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CHARACTERISTICS AND ANALYSIS OF FAMILIES OF
LOW-ENERGY BALLISTIC LUNAR TRANSFERS

Stephen T. Scheuerle*, and Kathleen C. Howell†

Low-energy ballistic lunar transfers offer propellant efficient paths to the Moon
in exchange for longer duration flights. These trajectories rely on the gravita-
tional influence of the Sun to reduce maneuvers at lunar orbit insertion. Due to the
sensitive nature of transfers navigating between cislunar and heliocentric space,
developing ballistic lunar transfers that fulfill mission-specific constraints remains
a challenge. An Earth-Moon-Sun four-body model, i.e., the bicircular restricted
four-body problem (BCR4BP), is incorporated to construct end-to-end ballistic lu-
nar transfers. Families of transfers with both fixed trans-lunar injection and lunar
orbit insertion maneuver costs are examined. A methodology to assess the sensi-
tivity of ballistic lunar transfers is evaluated to aid in expanding the launch window
for these epoch dependent paths.

INTRODUCTION

As spacecraft technology continues to develop, and the demand for missions to cislunar space in-
creases, further low-energy trajectory analysis is necessary to assess viable transfer options. NASA
aims to develop a sustainable presence in cislunar space through the development of the Artemis
and Gateway programs, and in collaboration with private industry.1 For a given mission, the space-
craft hardware characteristics influence available paths to the Moon. For missions where the time
of flight is flexible, low-energy transfers offer propellant efficient paths to the lunar region. A group
of low-energy transfers, i.e., ballistic lunar transfers, leverage solar perturbations by spending mul-
tiple months beyond the orbit of the Moon. Multiple spacecraft in the near-future with limited
propulsion capabilities, plan to leverage ballistic lunar transfers to reach cislunar space, including
NASA’s Cislunar Autonomous Positioning System Technology Operations and Navigation Exper-
iment (CAPSTONE)2 and JAXA’s Equilibrium Lunar-Earth point 6U Spacecraft (EQUULEUS).3

This analysis leverages techniques in dynamical systems theory within the Bicircular Restricted-
Four Body Problem (BCR4BP) to construct families of ballistic lunar transfers. The families are
designed to offer a range of solutions for given spacecraft constraints, i.e. arrival epoch at the Moon,
insertion maneuver magnitude, and flyby capabilities.

DYNAMICAL MODELS

Two models are employed in this investigation to represent the motion of a ballistic lunar trans-
fer. The Circular Restricted Three-Body Problem (CR3BP) is a gravity model that describes the
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motion of a spacecraft in the vicinity of two, gravitationally massive bodies. Properties of the dif-
ferential equations in the CR3BP aid in the classification and characterization of motion throughout
the system, and yields initial guesses for transitioning into higher fidelity models. The Bicircular
Restricted Four-Body Problem (BCR4BP) depicts the motion of a spacecraft relative to a planet-
moon-star system. The BCR4BP is a key framework in this analysis, as the nature of ballistic lunar
transfer relies on the cumulative influence of the Earth, Moon, and Sun. The investigation leverages
properties and dynamical structures from both models to construct ballistic lunar transfers.

Circular Restricted Three-Body Problem

Ballistic lunar transfers depart the Earth, reach distances significantly beyond the lunar orbit and
ultimately arrive into the vicinity of the Moon. Periodic motion in the CR3BP offers insight into the
structures upon arrival near the Moon. The CR3BP describes the motion of a massless particle (P3)
due to the gravitational field of two massive bodies (P1 and P2). The CR3BP is incorporated such
that Earth is P1 and the Moon is P2, where the mass of the bodies are M1 and M2, respectively.
The model assumes the Earth and the Moon move in circular orbits about their mutual barycenter
B1. By formulating the equations of motion in a coordinate frame that rotates with the primary
bodies, the differential equations are time-independent.4 The equations of motion in the CR3BP
are nondimensionalized to reduce errors with numerical propagation. The three scalar nonlinear
second-order differential equations that describe the motion of particle P3 in the rotating frame are,

ẍ = 2ẏ +
∂U

∂x
(1a) ÿ = −2ẋ+

∂U

∂y
(1b) z̈ =

∂U

∂z
(1c)

where x, y, z and ẋ, ẏ, ż are the position and velocity components of P3. The variable µ is the mass
parameter, defined µ = M2

M1+M2
. For the Earth-Moon system, µ ≈ 0.01215. The terms ∂U

∂x , ∂U
∂y , and

∂U
∂z are the partial derivatives of the pseudo potential function U with respect to the position of P3.
The pseudo-potential function, U , is written as,

U =
1

2

(
x2 + y2

)
+

1 − µ

r13
+

µ

r23
(2)

where rij is the scalar distance between body i and j. The CR3BP possess five equilibrium solutions
denoted the Lagrange point and represented as L1 through L5. There is no closed-form solution for
the equations of motion in the CR3BP, however, a single integral of the motion exists. The integral
of the motion is denoted the Jacobi Constant value (C), and written as,

C = 2U − (ẋ2 + ẏ2 + ż2) (3)

Equation (3) illustrates that an increase in the velocity of P3 corresponds to a value of C that
decreases. Thus, an increase in the value of the Jacobi Constant reflects a decrease in the energy of
P3 relative to the Earth-Moon system.

Characteristics of the differential equations in the CR3BP aid in trajectory design within a multi-
body dynamical regime. The Jacobi Constant value yields insight into the energy of a spacecraft,
an approximation for a theoretical minimum maneuver cost, and the accessibility of various regions
throughout cislunar space. As the equations of motion lack a term that is explicitly dependent on
time, the motion of P3 is strictly a function of the position and velocity in the rotating coordinate
frame. Such a time-independent model is advantageous to assess periodic motion. The inclusion of
the CR3BP in this investigation is to transition periodic orbits to the BCR4BP.
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Bicircular Restricted Four-Body Problem

The BCR4BP is the primary dynamical model incorporated in this analysis. The BCR4BP de-
scribes the motion of a massless particle (P3) due to the gravitational field of three massive bodies
(P1, P2, and P4). The BCR4BP effectively models the motion of a planet-moon-star system. The
Earth and Moon are P1 and P2, respectively. The Sun is represented as the massive primary, P4.
The motion of the Earth and Moon are assumed to move in circular orbits about their common
barycenter (B1), similar to the assumptions in the CR3BP. The Sun and the Earth-Moon system are
assumed to be in circular orbits about the total system barycenter (B2). The orientation of the Sun
relative to the Earth-Moon rotating frame is defined in terms of the Sun angle (θS ), and is illustrated
in Figure 1. The term aS is the scalar distance between the Sun and Earth-Moon barycenter B1.
The Sun traverses in the clockwise direction relative to B1 in the Earth-Moon rotating frame. In the

ˆ̃x

ˆ̃y

Earth Moon

P3

Sun

θS

B1

aS

Figure 1. The Earth-Moon rotating coordinate frame in the BCR4BP

full Earth-Moon-Sun system, the orbital path of the Moon does not lie in the ecliptic plane, i.e., the
motion of the Sun relative to the Earth and Moon is three-dimensional. The BCR4BP model incor-
porated in this analysis assumes the Earth, Moon, and Sun are coplanar throughout time. Although
the coplanar assumption is not representative of the true motion of the bodies, it is adequate for
this analysis. It is advantageous to represent the motion of the spacecraft in both the Earth-Moon
and Sun-B1 rotating frames. To distinguish between the two frames, quantities in the Earth-Moon
rotating frame are defined with tildes, and values in the Sun-B1 rotating frame are underlined. The
equations of motion for P3 in the BCR4BP are formulated relative to the Earth-Moon rotating frame,
as

¨̃x = 2 ˙̃y +
∂Υ

∂x̃
(4a) ¨̃y = −2 ˙̃x+

∂Υ

∂ỹ
(4b) ¨̃z =

∂Υ

∂z̃
(4c)

where Υ is the pseudo-potential function for the differential equations in the BCR4BP as repre-
sented in the Earth-Moon rotating frame. The pseudo-potential function is expressed in terms of the
orientation of the Sun in the rotating frame, and written as

Υ =
1

2

(
x̃2 + ỹ2

)
+

1 − µ

r13
+

µ

r23
+
m4

r43
− m4

a2S
(x̃ cos(θS) + ỹ sin(θS)) (5)
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where µ is the mass parameter of the Earth-Moon system, m4 is the nondimensional mass of the
Sun, i.e. m4 = M4

M1+M2
. Recall that aS is the constant distance from the Sun to the Earth-Moon

barycenter, B1, and θS is the angle that orients the Sun in the Earth-Moon rotating frame. Although
the model is time-dependent, the assumptions yield a periodic model that describes the motion of
a spacecraft under the gravitational influence of three massive bodies. The differential equations
in the BCR4BP yield two ’energy-like’ quantities similar to the Jacobi Constant value, denoted
the Earth-Moon and Sun-B1 Hamiltonian.5 In contrast to the Jacobi Constant, the Hamiltonian
values are not integrals of the motion, and vary as the spacecraft evolves through the model. The
Earth-Moon Hamiltonian is expressed,

HEM = 2Υ − ( ˙̃x
2

+ ˙̃y
2

+ ˙̃z
2
) (6)

Variations in the Earth-Moon and Sun-B1 Hamiltonians offer insight into the natural evolution of
the energy due to Solar and Earth-Moon perturbations, respectively.6 The differential equations in
the BCR4BP do not deliver equilibrium solutions, as the model evolves with time. However, for a
fixed epoch, constant instantaneous equilibrium locations can be computed. As ballistic lunar trans-
fers depend on the gravitational influence of all three primary bodies, the BCR4BP is an effective
approach to modeling end-to-end paths.

NEAR RECTILINEAR HALO ORBITS

To develop families of ballistic lunar transfers, various lunar destination orbits are available.
Previous authors have investigated paths to target locations around the Moon. Parker and Born
explored trajectories to multi-body unstable orbits through the use of a coupled CR3BP model.7

McCarthy and Howell examined the use of quasi-periodic orbit manifolds to construct ballistic
lunar transfers.8 This investigation considers paths to planar low lunar orbits (LLO) as well as the
NASA Gateway southern L2 NRHO.

Gateway is an orbital platform being developed by NASA to offer an infrastructure for both sci-
entific and crewed exploration about the Moon.9 The intended orbit for Gateway is a southern L2

Near Rectilinear Halo Orbit (NRHO), offering constant communications with Earth, and extended
coverage over the Moon’s south pole. The NRHOs are a subset of the L1 and L2 halo families in
the CR3BP. In the Earth-Moon system, the NRHO families are nearly-stable, offering an effective
location for long-term habitats in cislunar space.10 Although the nearly-stable behaviour offers an
effective staging ground for stationkeeping, designing low-energy transfers and inserting into an
NRHO is nontrivial. As the Gateway program continues design and development, there is an in-
creasing demand in options for accessing the NRHO from Earth. The specific orbit incorporated into
this analysis is the southern L2 9:2 synodic resonant NRHO. The values 9:2 represent the resonance
ratio between the orbital period and synodic period of the Earth-Moon system. An illustration of
the southern L2 9:2 synodic resonant NRHO in represented in Figure 2 as computed in the CR3BP.
The blue curve is the periodic orbit with a period of approximately six and a half days. The gray
sphere approximates the size of the Moon as a sphere is constant radius 1737 km.

Multiple southern L2 9:2 synodic resonant NRHOs exist in the BCR4BP. A difference between
the CR3BP and the BCR4BP is the inherent time dependency of the four-body model. Relative to
the Earth-Moon rotating frame, the motion of the spacecraft relies on the position, velocity, and
relative orientation to the Sun, i.e., the Sun angle. When transitioning a periodic orbit between
the CR3BP and the BCR4BP, an initial Sun angle must be added to the state vector.6 Computing
periodic orbits in the BCR4BP is nontrivial, as solar perturbations may impact the geometry and
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Figure 2. Southern L2 9:2 synodic resonant NRHO in the Earth-Moon CR3BP, illus-
trated in the Earth-Moon rotating frame

stability of the orbit. Likewise, it is not guaranteed that an orbit with a synodic resonance that
exists in the CR3BP will also exist in the BCR4BP. Boudad et al. applied a Sun mass continuation
scheme to compute multiple NRHOs in the BCR4BP.11 As ballistic lunar transfers are sensitive to
slight changes in epoch, arriving at different of 9:2 NRHOs in the BCR4BP offers a wider range of
solutions.

A multi-dimensional Newton-Raphson scheme is employed to construct a family of southern L2

9:2 synodic resonant NRHOs in the BCR4BP. Previous investigations detail techniques to com-
pute periodic orbits in the BCR4BP through perpendicular crossing techniques.6 The perpendicular
crossing method requires the velocity of the spacecraft to be perpendicular to the radial direction
of each primary body at two instances in time. In the planar BCR4BP, such a condition is epoch
dependent, i.e., when the Sun angle is equivalent to an integer multiple of π. Using the periodic
orbit from the CR3BP, and leveraging the perpendicular crossings, a southern L2 9:2 synodic res-
onant NRHO is constructed in the BCR4BP, as illustrated in Figure 3(a). The blue curve is one
continuous, closed curve repeating after 9 revolutions about the Moon. The period of the entire
orbit is two synodic months. Comparing Figure 2 to Figure 3(a) demonstrates the influence of the
Sun on the orbit, as the spacecraft position at apolune varies across the nine different revolutions.
At each instance along the orbit where the Sun angle is equal to an integer multiple of 2π, a per-
pendicular crossing exists. The same periodic orbit is represented in the Sun-B1 rotating frame, and
appears in Figure 3(b). The Earth and Moon move in the Sun-B1 rotating frame as the position of
the Sun remains fixed. The motion of the Earth is the green circle near the origin, and the Moon’s
orbit is the dark gray circle. The blue curve is the same southern L2 9:2 synodic resonant NRHO
as illustrated in Figure 3(a), now following the path of the Moon as the system rotates about the
barycenter B1. The motion of the orbit relative to the Sun is more clearly apparent in the Sun-B1

rotating frame. The orientation of this specific NRHO in the BCR4BP has advantages in-terms of
Earth-eclipse avoidance.11 Consider the initial epoch to be the xz-plane crossing above the Moon.
For this particular solution, such conditions represent a Sun angle of zero degrees. To construct a
family of 9:2 synodic resonant NRHOs in the BCR4BP, a natural parameter continuation scheme is
applied. The method includes six free variables, i.e., the initial position and velocity components of
the orbit. Due to the definition of a periodic orbit in the BCR4BP, the period must an integer mul-
tiple of the synodic period to secure resonance in the Earth-Moon-Sun system. For the 9:2 NRHO,
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(a) (b)

Figure 3. The perpendicular crossing southern L2 9:2 synodic resonant NRHO in the
Earth-Moon-Sun BCR4BP, illustrated in the Earth-Moon rotating frame (a) and the
Sun-B1 rotating frame (b)

after two synodic months, the final position and velocity components for the transfer must return
to the initial state vector. For the current formulation, the number of free variables matches the
number of constraints, i.e., the Jacobian is non-singular. However, by continuing the initial orbit in
Sun angle, there is no constraint that restricts the state from simply returning the current solution in
the numerical process. To avoid reconverging on the previous solution, an additional constraint is
added, such that the initial state lies on the x̃z̃-plane, i.e., ỹi = 0. Therefore, the free variables are
reduced to

X̄ =
[
x̃i z̃i ˙̃xi ˙̃yi

˙̃zi

]
(7)

where X̄ is the free variable vector, and the quantities with subscript i comprise the initial state
along the orbit. The periodicity constraint is then represented as

F̄ =
[
x̃f − x̃i ỹf z̃f − z̃i ˙̃xf − ˙̃xi ˙̃yf − ˙̃yi

˙̃zf − ˙̃zi

]
(8)

where F̄ is the constraint vector and the quantities with subscript f are the final state along the
orbit, after propagation for two synodic months. As there are more constraints than free variables,
the Jacobian is overdetermined. The propagation time is long and requires nine passes in close
proximity of the Moon, thus, a multiple shooting technique is employed to aid in the convergence
process. The least-squares approximation is applied to locate solutions within the convergence
basin. The procedure yields a family of 9:2 synodic resonant NRHOs in the BCR4BP for each
initial Sun angle; they are periodic to within 10 m in position and 2 mm/sec in velocity. The family
of periodic orbits in the Earth-Moon rotating frame is represented in Figure 4. A subset of ten
orbits from the family are included in the figure. Note that the difference in many of these solutions
relies on the solar epoch epoch, thus, it is hard to discern different periodic solutions as they exist in
similar position-space. The difference in the members of the family are more apparent in the Sun-
B1 frame, as illustrated in Figure 5. The same subset of ten orbits are represented in both Figure
4 and Figure 5, with the only difference a view in the rotating coordinate frame. As the family of
9:2 NRHOs in the BCR4BP are evolving across initial Sun angle, the initial x̃z̃-plane crossing, i.e.,
position above the Moon, is epoch dependent. Comparing Figure 3(b) to Figure 5, the range of
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Figure 4. Family of southern L2 9:2 synodic resonant NRHOs in the BCR4BP, ex-
pressed in the Earth-Moon rotating frame

Figure 5. Family of southern L2 9:2 synodic resonant NRHOs in the BCR4BP, illus-
trated in the Sun-B1 rotating frame centered at B1

available orbits along the family relative to the Sun by shifting the initial Sun angle is highlighted.
Each member of the family possesses nine perilunes at varying Sun angles. The perilunes are not
constrained to the x̃z̃-plane. The perilune radius and the Sun angles are recorded across the family
and plotted in Figure 6. As a basis of comparison, the 9:2 NRHO in the CR3BP as a periapse radius
of approximately 3,200 km.

BALLISTIC LUNAR TRANSFERS

Ballistic lunar transfers leverage solar perturbations to reduce maneuver costs associated with ar-
riving into the lunar vicinity. Trajectory design typically balances mission criteria with navigational
capabilities to yield solutions to arrive at desired destinations in space. A typical trade-study when
analyzing transfers comparing flight duration and propellant cost, i.e., ∆V. Low-energy transfers in-
corporate the underlying dynamical flow of the models to produce solutions with a lower ∆V and,
generally, longer flight times. Ballistic lunar transfers are a type of low-energy transfer that, after
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Figure 6. Evolution of perilune radius as a function of Sun angle for the family of
southern L2 9:2 synodic resonant NRHOs in the BCR4BP

Earth departure, evolve out toward the Sun-Earth Lagrange points, then flow back to the lunar re-
gion.12 Ballistic lunar transfers often require flight times of multiple months, typically ranging from
90 to over 120 days. As the trajectories rely on a relative orientation in the Earth-Moon-Sun system,
the paths are sensitive to variations in epoch. An ideal ballistic lunar transfer includes only two
maneuvers, the trans-lunar injection (TLI) to embark from Earth orbit, and the lunar orbit insertion
(LOI) to arrive into the cislunar orbit. This investigation considers two properties of ballistic lunar
transfers. First, the inherent design of the end-to-end transfer, leveraging properties of the multi-
body dynamical regime to reduce the cost of both TLI and LOI. Secondly, introducing techniques
to aid in the design of a ballistic lunar transfer by extending launch window options.

Initial Guess Generation

Various techniques in dynamical systems theory offer strategies for identifying an initial guess.
For transfers to multi-body periodic orbits, Poincaré sections reduce the complexity of the solution-
space and supply some clarity in representing desirable paths. For ballistic lunar transfers, a specific
example pf an insightful type of map in this problem is a periapse Poincaré map. Previous authors
leverage periapse Poincaré maps to characterize the behavior of a spacecraft or to seed initial guesses
for different types of transfers.8, 13, 14 Consider a sample scenario formulated to deliver a spacecraft
from Earth to a 9:2 synodic resonant NRHO. The periodic solution from Figure 3(a) is selected to
represent transfers that arrive at a distinct epoch, i.e, phasing condition. The Poincaré map for this
scenario is constructed by discretizing the desired arrival orbit, applying an impulsive maneuvers
at each point, and propagating in reverse time to yield instances where perigees occur.8 Given a
15 m/sec maneuver in the rotating velocity direction at ten thousand points along the 9:2 NRHO
in the BCR4BP, and a maximum transfer duration of one year, a periapse map projected onto the
ˆ̃xˆ̃y-plane is illustrated in Figure 7. Each point marks a perigee, i.e., closest approach to Earth in
negative time, and the color of the dot designates the transfer time from the perigee state to insertion
into the NRHO at the departure location. The green circle is an approximate representation of the
Earth (sphere with radius 6378 km), and the black circle is a 150 km altitude, planar, low Earth
orbit (LEO). Although the perigee locations are spatial, the predominant displacement from Earth
lie in the x̃ỹ-plane. Note that the periodic NRHO employed to construct Figure 7 is epoch specific,
i.e., the initial perilune is defined for a Sun angle equal to zero degrees. By selecting a different
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Figure 7. Periapse Poincaré map for 9:2 NRHO with initial perilune at 0 degrees
projected onto the x̃ỹ-plane, BCR4BP Earth-Moon rotating frame

9:2 NRHO from the family determined previously, an entirely new map results. For a southern
L2 9:2 NRHO with an initial perilune at 10 degrees, the periapse map in Figure 8 is constructed.
Comparing the two maps indicate ballistic lunar transfers that depart at different locations relative
to the Earth-Moon system. A periapse with a time of flight of 100 days is selected from Figure 7.

Figure 8. Periapse Poincaré map for 9:2 NRHO with initial perilune at 10 degrees
projected onto the x̃ỹ-plane, BCR4BP Earth-Moon rotating frame

The transfer departs from a 150 km altitude LEO and traverses beyond the orbit of the Moon before
insertion into the NRHO, with a lunar orbit insertion cost (∆VLOI ) of 15 m/sec. The sample transfer
in the Sun-B1 rotating frame is depicted in Figure 9. The black circle is the lunar orbit, L1 and L2

are the locations of the Lagrange points for the Sun-B1 CR3BP.6 The spatial ballistic lunar transfer
is the blue arc projected onto the x̂ŷ-axis. The same transfer is illustrated in the Earth-Moon rotating
frame in Figure 10(a) and Figure 10(b). A x̃ỹ-plane projection of the entire transfer from the Earth
to the NRHO is plotted in Figure 10(a). Ballistic lunar transfers appear to encircle the Earth-Moon
system as the transfer path is propagated over multiple months beyond lunar orbit. A representation
of the spatial motion upon arrival near the Moon appears in Figure 10(b). The yellow curve is the
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Figure 9. Planar projection of a ballistic lunar transfer to a 9:2 NRHO with a ∆VLOI
= 15 m/sec, Sun-B1 rotating frame centered at B1

arrival NRHO, and the gray sphere is the Moon, all constructed in the BCR4BP.

(a) (b)

Figure 10. Ballistic lunar transfer to a 9:2 NRHO, planar projection (a) and spatial
arrival (b) in the Earth-Moon rotating frame

Families Constructed for Fixed Maneuvers

Families that are determined via fixed values for a maneuver characterize the types of ballistic
lunar transfers available for a given mission criteria. As ballistic lunar transfers inherently rely
on TLI and LOI, two fixed maneuver families exist. A fixed TLI maneuver magnitude family
considers the range of ballistic lunar transfer available for a given injection maneuver from Earth. It
is common for TLI maneuver to be delivered by the launch vehicles. A fixed TLI maneuver family
demonstrates the geometries available for a given launch which the fixed TLI constraint, FTLI, is
evaluated as,

FTLI =

√
˙̃x
2

0 + ˙̃y
2

0 + ˙̃z
2

0 − ∆VTLI − VLEO (9)
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where the terms with a subscript zero are the initial velocity components of the transfer, ∆VTLI is
the maneuver magnitude of the TLI maneuver, and VLEO is the orbital velocity of the parking orbit.
A sample ballistic lunar transfer from a 150 km altitude LEO to a 100 km altitude LLO is illustrated
in Figure 11. The flight duration is 75 days, and a TLI maneuver magnitude equal to 3.211 km/sec.
The gray circle represents the orbit of the Moon in the BCR4BP. Using the ballistic lunar transfer

Figure 11. Ballistic lunar transfer to a 100 km circular LLO in the BCR4BP, Sun-B1
rotating frame centered at B1

from Figure 11 and the constraint from Equation (9), a family of ballistic lunar transfers with a TLI
maneuver magnitude of 3.211 km/sec is constructed. A subsection of the family, all transfers with
LOI maneuvers of less than 800 m/sec is plotted in Figure 12(a). The blue curve represents the
member of the family plotted with the shortest flight duration, i.e., a time of flight of 64.7 days and
a LOI maneuver magnitude of 800 m/sec. The red curve is the ballistic lunar transfer in this family
with the lowest LOI cost, corresponding to a time of flight equal to 77.5 days and a LOI maneuver
of 667 m/sec. The variation in LOI cost and time of flight is plotted as the yellow line in Figure
12(b). The colored points on Figure 12(b) relate to the color transfers in Figure 12(a).

(a) (b)

Figure 12. Family of ballistic lunar transfers with a fixed TLI maneuver of 3.221
km/sec, Sun-B1 rotating frame centered at B1 (a) and evolution of LOI and time of
flight along the family (b)

Outbound lunar flybys reduce the necessary injection cost required for a ballistic lunar transfer.
The previous example illustrated the range of available solutions for a fixed TLI maneuver. A
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technique to reduce the injection maneuver cost is to incorporate an outbound lunar flyby. By
seeding the problem with an initial guess that leverages a lunar or Earth flyby, and targeting a
low TLI maneuver magnitude, the problem implicitly constrains the solutions to leverage a flyby.
Consider a ballistic lunar transfer with an outbound lunar flyby as represented in Figure 13. The
flyby occurs when the blue trajectory passes the lunar orbit, as there is a close approach of 9,000
km between the spacecraft and the Moon. The time of flight for this transfer is 84 days, and the TLI
maneuver cost is 3.153 km/sec. The trajectory from Figure 13 is then seeded as an initial guess for

Figure 13. Ballistic lunar transfers with an outbound lunar flyby, Sun-B1 rotating
frame centered at B1

a family of fixed TLI maneuver transfers. As the injection cost is 3.153 km/sec, the family grows
with the implicit constraint that a lunar flyby is necessary. The family of ballistic lunar transfers is
plotted in Figure 14(a). Recall that the orbits in the family all originate from a LEO with an altitude
of 150 km and arrive in a planar LLO with an altitude of 100 km. The blue curve is the member of
the family with the shortest flight duration, i.e., 78.7 days and a LOI cost of 668 m/sec. The red arc
is the member of the family with the lowest insertion cost, i.e., 640 m/sec and corresponds to a time
of flight that equals 84 days. The initial epoch for the family spans three days, and the arrival epoch
at the Moon spans 20 days. The colored points on Figure 14(b) designate the location on the plot
for the respective color transfers in Figure 14(a).

(a) (b)

Figure 14. Family of ballistic lunar transfers with an outbound lunar flyby, Sun-B1
rotating frame centered at B1 (a) and the variation in LOI costs and time of flight (b)
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In contrast to families with fixed TLI maneuvers, families of transfers with a fixed LOI maneuver
magnitude classify the geometry for transfers that arrive into the lunar vicinity. As it is common for
the TLI injection to depart Earth is delivered by a launch vehicle, the insertion ∆V into a desired
orbit about the Moon is carried by the spacecraft. If allowable insertion into lunar orbit is budgeted,
characterizing the available geometries for that maneuver magnitude is advantageous. Consider a
set of transfers that depart from the parking orbit, and arrive into the desired lunar orbit such that the
LOI insertion maneuver is of a fixed magnitude. The constraint to fix the LOI maneuver is written
as,

FLOI =

√
˙̃x
2

f + ˙̃y
2

f + ˙̃z
2

f − ∆VLOI − VDestination (10)

where FLOI is the constraint, quantities with subscript f are evaluated at the end of the transfer,
and the value ∆VLOI is the fixed LOI cost. The variable VDestination is defined as the velocity on the
destination orbit at the insertion point. To construct a family of transfers such that all the trajectories
possess precisely the same LOI maneuver magnitude, a ballistic lunar transfer is initially designed
given an instantaneous equilibrium solution as a departure condition. Previous analysis has illus-
trated that trajectories departing an instantaneous equilibrium points in the BCR4BP offer low-cost
transfer designs to the Moon.6, 15 A sample transfer departing an instantaneous equilibrium point
is illustrated in Figure 15. The time of flight for the transfer is 138.6 days, a longer flight duration
than the previous examples. However, by leveraging the dynamics of the four-body problem, the
maneuver cost to insert into the 100 km altitude LLO is 630 m/sec. By employing the Earth-Moon
Hamiltonian, the theoretical minimum ∆V required to insert into a planar, 100 km altitude LLO in
the BCR4BP is 626.3 m/sec.6 The trajectory from Figure 15 and the constraint from Equation (10)

Figure 15. Ballistic lunar transfer off of an instantaneous equilibrium point, Sun-B1
rotating frame centered at B1

subsequently produce a family of transfers that depart from a 150 km altitude LEO to a 100 km alti-
tude LLO with a fixed LOI magnitude of 630 m/sec. The range of solutions vary in flight duration,
departure and arrival epoch, and the injection cost at Earth departure. The family of ballistic lunar
transfers is illustrated as the gray curves in Figure 16(a). The orbit of the Moon is again depicted
as the gray circle. The blue arc is the solution with the shortest flight duration, i.e., 103.5 days and
with a TLI cost of 3.210 km/sec. The red curve corresponds to the lowest TLI maneuver cost, i.e.,
3.142 km/sec and a flight duration of 137.5 days. The available launch window for this family spans
23 days, and is repeatable each synodic period (29.5 days). The variation in TLI cost and time of
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flight is plotted in Figure 16(b). The colored points on Figure 16(b) correspond to the respective
color transfers in Figure 16(a).

(a) (a)

Figure 16. Family of ballistic lunar transfer with fixed LOI maneuver of 630 m/sec,
Sun-B1 rotating frame centered at B1 (a) and the evolution of TLI costs and time of
flight (b)

Fixed maneuver families provide insight into insertion conditions upon arrival into a multi-body
orbit. Thus far, the fixed TLI or LOI maneuver families are always constructed for transfers to
a 100 km altitude, planar LLO. However, the constraint is applicable to any desired destination in
cislunar space. Recall the previous analysis concerning transfer trajectories to the 9:2 NRHO. Given
the ballistic lunar transfer from Figure 9, new families of ballistic lunar transfers are constructed.
Members within a family depart from a 150 km altitude LEO and arrives into the same 9:2 NRHO
with a fixed LOI cost. Each family is parameterized with a different fixed LOI maneuver magnitude,
ranging from 15 m/sec to 50 m/sec. The insertion location along the NRHO is free to vary. The flight
duration and insertion Sun angle vary depending on the allotted maneuver magnitude, as illustrated
in Figure 17. Each curve represents a different family defined by a specific LOI maneuver value.
As position and velocity states in the BCR4BP are epoch dependent, for LOI maneuver values
ranging from 15 to 50 m/sec, the insertion Sun angle corresponds to a unique insertion state on the
9:2 NRHO. Therefore, the Sun angles illustrated in Figure 17 relate to specific locations along the
NRHO. If it is desired to insert into the NRHO at a specific epoch, i.e., Sun angle, multiple solutions
exist with varying time of flight. For example, consider the magenta curve corresponding to a LOI
maneuver value of ∆VLOI = 50 m/sec. If the mission is constrained to arrive into the NRHO at a
specific location, i.e., corresponding to a Sun angle of 10 degrees, then there are two viable ballistic
lunar transfers. Generally, increasing the LOI maneuver magnitude expands the regions along the
NRHO that are accessible. The insertion maneuver direction is constrained to the ˆ̃xˆ̃y-plane.

OPERATIONAL MANEUVER DESIGN

Characterizing the dynamical flow in the vicinity of a ballistic lunar transfer offers insight into
trajectory design. To accommodate orbit determination errors, and small deterministic maneuvers
along a trajectory, addressing the influence of perturbations on the solution is essential. The state
transition matrix (STM) provides a linear approximation to the dynamical flow in the vicinity of the
transfer. The STM is fundamental to all correction algorithms and is employed in the construction
of previous transfers. The Singular Value Decomposition (SVD) is a function of the STM and aids
in the classification of motion near the baseline. In contrast to an eigenvalue decomposition, SVD
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Figure 17. Evolution of flight duration as insertion Sun angle varies along multiple
families of ballistic lunar transfers to a 9:2 NRHO

is applicable to both nonsingular and singular matrices. In the case where orbit determination errors
are applied, the SVD enables separate linear predictions for the downstream position and velocity
errors. Muralidharan and Howell the apply the stretching and restoring directions of the SVD for a
stationkeeping framework.16 Leveraging singular values along a ballistic lunar transfer supports a
strategy to introduce deterministic maneuvers to the transfer design.

The singular values of a matrix predict the stretching and restoring motion localized to a baseline
reference trajectory. The STM predicts the downstream influence of an initial perturbation. The
STM is essentially a first-order, linear map, that is,

δx̄(t) = Φ(t, t0) δx̄(t0) (11)

where Φ(t, t0) is the STM from some initial time t0 to the final time t. The vectors δx̄(t0) and δx̄(t)
are the initial and final perturbations with respect to the states along the baseline. The elements of
the STM are,

Φ(t, t0) =
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(12)

Each column of the STM describes the influence of one component of the initial state vector on the
final vector perturbations. Likewise, each row of the STM reflects the impact on one component of
the final state due to the initial perturbation vector. Thus, the STM is also written as,

Φ(tf , t0) =

[
Φr,r Φr,v

Φv,r Φv,v

]
(13)

where the values r and v refer to the position and velocity components, respectively. The terms Φi,j

represent the three-dimensional square submatrices of the full STM. The first subscript represents
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the downstream variation, and the second subscript corresponds to the initial variation. Consider
the term Φr,v, the submatrix represents the final change in position due to an initial perturbation
in velocity, i.e., rows one through three and columns four through six of Equation (12). The term
Φrv,v considers the impact of an initial velocity perturbation on the entire downstream vector. A
view of the local dynamics is obtained through either an eigendecomposition or SVD of the sub-
matrices of the STM. An eigendecomposition is advantageous when the matrix is non-singular, and
yields eigenvalues and the corresponding eigenvectors of the matrix. Where an eigendecomposition
produces a matrix of eigenvectors and eigenvalues, the SVD factorizes a matrix into the product of
three matrices,

Φi,j = UΣV∗ (14)

where Φi,j is the STM, or a submatrix of the STM with dimensions m x n, the matrix U is defined
with dimensions m x m and describes the stretching directions at the final state. The term V∗ is the
hermitian transpose of the matrix V with dimensions n x n, and represents the principal stretching
directions at the initial time. The matrix Σ, with dimensions of m x n, where the diagonal elements
are the singular values (σ) of the matrix Φ.16 Singular values are real, non-negative numbers, that
represent the stretching or restoring motion near the baseline transfer. Singular values aid in the
classification of ballistic lunar transfers.

Deterministic maneuvers aid in expanding launch window capabilities and extending the range
of departure locations near the Earth. As ballistic lunar transfers are sensitive to variations in the
departure Sun angle, adding a maneuver along the trajectory extends the range of usable launch
epochs. This investigation assumes that a baseline trajectory is predetermined for the usable design,
i.e., a single path to the Moon. Selecting a location to place a maneuver along the arc is nontrivial,
as the goal is maximizing the range of departure epochs. A fixed maneuver magnitude constraint is
located at time t along the baseline,

FDet =

√
˙̃x
2

t + ˙̃y
2

t + ˙̃z
2

t − ∆VDet − Vt (15)

where FDET is the deterministic maneuver constraint. In Equation (15) the quantities with subscript
t represent the velocity components along the transfer at time t driving the propagation. The variable
∆VDet is the maneuver magnitude allowed across a family of transfers, and Vt is the velocity of the
ballistic lunar transfer at the time t. To better illustrate the purpose of the constraint, consider a
sample scenario. A planar ballistic lunar transfer is selected, as illustrated in Figure 18. The transfer
is defined by a flight duration of 100 days, and departs from a 150 km altitude LEO to arrive at a 100
km altitude LLO. The trajectory design is capable of allotting 20 m/sec of propellant for a maneuver
to expand the launch window. To identify an effective location along the baseline trajectory to place
the maneuver, a range of transfer families are constructed from the constraint in Equation (15). The
baseline trajectory corresponds to a specific Sun angle at departure. For each day along the baseline,
a family of transfers are constructed that target the maneuver location, with ∆VDet = 20 m/sec.
The range in departure Sun angle across a family corresponds to the launch window for placing
a maneuver at that specific location along the ballistic lunar transfer. To illustrate one family, by
placing the maneuver 63 days into the transfer (near apogee), the resultant range of solutions is
depicted in Figure 19. The blue curves all depart from a 150 km altitude LEO with varying initial
Sun angle. The yellow point indicates the insertion location onto the baseline trajectory. The red
arc is the baseline arc, one that is preserved for all members of a given family. By incorporating a
20 m/sec maneuver at 63 days into the transfer, the range of initial epochs is 3.4 days. By repeating
the process at one day intervals along the baseline, 100 families of orbits are constructed, and
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Figure 18. Sample ballistic lunar transfer, Sun-B1 rotating frame centered at B1

Figure 19. Family of trajectories arriving into the baseline ballistic lunar transfer,
Sun-B1 rotating frame centered at B1

the launch window is compared across the possible maneuver placements. The variation in launch
window across maneuver placement is illustrated in Figure 20. One disadvantage with the procedure
to construct Figure 20 is the computational cost. Each family consists of a thousands separate
transfers to the maneuver location that links with the ballistic lunar transfer. For every maneuver
placement location added to the analysis, an additional one thousand transfers are produced to assess
the launch window variation. To construct the curve represented in Figure 20, over one hundred
thousand transfers were constructed. To reduce the computational costs, the singular values along
the baseline transfer are assessed. A small maneuver along the baseline is the same as perturbation
in velocity at some time t, i.e., the velocity components of the perturbation vector x̄(t). A linear
prediction for a given perturbation is mapped by the STM. However, as illustrated by Figure 19,
the maneuver occurs midway through the transfer. Therefore, the STM is created in reverse time,
flowing from the end state at the Moon, back toward the Earth, written as Φ(t0, t). Such a matrix
maps perturbations that occur at time t to the initial states departing from LEO. As the maneuver
does not include a variation in position, the submatrix Φrv,v from Φ(t0, t) is selected. Analyzing the
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Figure 20. Evolution in launch window as maneuver location into the baseline varies

variation in the singular values as t varies along the transfer deliver insight into the stretching and
restoring motion along the ballistic lunar transfer. Since the baseline is singular, the matrix Φrv,v

is 4x2, with two singular values of interest. Additionally, the singular values of the submatrices
Φr,v and Φv,v represent physical quantities that predict the position and velocity perturbations,
respectively. Return to the scenario where the maneuver is placed at 63 days into the transfer. Given
the SVD from Equation (14) and the submatrix Φrv,v from Φ(0, 63), the two singular values are
σ1 = 1.87e6 ndim and σ2 = 222 ndim, where ndim indicates nondimensional units. Both quantities
are greater than one, thus, the prediction yields a deviation from the baseline. It is nontrivial to
deduce information from a nondimensional quantity, e.g., identifying the particular singular value
that relates to a variation in the launch window. Therefore, the singular values of Φr,v and Φv,v are,

Σr,v(0, 63) =

[
2.216e8 0

0 2.610e6

]
km

km/sec

Σv,v(0, 63) =

[
1.87e6 0

0 2.22e2

]
By multiplying the maneuver magnitude by the singular value, an estimate for the downstream
position and velocity perturbations are determined. With a 20 m/sec maneuver in the most stretching
direction for position, the downstream variation in position is 4.32e6 km. The least stretching
singular value yields a downstream perturbation of 5,000 km. The most stretching singular value
predicts that the spacecraft departs the Earth-Moon system, while the least stretching direction in
the x̃ỹ-plane suggests an offset while still reaching the vicinity of the Earth in backwards time.
The smallest singular value in the x̃ỹ-plane provides an estimate for trajectories that deviate from
the baseline while still passing in close proximity to Earth. An important point is that the spatial
STM yields a restoring singular value. However, the restoring nature of perturbations in the z̃
direction depict out-of-plane oscillations. To extend the analysis, the smallest singular values from
the submatrix Φrv,v are determined as Φ(0, t) evolves from t = t0 to tf . The evolution of the
minimum singular value in the x̃ỹ-plane compared to the maneuver location is illustrated in Figure
21. Both Figure 20 and Figure 21 reflect the same general behavior, the same maneuver placement
times along the baseline. Although the singular values of the submatrix Φrv,v are nonphysical
quantities, they depict ideal locations to place a maneuver to enable expansion of the launch window.
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An advantage to the minimum singular value curve is a reduced computational load, as the analysis

Figure 21. Evolution of singular values as the maneuver placement varies along the baseline transfer

is completed directly on the baseline trajectory. By leveraging techniques in dynamical systems
theory, the data from Figure 21 is constructed by propagating 400 linear maps and performing
matrix calculations. In practice, Figure 20 required many hours to construct the families necessary,
while Figure 21 took a few seconds.

CONCLUDING REMARKS

Techniques in dynamical systems theory aid in the construction and characterization of ballistic
lunar transfers. Low-energy transfers offer propellant efficient paths to various locations in cislunar
space. The 9:2 synodic resonant NRHO is notable as the Gateway program continues to develop. A
family of 9:2 NRHOs in the BCR4BP is constructed, and periapse Poincaré maps are incorporated
to identify end-to-end ballistic lunar transfers. The analyses focused on three separate stages of
a ballistic lunar transfer. By fixing the injection maneuver for the transfer, a family of solutions
with various LOI costs and flight durations is constructed. With proper selection of an initial guess,
a family of transfers that leverage an outbound lunar flyby are achievable. Similarly, by fixing
the lunar insertion cost, a comparison is made between the TLI costs and transfer durations. The
third phase examined placing a maneuver along the coast arc to extend the viable departure epochs.
Through the analysis, linear mapping methods aid in the characterization of ballistic lunar trans-
fers. A strategy to construct families of ballistic lunar transfers for low-energy trajectory design
is introduced; the same approach was also leveraged to use small maneuvers to expand the launch
window.
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