optimal transfers (red)
from a halo orbit with 𝐴𝑧 = 10,000 km (black)
to orbits with higher 𝐴𝑧 values blue.
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Fig. 44 The total maneuver cost predicted by the initial guess
(black) and theoretical minimum Δ𝑉 (blue), as well as the cost
of locally optimal solutions (red) are plotted with respect to
the 𝐴𝑧 values of the arrival orbits.

Fig. 45 The linear relationship between the total maneuver cost (red stars) as well as for the two maneuvers
(blue and black starts) with the 𝐴𝑍 value of the arrival orbits changes at orbits that evolve more rapidly in 𝐴𝑥

than in 𝐴𝑧 and undergo multiple tangent bifurcations as identified by the black colored dashed lines.

the departure and arrival orbits are selected as the initial guesses for the transfer design problem.
An identified initial guess is corrected through a differential corrections procedure to realize an unstable manifold

arc associated with a QPO that is position continuous with the departure and arrival orbit. The differential corrections
scheme is formulated as a Newton-Raphson method. The design (�̄�) and constraint (�̄� ( �̄�)) vectors for the corrections
scheme are defined as,

�̄� =



𝑇dep

𝑇arr

𝜏dep

𝜏arr

𝜏qpo

Ω𝜌0


; �̄� ( �̄�) =
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𝜏qpo ,Ω𝜌0

− 𝑥
𝜏dep
dep
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− 𝑦
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dep
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arr
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− 𝑧
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arr


(56)

where, 𝜏qpo and Ω𝜌0 represent the step-off state corresponding to an unstable manifold arc, specifically, 𝜏qpo is the
propagation time along a QPO from an initial invariant curve to the invariant curve on which the step off-state lies and
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Ω𝜌0 is the modified latitudinal angle associated with the step-off state. The 𝑇dep and 𝑇arr denote propagation times along
the unstable manifold arc from an initial manifold state to the manifold states that crosses the departure and arrival orbit,
respectively, and it is assumed that 𝑇dep < 𝑇arr. Additionally, 𝜏dep and 𝜏arr represent the propagation times along the
departure and arrival orbit from some predetermined initial states on the orbits to the orbit states that connect with
the unstable manifold arc. The constraint vector comprises of the position components of two states on the unstable
manifold arc: 𝑢𝑥

𝑇dep
𝜏qpo ,Ω𝜌0

and 𝑢𝑥
𝑇arr
𝜏qpo ,Ω𝜌0

, as well as the position components of a departure orbit state, 𝑥𝜏dep
dep , and an

arrival orbit state, 𝑥𝜏arr
arr . Consequently, the corrected unstable manifold arc originating from a step-off state given by

𝜏qpo and Ω𝜌0 comprises of a manifold state, 𝑢𝑥
𝑇dep
𝜏qpo ,Ω𝜌0

, that has the same position components as a departure orbit state,

𝑥
𝜏dep
dep , as well as another manifold state, 𝑢𝑥

𝑇arr
𝜏qpo ,Ω𝜌0

, that is further downstream from the 𝑢𝑥
𝑇dep
𝜏qpo ,Ω𝜌0

state, has the same
position components as an arrival orbit state, 𝑥𝜏arr

arr , as depicted in the fig. 46. The presented corrections scheme is
fully-constrained, hence, the 3-dimensional unstable manifold associated with a QPO results in locally unique solutions.
However, since the QPOs exist as a constant energy family, a continuation algorithm is leveraged to extend the locally
unique solutions to local 1-parameter families of solutions with a common 𝐽𝐶 value.

Fig. 46 Schematic of a transfer trajectory between two periodic orbits derived from a quasi-periodic orbit

The outlined initial guess generation technique and differential corrections procedure are employed to design
transfers from the selected 𝐿1 northern halo orbit with 𝐴𝑧 value of 10,000 km to halo orbits with larger 𝐴𝑧 values.
The 𝐿1 quasi-halo orbits are selected as the QPOs to construct the transfers. The pathways from halo orbit with 𝐴𝑧 =
10,000 km to 20,000 km are constructed through the quasi-halo orbits with the same 𝐽𝐶 value as the optimal transfer,
as presented in fig. 41(b). The 1-parameter family of transfers realized through the quasi-halo orbits and the optimal
transfer are plotted in fig. 47, where the QPO-derived solutions are colored by their total maneuver costs. Additionally,
the costs of the transfers constructed through the two strategies described are represented in fig. 50. Similarly, the
transfers from the selected departure orbit to orbits with 𝐴𝑧 = 42,000 km and 50,000 km along with their fuel-optimal
counterparts are plotted in figs. 48 and 49 and their costs are also provided in fig. 50. It is apparent from figs. 47
to 49 that the transfers designed via the two strategies for the three arrival orbits possess similar geometries as the
solutions depart and arrive at the orbits in the same vicinity. The 1-parameter QPO-derived pathways expand the
number of transfer options identified by the locally unique fuel-optimal solutions to a range of departure and arrival
locations. Additionally, the maneuver costs associated with the transfers informed by quasi-halos are comparable to the
optimal geometries as evident in fig. 50. Hence, quasi-periodic orbits assist in uncovering a family of transfers that have
comparable geometries and maneuver costs as the fuel-optimal solutions.

V. Concluding Remarks
Quasi-periodic orbits enhance the transfer options that link different types of periodic orbits. The proposed

systematic frameworks reduce the complexity of employing the 5-dimensional manifolds associated with the 2-parameter
quasi-periodic orbits, modeled through CR3BP, to design transfers between stable, as well as unstable periodic orbits.
The nearly/marginally stable periodic orbits that lack useful hyperbolic invariant manifolds are linked via two maneuver
interior-type and three maneuver exterior-type transfer trajectories. An 𝐿2 9:2 NRHO and a DRO are employed to
illustrate the framework that addresses the challenge of constructing transfers between stable orbits. The design of
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Fig. 47 QPO-derived transfers (color bar) and locally
fuel-optimal transfer (red) from halo orbit 𝐴𝑧 = 10,000
(black) to 20,000 (orange)

Fig. 48 QPO-derived transfers (color bar) and locally
fuel-optimal transfer (red) from halo orbit 𝐴𝑧 = 10,000
(black) to 42,000 (orange)

Fig. 49 QPO-derived transfers (color bar) and
locally fuel-optimal transfer (red) from halo orbit
𝐴𝑧 = 10,000 (black) to 50,000 (orange)
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Fig. 50 Total maneuver cost of locally optimal
solutions (red) and transfers informed by QPOs
(green, black, and blue) are plotted with respect to
the 𝐴𝑧 values of the arrival orbits

the two types of transfers is decomposed into the construction of various segments that are informed by the natural
flow, as well as the stable and unstable manfiolds associated with intermediate orbits. It is identified that the selected
intermediate QPOs assist in realizing a greater number of transfer geometries with lower maneuver costs than those
derived from their underlying periodic orbits. For the case of transfers between unstable orbits within the same orbit
family, two distinct strategies are described and their respective solutions are compared. Locally fuel-optimal transfers
are constructed between unstable orbits by leveraging an initial guess generation strategy proposed by Gómez et al.
[19]. The optimal transfers between 𝐿1 halo orbits reveal a linear relationship between the total maneuver cost and
the difference in out-of-plane amplitude of the departure and arrival orbits. The second strategy employs the unstable
manifolds associated with QPOs to uncover 1-parameter families of transfers between 𝐿1 halo orbits. A comparison
of outcomes from both strategies indicates that, although the 1-parameter QPO-derived transfers are not locally
fuel-optimal, their geometries and transfer costs are comparable. Importantly, the QPO-informed solutions contribute to
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the expansion of known transfer options, linking a greater range of departure and arrival locations. Quasi-periodic
orbits and their associated stable/unstable manifolds uncover families of transfer options between periodic orbits of
different types that may be infeasible to derive from other dynamical structures.

Appendix
Maneuver costs and time of flights of inbound and outbound segments constructed via intermediate periodic orbit to

inform the design of tranfers between an 𝐿2 NRHO and a DRO as detailed in section III.

Table 3 Maneuver costs and times of flight of the three transfer options, depicted in fig. 23(a), constructed with
an 𝐿2 vertical orbit as the intermediate orbit.

Transfer arc Δ𝑉arr (m/s) TOF (days)
1 644.335 19.690
2 638.378 17.052
3 535.494 29.901

Table 4 Maneuver costs and times of flight of the inbound transfer options, depicted in fig. 23(b), constructed
with an 𝐿2 P2HO2 orbit as the intermediate orbit.

Transfer arc Δ𝑉arr (m/s) TOF (days)
1 669.800 27.708
2 602.450 28.380

Table 5 Maneuver costs and times of flight of the two transfer options, depicted in fig. 24(a), constructed with a
planar 3:4 RPO as the intermediate orbit.

Transfer arc Δ𝑉arr (m/s) TOF (days)
1 442.657 13.097
2 442.734 12.417

Table 6 Maneuver costs and times of flight of the two transfer options, depicted in fig. 24(b), constructed with a
DPO as the intermediate orbit.

Transfer arc Δ𝑉arr (m/s) TOF (days)
1 366.728 20.057
2 653.222 29.452

Table 7 Maneuver costs and times of flight of the two transfer options, depicted in fig. 25(a), constructed with
an 𝐿2 vertical orbit as the intermediate orbit.

Transfer arc Δ𝑉dep (m/s) TOF (days)
1 275.097 15.278
2 197.810 30.879
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Table 8 Maneuver costs and times of flight of the outbound transfer options, depicted in fig. 25(b), constructed
with an 𝐿2 P2HO2 orbit as the intermediate orbit.

Transfer arc Δ𝑉dep (m/s) TOF (days)
1 119.847 26.813
2 103.394 30.331
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