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STATIONKEEPING IN EARTH-MOON
NEAR RECTILINEAR HALO ORBITS

Vivek Muralidharan∗ and Kathleen C. Howell†

Near Rectilinear Halo Orbits (NRHOs) are stable or nearly stable orbits that are defined as
part of the L1 and L2 halo orbit families in the circular restricted three-body problem. Within
the Earth-Moon regime, the L2 NRHOs offer candidate trajectories for the upcoming Gate-
way mission. The spacecraft, however, incurs continuous deviations due to unmodeled forces
and orbit determination errors in this dynamically sensitive region. The current investigation
focuses on a technique to maintain the spacecraft near a virtual reference orbit despite these
uncertainties. For the stationkeeping scheme, flow dynamics in the region are utilized to
categorically identify appropriate maneuver and target locations. The investigation reflects
the impact of various factors on maneuver cost and efficacy. Additional feedback control is
applied for phasing constraints.

INTRODUCTION

Lunar missions continue to generate serious interest among various space organizations across the globe.
For example, with ever increasing research in the field of space physics, investigation of the celestial body
nearest to Earth, i.e., the Moon, offers significant potential for scientific discoveries. In addition, with a focus
on expanding the human presence in the region, NASA’s Gateway mission, formerly the Deep Space Gateway
(DSG) or Lunar Orbital Platform-Gateway (LOP-G) mission, delivers a hub-like facility that is currently
planned to move along a Near Rectilinear Halo Orbit (NRHO) in the lunar vicinity.1, 2 Near rectilinear halo
orbits are members of the halo orbit family in the L1 and L2 regions in the Earth-Moon circular restricted
three-body problem.3, 4 These NRHOs are stable or nearly stable as characterized by the linear variational
flow. Due to stability characteristics, NRHOs offer candidate orbits suitable for LOP-G as perturbations are
expected to be manageable.

Motion along an NRHO is characterized by a reasonably close lunar passage and a large out-of-plane
amplitude relative to the Earth-Moon orbit plane. The close passage to the Moon offers an opportunity to
examine the Moon’s polar region. In addition, spacecraft along some NRHOs offer a nearly uninterrupted link
for relay communications to various landing sites for planned lunar landing missions.5, 6 In the higher-fidelity
ephemeris model, the orbits are no longer closed, but quasi-periodic. With additional forces, the dynamics in
the vicinity of the NRHO are more complex. The current investigation examines a stationkeeping scheme that
effectively overcomes unmodeled errors as well as position and velocity uncertainty in orbit determination.

Stable orbits do not offer well-distinguished stable and unstable manifolds to be leveraged for stationkeep-
ing, in contrast to unstable orbits with distinct unstable, stable and oscillatory modes.7 Any perturbations
generally include components aligned in the unstable manifold directions resulting in perturbations that grow
over time. There are existing strategies, e.g., Floquet mode approach,8–10 that computes a maneuver to nullify
the unstable components of the perturbations such that the spacecraft is maintained near a reference path for
a specified duration. However, for stable orbits this approach is less suitable. An alternate strategy, one that
is based on the near symmetry of orbits along the line joining the primary bodies, is widely employed for
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stationkeeping in the halo orbit region, including the stable NRHOs.4, 11–14 The technique is commonly iden-
tified as an x-axis control strategy and factors including maneuver location, time duration between successive
maneuvers as well as the target horizon time affect its performance. This investigation explores the effect of
these three factors on orbit maintenance cost and boundedness of spacecraft near the desired path.

BACKGROUND: NEAR RECTILINEAR HALO ORBITS

The circular restricted three-body problem (CR3BP) is a time invariant approximation for the spacecraft
motion influenced by concurrent gravitational forces due to two primary bodies, e.g., the Earth and the Moon,
rotating in circular orbits about their mutual barycenter.15 The spacecraft is assumed to be infinitesimally
small in mass such that it does not affect the motion of the Earth and the Moon. Consider a coordinate sys-
tem, R, rotating at a fixed rate, consistent with the revolution of the primary bodies, and defined by the dextral
orthonormal triad x̂; ŷ and ẑ to describe the motion of the spacecraft. The line joining the primaries, i.e., the
Earth-Moon line represents the x̂ axis in the rotating frame; the positive direction is a view from the Earth
to the Moon. The ẑ direction, is aligned in the direction normal to the Earth-Moon orbit plane. Finally, ŷ
completes the dextral coordinate system. The three spacial directions reflect the nonlinear spacecraft motion
such that the position vector is represented as �r = [x; y; z]T and velocity states by �v = [ _x; _y; _z]T. Gener-
ally the 6-dimensional state is written by �x = [�rT; �vT]T = [x; y; z; _x; _y; _z]T, where superscript ’T’ implies
transpose. Note that overbars represent vector quantities. Although the trajectories in the CR3BP serve as
an approximation for the motion of the spacecraft, the CR3BP facilitates understanding of the underlying
nonlinear dynamics. The CR3BP dynamics yield five equilibrium points, also labelled the libration points,
or Lagrange points, denoted by L1 through L5, of which, L1, L2 and L3 are collinear to the line joining the
primary bodies. The point L1 lies on the x̂-axis between the primaries; L2 is on the far side of the Moon.

An infinite number of periodic orbits exist in the CR3BP as limit cycles. Such periodic solutions are
explored as baseline trajectories for various mission scenarios. The location, stability properties and ac-
cessibility of these orbits are leveraged to satisfy requirements. Halo orbits are a type of family of peri-
odic trajectories that exist near the collinear libration points in the circular restricted three-body problem.16

Within the Earth-Moon system, the L1 and L2 halo orbits are being explored as potential destinations for
a facility in cislunar space. Specifically for the Gateway mission, a southern L2 halo orbit is the current
option. Some members of the L2 halo family with close approaches to the Moon and with high out-of-
plane amplitudes are stable or nearly stable based on variational linear stability analysis.3 Define the stabil-
ity index to measure the stability characteristics of a periodic orbit such that � = 1=2(�i + 1=�i), where
�i are the non-unity eigenvalues from the monodromy matrix, i.e., the state transition matrix over pre-
cisely one orbital period. For stable orbits, the stability index j�j � 1. The stable or nearly stable orbits
in the halo orbit family are characterized as the Near Rectilinear Halo Orbits (NRHO). The family of L2
southern halo orbits in the Earth-Moon system is plotted in Figure 1. The orbits colored in red are the

Figure 1: Earth-Moon L2 southern halo orbits

NRHOs. In addition, the periods of the NRHOs
range across a block of values such that some of
these orbits exhibit different resonance properties.
For the stationkeeping analysis, orbits are selected
with different perilune radius distances including
those that demonstrates simple resonance ratios.

HIGHER-FIDELITY MODEL

The higher-fidelity ephemeris model is a better
approximation for the spacecraft motion but gen-
erally exhibits characteristics similar to the motion
predicted by the CR3BP. Using the N -body rela-
tive equations of motion, a more accurate represen-
tation of the spacecraft motion is rendered, one that
accommodates the time-varying relative location of
the celestial bodies in modeling the gravitational
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forces acting on the spacecraft. NASA’s Jet Propulsion Laboratory (JPL) offers a package for numerical
approximations of the relative locations of celestial bodies in terms of SPICE Kernels.17 Not surprisingly,
the CR3BP position and velocity states, when propagated in the ephemeris model using SPICE data, deviate
from the path predicted by the CR3BP model. To generate a continuous natural trajectory in the higher-
fidelity model, multiple revolutions of the CR3BP orbit are stacked and corrected using a multiple shooting
algorithm for position and velocity continuity.18 The iterative procedure produces a quasi-periodic trajectory
in the higher-fidelity model that resembles the geometry of the corresponding orbit defined in the CR3BP.
The L2 southern NRHO with perilune radius 3200 km in the ephemeris model is plotted in Figure 2, in three
different views, the rotating frame of view, R, the Moon-centered inertial view as well as the Earth-centered
inertial view. The natural trajectory in the ephemeris model offers a virtual reference solution that serves as
an anchor for stationkeeping operations; the virtual reference is updated over time as appropriate. The fidelity
of the model is enhanced by adding the effect of a large number of celestial bodies but too many additional
bodies is computationally intensive and may be nontrivial, when incorporating additional orbit determination
errors. Based on other investigations,19 the gravitational forces due to the Earth, Moon and the Sun, and the
Solar Radiation Pressure (SRP), are the most dominant forces on the Earth-Moon halo orbits in the L1 and
L2 region, and sufficient for this analysis. The effect of any additional forces are minimal, however, for com-
parison with other stationkeeping literature, gravitational force due to Jupiter is also included.4, 11 Ephemeris
data is incorporated using the DE421 model.

X-AXIS CONTROL STATIONKEEPING SCHEME

(a) Rotating frame of view (b) Moon-centered inertial view

(c) Earth-centered inertial view

Figure 2: L2 NRHO with perilune radius 3200 km in higher-fidelity
ephemeris model.

Any type of spacecraft mis-
sion requires regular orbit
maintenance operations for
long-term sustainability. The
orbits are subject to sensitive
dynamics that perturb space-
craft from the desired path.
In this investigation, station-
keeping operations maintain
the spacecraft in the vicinity
of a long horizon virtual ref-
erence solution that is gen-
erated incorporating science
constraints and phase con-
straints such as eclipse avoid-
ance.4, 11 The virtual reference
is updated over time as appro-
priate. Several stationkeep-
ing techniques are evaluated
on the Earth-Moon L1 and L2
orbits, i.e., Lyapunov and halo
orbits, both stable and unsta-
ble.4, 11, 13, 14, 18–21 Since the
Gateway mission is planned
for launch in the early 2020s
and is expected to operate
in the 9:2 synodic resonant
NRHO, with a radius of peri-
apsis approximately 3200 km
from the Moon, it serves as a
baseline trajectory to test the
efficiency of a control strategy
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for stationkeeping on NRHOs. Of course, the control strategy must also be applicable to other low perilune
radius NRHOs. This investigation focuses on leveraging the underlying dynamics to improve the control
algorithm and parameter selection process.

Recent analyses have focused on the x-axis control algorithm for successful missions14, 21 and is currently
employed for analysis on the Gateway mission.4, 11, 22 The x-axis control strategy generally relies on the
symmetry of the NRHOs across the xz plane in the rotating frame of reference. In the CR3BP model, the
rotating _x value along the orbit at the xz plane crossing is zero. The notion of a zero value for the rotating _x
velocity component at the xz plane crossing is exploited for orbit maintenance operations. Due to complex
dynamics in the higher-fidelity ephemeris model, the natural trajectory that resembles the NRHO does not
possess a precise value of _x = 0 at the xz plane crossing, hence, it is further constrained that the rotating
_x value along the actual trajectory matches the _x value along a long horizon virtual reference path at the xz
plane crossing, within an acceptable tolerance.

The stationkeeping operation is a sequential process. A baseline trajectory is introduced that acts as a
long horizon virtual reference solution. From previous invesigations,4, 11 it is seen that targeting xz plane
crossings near the periapsis region yields low stationkeeping costs. Since the periapsis region of the NRHO is
particularly sensitive to perturbations, delivering an accurate maneuver that reduces deviations in the rotating
_x value at the xz plane crossings near the periapsis is worth exploring for long-term low-cost maintenance.
The algorithm also targets the rotating _x value at subsequent xz plane crossings along the evolving path. The
_x values at each of the xz plane crossings near the periapsis on the long horizon virtual reference solution are
recorded. The spacecraft state is originally introduced at the halo orbit injection epoch with additional white
noise in both position and velocity states, and with specified mean and variance. In the ephemeris model,
additional uncertainty in solar radiation pressure is introduced with errors in the coefficient of reflection
Cr and the surface area of the spacecraft model. The perturbed states are propagated to a predetermined
maneuver location, generally closer to the apoapsis region, and a maneuver ��v is computed to meet the
goal of achieving the _x value along the virtual baseline at a specified downstream xz plane crossing, within
some predefined tolerance, considered as 0.45 m/s is this investigation.4 The target xz plane crossing may be
the 1st, 2nd, ..., nth crossing, increasing further downstream along the propagated trajectory. If the targeting
process fails to compute a successful maneuver that meets the goal for a specified target, the target horizon
time is reduced and the process is simulated again until a successful maneuver is computed. Additional white
noise modelled as maneuver execution error is incorporated into the maneuver and implemented. Along the
subsequent path, the states are updated and further perturbed with navigational errors and solar radiation
pressure errors and the procedure is continued till the end of the mission duration. In contrast, if none of
the target horizon times delivers a successful maneuver, the particular simulation is considered as failed.
The total sum of the maneuvers j��vj over each run is recorded. Since white noise is generated randomly,
a Monte Carlo simulation is performed over 100 runs and the mean cost is estimated.18 With 100 samples,
the standard error of the mean is reduced to 10% of the sample standard deviation.10, 23 The total cost is then
linearly extrapolated over one year to estimate an annual maintenance cost.

Orbit determination and model error

Spacecraft experience multiple perturbations due to unmodeled forces and limitations on orbit determina-
tion. To simulate these perturbing conditions, different error levels in the orbit determination process and
modeling formulations are introduced. The spacecraft is intentionally perturbed from the reference trajectory
to simulate a stationkeeping operation. Two different navigation error levels are considered, a low orbit de-
termination error (ODE) level with mean 0 and standard deviation (3�) of 1 km in position magnitude and
1 cm/s in velocity magnitude, and a relatively high orbit determination error (ODE) level with mean 0 and
standard deviation (3�) of 10 km in position magnitude and 10 cm/s in velocity magnitude. Consistent with
the navigation error, the same error levels are used for orbit insertion. Further, maneuver execution error is
introduced as a fixed error with a perturbation of 0.03 cm/s in any arbitrary direction.

Solar radiation pressure (SRP) is introduced into the model to simulate the spacecraft motion, however, the
exact orientation of the spacecraft is unknown, hence SRP errors are introduced to simulate the perturbing
force. A cannonball model for the spacecraft is assumed with mass 25848 kg, projected area of 50 sq.m. and
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a perfectly reflective surface with coefficient of reflectivity Cr = 2.4, 12 Uncertainty (1�) in the projected
area is assumed to be 5% and uncertainty in Cr to be 10% for all simulations.

Stationkeeping parameters

The stationkeeping algorithm depends on various parameters that influence the annual cost and the bound-
edness of a spacecraft trajectory near a virtual reference solution. The stationkeeping parameters that are
user-defined impact its performance. For orbit maintenance using the x-axis control approach, three factors
that impact the overall cost and the deviation from the reference path are explored in this investigation:

� Coast duration
Currently, the stationkeeping process is based on impulsive maneuvers and, hence, between two succes-
sive maneuvers the spacecraft coasts under the natural dynamics. The minimum time duration between
two successive maneuvers is defined as the coast duration. It is generally expected that, for a stable
orbit, maneuvers with wider spacing are effective in reducing costs, in contrast to an unstable orbit that
may require maneuvers spaced relatively close for effective orbit maintenance. In addition, NRHOs
frequently possess close lunar passages, a nonlinear effect that influences the dynamical flow near the
reference orbit over time.

� Maneuver location
Not all locations around the orbit offer the same characteristic properties. Some locations are notably
more sensitive depending on the proximity to different gravitational bodies. These sensitive locations
may offer maximum benefits if stationkeeping maneuvers are implemented accurately.24 However,
the primary function of a stationkeeping maneuver is to overcome error build-ups due to limitations
in the orbit determination process and errors due to prior maneuvers. These sensitive locations often
increase the measurement uncertainty, therefore, precise maneuvers are impossible in practice. These
drawbacks, coupled with errors in maneuver execution, result in these sensitive regions being inferior
maneuver locations as errors in the sensitive regions amplify rapidly over time.

� Target horizon
The length of time between the maneuver location and the targeted xz plane crossing near the periapsis
region is denoted the target horizon. Since the target horizon is user defined, the target is placed at
the first xz plane crossing near the periapsis, or the second crossing near the next periapsis or so on.
Since the target location is an xz plane crossing, the target horizon is labelled in terms of the number of
revolutions downstream from the maneuver location. A precise maneuver is generated by targeting the
rotating _x value at the specified xz plane crossing. Because of the error-free maneuvers generated in
a single shooting process, it is generally reliable to target a sensitive region, e.g., the periapsis region,
to yield the most economic maneuver. Guzzetti et al. suggest the same principle based on their results
by targeting the xz plane crossings near the periapsis.4 A longer target horizon, i.e., targeting further
downstream, is expected to produce lower maneuver magnitudes, however, mission requirements or
constraints may necessitate shorter target horizons.

The inter-dependency of the parameters, i.e., coast duration, maneuver location and target horizon, is il-
lustrated in the flowchart in Figure 3. The simultaneous interactions between the flow evolving from one
maneuver location to the next along a coast arc, and the flow evolution from the maneuver location to the
target, determines the performance of the maneuver.

Effect of maneuver location and coast duration The spacecraft coasts under the natural dynamics between
two successive impulsive maneuver locations, and the time interval is termed the coast duration. The flow
between the maneuver locations then determines the impact of the deviations in the initial states that are prop-
agated downstream to the end states where the subsequent maneuver is generated. The dynamics of the flow
in the circular restricted three-body problem as well as in the ephemeris model are complex, however, for
small perturbations in a linear model, predictions of the flow variations in the vicinity of a reference trajec-
tory using the state transition matrix (STM) is generally reliable for these NRHOs. The Cauchy-Green tensor
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Figure 3: Stationkeeping parameter ef�ciency �owchart.

(CGT) is a function of the STM and aids in visualizing linear �ow by decomposing it into different mutu-
ally orthogonal directions, along which components of perturbations grow independent of the other. Since
maneuvers are allowed anywhere along the orbit (multiple maneuvers per orbit or multiple orbits between
maneuvers) the mutual impact of maneuver location and coast duration is vital.

The Cauchy-Green tensor (CGT) is a function of the state transition matrix (STM) that yields valuable
information concerning the linearized variational dynamical �ow in the vicinity of a reference solution.25,26

While the STM,� , relates the variation of each individual state over time such that� (t; t 0) = @�x ( t )
@�x 0

, the CGT
relates the evolution of the perturbations represented as a material volume over time. The STM evaluated on
a reference trajectory,�x � (t), maps the initial perturbation,� �x0, to the �nal perturbed states,� �x f , as a linear
correlation, i.e.,

� �x f = � (t f ; t0)� �x0 (1)

where,t0 andt f are the initial and �nal epochs. The isochronous perturbations are measured relative to this
reference path as� �x(t) = �x(t) � �x � (t). The CGT, or simplyC̀' is evaluated as

C(t f ; t0) = � (t f ; t0)T� (t f ; t0) (2)

and de�nes the deformation, as a product of the transpose (superscript T) of the state transition matrix,� , with
itself. Physically, CGT renders the square of the magnitude of the �nal deformation to the initial deformation
as

jj � �x f jj2 = � �xT
f � �x f = � �xT

0 � (t f ; t0)T� (t f ; t0)� �x0 = � �xT
0C(t f ; t0)� �x0: (3)

The growth or decay of the quantityjj � �x f jj2 describes the sensitivity of the trajectory to the initial perturba-
tion, � �x0, however, when the size of an initial perturbation is unde�ned, the sensitivity information is directly
extracted from CGT. The eigen-decomposition of the CGT, or the singular value decomposition of the STM,
yields details about directions and magnitudes of the stretching.

The �ow re�ecting the impact of the perturbation and emulated by a material volume is characterized
primarily by the magnitudes and directions of the elongation. The �ow for any volume is visualized either
using the eigen-decomposition or the singular value decomposition of the corresponding matrices. The eigen-
decomposition of the CGT yields the eigenvalues� i and the eigen-vectorsV i . For a linear system, the
contraction or expansion of the local phase space is captured by� i in the directions inV i . Note that� i =
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p
� i . The singular value decomposition (SVD) of the STM, reveals the same critical details about the �ow in

the phase space but with an additional directional information,Ui . Mathematically, the STM is decomposed
into the matrices,U, � andV, such that,

U� V � = � (t f ; t0) (4)

where, the columns ofU yield the stretching directions at the �nal epoch. For a square matrix,� , � is
a diagonal matrix with the magnitude of the stretching along different directions in descending order, i.e.,
� 1 > � 2 > : : : > � n , such that� i = � ii , an element in� in thei th row andi th column. The matrixV then
provides the principal stretching directions at the initial time along the propagated arc. The matrices� and
V essentially supply the same details, acquired using an eigenvalue decomposition ofC, while U offers addi-
tional information captured using singular value decomposition, also derivable from the Cauchy-Green tensor.
The matricesU andV are each orthogonal. Figure 4 illustrates the contraction or expansion along different

Figure 4: Principal stretching directions.

�ow directions with the example of
a two-dimensional system transitioned
through CGT. Consider a unit circle in
the phase space near an initial refer-
ence path that undergoes deformation
and evolves into a stretched ellipse. The
evolution of this unit circle into an el-
lipse is a combination of translation and
rotation. The matricesU and V supply
the rotation information while the matrix
� yields information concerning linear
translation. The columns of the matrixV represented byV i indicate the principal directions at the initial
time that evolve intoUi (the columns of matrixU). The diagonal elements of the matrix� , or � i , indicate
the stretching along corresponding principal directions.

A maneuver is deliverable anywhere along a range of locations on the orbit, hence, identifying precise
maneuver locations is vital for the analysis. Maneuver locations and trajectory segment lengths are, thus,
denoted in terms of a mean anomaly and an osculating true anomaly. Since the NRHO is a closed orbit in the
CR3BP, the mean anomaly is de�ned as� MA = 2 � t=T rad = 360 t=T degwhereT is the time period for
the selected orbit whilet is the time of propagation beyond the most recent periapsis as de�ned in the circular
restricted three-body problem. Since the NRHO is not a Keplerian orbit, an osculating true anomaly,� T A ,
is de�ned with respect to a central body, the Moon.27 The mean anomaly quanti�es the relative locations in
terms of the actual time of propagation while true anomaly offers the geometric interpretation of locations as
noted in Figure 5.

The �ow between thenth and(n +1) th impulsive maneuvers, at timetn andtn +1 respectively, is measured
by the state transition matrix evaluated along the coast segment, i.e.,' C , such that' C = � (tn +1 ; tn ).
Without loss of generality, assume,tn = t0, as the initial time at which the maneuver is implemented, and
tn +1 = t f , as the �nal time along the propagated natural trajectory segment. Consider

' C (t f ; t0) =
�

' C;r;r ' C;r;v

' C;v;r ' C;v;v

�
=

"
@�r f

@�r 0

@�r f

@�v0
@�v f

@�r 0

@�v f

@�v0

#

(5)

where' C;r;r , ' C;r;v , ' C;v;r and' C;v;v are the3 � 3 submatrices of6 � 6 matrix ' C . In the stationkeeping
problem, however, only the initial velocity terms are controllable, hence tracking the �ow generated by
the 6 � 6 state transition matrix' C is inconsequential. Speci�c submatrices of' C yield more relevant
characteristics. For example, the3 � 3 dimensional submatrix,' C;r;v , maps the initial velocity perturbation,
� �v0, to the �nal position change,� �r f , and the3 � 3 dimensional submatrix,' C;v;v , maps the initial velocity
perturbation,� �v0, to the �nal velocity change,� �vf . Also, combined, the6� 3 dimensional submatrix' C;rv;v ,
where

' C;rv;v =
�

' C;r;v

' C;v;v

�
(6)
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(a) Mean anomaly (b) Osculating true anomaly

Figure 5: De�nition of orbit locations (L2 NRHO with 3200 km
perilune radius).

that maps the initial velocity perturba-
tion, � �v0, to the �nal position and veloc-
ity state change,� �r f and� �vf , yields sig-
ni�cant characteristics, as only the ini-
tial velocity states,� �v0, are subject to
change. The sensitivity of the orbit states
to initial velocity changes is measured by
monitoring the magnitude of maximum
stretching,� 1, corresponding to each of
the ' C;r;v , ' C;v;v and' C;rv;v submatri-
ces. The values of the largest stretching
magnitudes,� 1, corresponding to each of
the ' C;r;v , ' C;v;v and' C;rv;v submatri-
ces for various combinations of maneu-
ver locations and coast durations along
the 9:2 synodic resonant orbit with per-
ilune radius 3200 km is plotted in Fig-
ure 6. Not surprisingly, the maximum
stretching magnitudes corresponding to' C;v;v and' C;rv;v , the submatrices that include velocity perturba-
tions at the �nal time, are signi�cantly larger, suggesting that the velocity changes generally must be tightly
controlled. Due to such behavior, �ow described by the' C;v;v and' C;rv;v submatrices offer measurements
to identify sensitive regions along the orbit. Since the stationkeeping algorithm is required to reduce the
successive maneuver magnitudes, the stretching direction from the' C;v;v submatrix, that monitors the �nal
velocity change, is incorporated throughout this investigation. Further, as is evident from Figure 6, trajectory
segments that terminate close to or originate near the periapsis regions are highly sensitive to perturbations,
i.e., hotter shades in the map, hence, maneuvers are generally avoided in such regions. The cooler shades in
the map, highlight the likely regions suitable for selecting the maneuver locations.

Effect of maneuver location and target horizonThe �ow between the maneuver location and the target
determines the maneuver characteristics. As previously introduced, for anx-axis control strategy, the ro-
tating _x value at differentxz plane crossings near the periapsis region serves as a target parameter. The
stationkeeping control effort is represented by

� _x f =
�
' T;44 ' T;45 ' T;46

�
�� v0 (7)

where,� _x f is the change in the rotational_x value at the target and�� v0 = [� _x0; � _y0; � _z0]T de�nes a
column vector with three scalar independent control variables that comprise the impulsive maneuver. Finally,
[' T;44 ' T;45 ' T;46] is the appropriate submatrix of the state transition matrix,' T . The subscripts,i and
j , in ' T;ij , indicate the element in' T in the i th row andj th column. Moreover,' T is the state transition
matrix from the maneuver location to the target, i.e.,' T = � (tT arget ; t0). The time difference between
t0 and tT arget is the target horizon time. De�ne�M = [ ' T;44 ' T;45 ' T;46]T as a3 � 1 column vector
and, therefore,� _x f = �M T�� v0. The goal for the stationkeeping process is minimizing the propellant costs,
hence, a minimum norm solution that delivers the smallest maneuver is generally an appropriate choice for
this problem. Since the control equation� _x f = �M T�� v0 is equivalent to the dot product between�M and the
�� v0 vector, the maneuver magnitude is deduced as

j� _x f j = j �M jj �� v0j cos# �! j �� v0j =
j� _x f j

j �M j cos#
(8)

wherecos# is the angle between�M and the�� v0 vector. Of course,�M includes components of the state
transition matrix' T but �� v0 and# are variables. In any case, the smallest maneuverj�� v0j is generated only
if cos# = 1 , i.e.,# = 0 o or �� v0 vector is aligned in the direction of�M . Therefore, a minimum norm solution
for stationkeeping renders a maneuver magnitude of

j�� v0jmin � norm =
j� _x f j
j �M j

(9)
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(a) Maximum stretching of' C;r;v for measurements in
mean anomaly

(b) Maximum stretching of' C;r;v for measurements in
true anomaly

(c) Maximum stretching of' C;v;v for measurements in
mean anomaly

(d) Maximum stretching of' C;v;v for measurements in
true anomaly

(e) Maximum stretching of' C;rv;v for measurements in
mean anomaly

(f) Maximum stretching of' C;rv;v for measurements in
true anomaly

Figure 6: Maximum stretching magnitudes for different submatrices of the state transition matrix along the
NRHO with a perilune radius of 3200 km.
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in the direction of �M . The maneuver magnitude that is generated depends on the change in rotational velocity
� _x f , one that varies with time, however, the maneuver magnitude as a function of the initial perturbation is
a better metric, i.e.,

j�� v0jmin � norm =
j �B T� �x0j

j �M j
�

j �B Tjj � �x0j
j �M j

(10)

where� _x f = �B T� �x0 with �B = [ ' T;41 ' T;42 ' T;43 ' T;44 ' T;45 ' T;46]T as the submatrix of' T that relates
the initial state perturbation that delivers a �nal_x change. The initial perturbed state is de�ned as� �x0 =
[� x0; � y0; � z0 � _x0; � _y0; � _z0]T. The inequality in equation (10), represented in the standardized form
as

j�� v0jmin � norm

j� �x0j
�

j �B j
j �M j

(11)

expresses the in�uence of different target horizons on the stationkeeping maneuver. A plot ofj �B j
j �M j for different

targets, i.e.,1st, 2nd and7th xz plane crossings near the periapsis region is represented in Figure 7 for an L2
NRHO with perilune radius 3200 km. For different target horizons, maneuver locations along the orbit
offer distinct characteristics. A lower value ofj �B j

j �M j suggests that the maneuver executed produces a smaller

magnitude in that region. From Figures 7(e) and 7(f), it is evident that when targeting the7th xz plane
crossing, there exists a wide range of maneuver locations that result in low maneuver magnitudes compared
to targeting the rotating_x at the1st or 2nd xz plane crossings as in Figures 7(a), 7(b), 7(c) and 7(d).

The ratio j �B j
j �M j provides the upper limit on the value of the maneuver magnitude for a given magnitude of

the initial perturbation, however, the direction of the maneuver is governed by the direction of theM̂ vector.
The direction of the maneuver is an important parameter that yields an assessment for the ef�ciency of the
maneuver in maintaining the spacecraft in the vicinity of the reference path. The stretching directions for the
submatrices of the STM along the coast segment,' C , are available; such a quantity offers insight for pre-
dicting a maneuver that likely results in the spacecraft deviating from the reference trajectory. Geometrically,
if the maneuver direction̂M is aligned in the most stretching directionV1, with � 1 > 1, then the executed
maneuver produces the maximum change in the state at the following maneuver location thereby increasing
the spacecraft deviation from the reference. In contrast, if the maneuver directionM̂ is aligned perpendicular
to the most stretching directionV1, the executed maneuver reduces the deviation at the following maneuver
location. If the stretching along the directions associated with� 2 and� 3 are less than a nondimensional value
of 1, then the plane represented by theV2 � V3 vectors de�nes a restoring plane. If, only� 3 < 1, then the
direction along theV3 vector is a restoring direction. The restoring plane or the restoring direction is vital
as deviations at the end of the propagated arc diminish in comparison to deviations at the beginning. The
maneuvers, when executed in the restoring plane or along the restoring direction, reduces the spacecraft devi-
ation at the downstream locations, thereby maintaining the spacecraft boundedness. A map for the direction
between the maneuver and the most stretching direction for different combination of maneuver location and
coast duration for three different target horizons is presented in Figure 8, for an L2 NRHO with perilune
radius 3200 km. Regions such that the maneuver and the most stretching direction are almost perpendicular
facilitate ef�cient maneuvers.

Conventional approach

For orbit maintenance operations as simulated in the ephemeris model by Davis et al.11 as well as Guzzetti
et al.4 for Earth-Moon L2 NRHOs, maneuvers are implemented once per revolution, generally at (or near)
the apoapsis. Since the period of the NRHO is approximately one week, performing maneuvers only in the
apoapsis region provides ample time for orbit determination. The annual stationkeeping costs estimated by
targeting the rotating_x value at thexz plane crossing 6.5 revolutions ahead produces the most economic
result, for various orbit determination error levels, both in position and velocity. A similar trend is observed
for simulations in the CR3BP model. The intuition that a longer target horizon consistently produces a lower
maneuver cost, is not necessarily true for the L2 NRHOs, however. For the L2 NRHO with a radius of
periapsis 3200 km, the target horizon at 1.5 revolutions results in several failed Monte Carlo cases or a high
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(a) Target:1st xz plane crossing near periapsis. Measure-
ment: Mean anomaly.

(b) Target:1st xz plane crossing near periapsis. Measure-
ment: Osculating true anomaly.

(c) Target:2nd xz plane crossing near periapsis. Measure-
ment: Mean anomaly.

(d) Target:2nd xz plane crossing near periapsis. Measure-
ment: Osculating true anomaly.

(e) Target:7th xz plane crossing near periapsis. Measure-
ment: Mean anomaly.

(f) Target:7th xz plane crossing near periapsis. Measure-
ment: Osculating true anomaly.

Figure 7: Ratio of maximum maneuver magnitude per magnitude of the initial state deviation,j �B j
j �M j , for

different target horizons. Reference orbit: L2 NRHO with perilune radius 3200 km.
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