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STATIONKEEPING IN EARTH-MOON
NEAR RECTILINEAR HALO ORBITS

Vivek Muralidharan∗ and Kathleen C. Howell†

Near Rectilinear Halo Orbits (NRHOs) are stable or nearly stable orbits that are defined as
part of the L1 and L2 halo orbit families in the circular restricted three-body problem. Within
the Earth-Moon regime, the L2 NRHOs offer candidate trajectories for the upcoming Gate-
way mission. The spacecraft, however, incurs continuous deviations due to unmodeled forces
and orbit determination errors in this dynamically sensitive region. The current investigation
focuses on a technique to maintain the spacecraft near a virtual reference orbit despite these
uncertainties. For the stationkeeping scheme, flow dynamics in the region are utilized to
categorically identify appropriate maneuver and target locations. The investigation reflects
the impact of various factors on maneuver cost and efficacy. Additional feedback control is
applied for phasing constraints.

INTRODUCTION

Lunar missions continue to generate serious interest among various space organizations across the globe.
For example, with ever increasing research in the field of space physics, investigation of the celestial body
nearest to Earth, i.e., the Moon, offers significant potential for scientific discoveries. In addition, with a focus
on expanding the human presence in the region, NASA’s Gateway mission, formerly the Deep Space Gateway
(DSG) or Lunar Orbital Platform-Gateway (LOP-G) mission, delivers a hub-like facility that is currently
planned to move along a Near Rectilinear Halo Orbit (NRHO) in the lunar vicinity.1, 2 Near rectilinear halo
orbits are members of the halo orbit family in the L1 and L2 regions in the Earth-Moon circular restricted
three-body problem.3, 4 These NRHOs are stable or nearly stable as characterized by the linear variational
flow. Due to stability characteristics, NRHOs offer candidate orbits suitable for LOP-G as perturbations are
expected to be manageable.

Motion along an NRHO is characterized by a reasonably close lunar passage and a large out-of-plane
amplitude relative to the Earth-Moon orbit plane. The close passage to the Moon offers an opportunity to
examine the Moon’s polar region. In addition, spacecraft along some NRHOs offer a nearly uninterrupted link
for relay communications to various landing sites for planned lunar landing missions.5, 6 In the higher-fidelity
ephemeris model, the orbits are no longer closed, but quasi-periodic. With additional forces, the dynamics in
the vicinity of the NRHO are more complex. The current investigation examines a stationkeeping scheme that
effectively overcomes unmodeled errors as well as position and velocity uncertainty in orbit determination.

Stable orbits do not offer well-distinguished stable and unstable manifolds to be leveraged for stationkeep-
ing, in contrast to unstable orbits with distinct unstable, stable and oscillatory modes.7 Any perturbations
generally include components aligned in the unstable manifold directions resulting in perturbations that grow
over time. There are existing strategies, e.g., Floquet mode approach,8–10 that computes a maneuver to nullify
the unstable components of the perturbations such that the spacecraft is maintained near a reference path for
a specified duration. However, for stable orbits this approach is less suitable. An alternate strategy, one that
is based on the near symmetry of orbits along the line joining the primary bodies, is widely employed for
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stationkeeping in the halo orbit region, including the stable NRHOs.4, 11–14 The technique is commonly iden-
tified as an x-axis control strategy and factors including maneuver location, time duration between successive
maneuvers as well as the target horizon time affect its performance. This investigation explores the effect of
these three factors on orbit maintenance cost and boundedness of spacecraft near the desired path.

BACKGROUND: NEAR RECTILINEAR HALO ORBITS

The circular restricted three-body problem (CR3BP) is a time invariant approximation for the spacecraft
motion influenced by concurrent gravitational forces due to two primary bodies, e.g., the Earth and the Moon,
rotating in circular orbits about their mutual barycenter.15 The spacecraft is assumed to be infinitesimally
small in mass such that it does not affect the motion of the Earth and the Moon. Consider a coordinate sys-
tem, R, rotating at a fixed rate, consistent with the revolution of the primary bodies, and defined by the dextral
orthonormal triad x̂, ŷ and ẑ to describe the motion of the spacecraft. The line joining the primaries, i.e., the
Earth-Moon line represents the x̂ axis in the rotating frame; the positive direction is a view from the Earth
to the Moon. The ẑ direction, is aligned in the direction normal to the Earth-Moon orbit plane. Finally, ŷ
completes the dextral coordinate system. The three spacial directions reflect the nonlinear spacecraft motion
such that the position vector is represented as r̄ = [x, y, z]T and velocity states by v̄ = [ẋ, ẏ, ż]T. Gener-
ally the 6-dimensional state is written by x̄ = [r̄T, v̄T]T = [x, y, z, ẋ, ẏ, ż]T, where superscript ’T’ implies
transpose. Note that overbars represent vector quantities. Although the trajectories in the CR3BP serve as
an approximation for the motion of the spacecraft, the CR3BP facilitates understanding of the underlying
nonlinear dynamics. The CR3BP dynamics yield five equilibrium points, also labelled the libration points,
or Lagrange points, denoted by L1 through L5, of which, L1, L2 and L3 are collinear to the line joining the
primary bodies. The point L1 lies on the x̂-axis between the primaries; L2 is on the far side of the Moon.

An infinite number of periodic orbits exist in the CR3BP as limit cycles. Such periodic solutions are
explored as baseline trajectories for various mission scenarios. The location, stability properties and ac-
cessibility of these orbits are leveraged to satisfy requirements. Halo orbits are a type of family of peri-
odic trajectories that exist near the collinear libration points in the circular restricted three-body problem.16

Within the Earth-Moon system, the L1 and L2 halo orbits are being explored as potential destinations for
a facility in cislunar space. Specifically for the Gateway mission, a southern L2 halo orbit is the current
option. Some members of the L2 halo family with close approaches to the Moon and with high out-of-
plane amplitudes are stable or nearly stable based on variational linear stability analysis.3 Define the stabil-
ity index to measure the stability characteristics of a periodic orbit such that ν = 1/2(λi + 1/λi), where
λi are the non-unity eigenvalues from the monodromy matrix, i.e., the state transition matrix over pre-
cisely one orbital period. For stable orbits, the stability index |ν| ≤ 1. The stable or nearly stable orbits
in the halo orbit family are characterized as the Near Rectilinear Halo Orbits (NRHO). The family of L2
southern halo orbits in the Earth-Moon system is plotted in Figure 1. The orbits colored in red are the

Figure 1: Earth-Moon L2 southern halo orbits

NRHOs. In addition, the periods of the NRHOs
range across a block of values such that some of
these orbits exhibit different resonance properties.
For the stationkeeping analysis, orbits are selected
with different perilune radius distances including
those that demonstrates simple resonance ratios.

HIGHER-FIDELITY MODEL

The higher-fidelity ephemeris model is a better
approximation for the spacecraft motion but gen-
erally exhibits characteristics similar to the motion
predicted by the CR3BP. Using the N -body rela-
tive equations of motion, a more accurate represen-
tation of the spacecraft motion is rendered, one that
accommodates the time-varying relative location of
the celestial bodies in modeling the gravitational
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forces acting on the spacecraft. NASA’s Jet Propulsion Laboratory (JPL) offers a package for numerical
approximations of the relative locations of celestial bodies in terms of SPICE Kernels.17 Not surprisingly,
the CR3BP position and velocity states, when propagated in the ephemeris model using SPICE data, deviate
from the path predicted by the CR3BP model. To generate a continuous natural trajectory in the higher-
fidelity model, multiple revolutions of the CR3BP orbit are stacked and corrected using a multiple shooting
algorithm for position and velocity continuity.18 The iterative procedure produces a quasi-periodic trajectory
in the higher-fidelity model that resembles the geometry of the corresponding orbit defined in the CR3BP.
The L2 southern NRHO with perilune radius 3200 km in the ephemeris model is plotted in Figure 2, in three
different views, the rotating frame of view, R, the Moon-centered inertial view as well as the Earth-centered
inertial view. The natural trajectory in the ephemeris model offers a virtual reference solution that serves as
an anchor for stationkeeping operations; the virtual reference is updated over time as appropriate. The fidelity
of the model is enhanced by adding the effect of a large number of celestial bodies but too many additional
bodies is computationally intensive and may be nontrivial, when incorporating additional orbit determination
errors. Based on other investigations,19 the gravitational forces due to the Earth, Moon and the Sun, and the
Solar Radiation Pressure (SRP), are the most dominant forces on the Earth-Moon halo orbits in the L1 and
L2 region, and sufficient for this analysis. The effect of any additional forces are minimal, however, for com-
parison with other stationkeeping literature, gravitational force due to Jupiter is also included.4, 11 Ephemeris
data is incorporated using the DE421 model.

X-AXIS CONTROL STATIONKEEPING SCHEME

(a) Rotating frame of view (b) Moon-centered inertial view

(c) Earth-centered inertial view

Figure 2: L2 NRHO with perilune radius 3200 km in higher-fidelity
ephemeris model.

Any type of spacecraft mis-
sion requires regular orbit
maintenance operations for
long-term sustainability. The
orbits are subject to sensitive
dynamics that perturb space-
craft from the desired path.
In this investigation, station-
keeping operations maintain
the spacecraft in the vicinity
of a long horizon virtual ref-
erence solution that is gen-
erated incorporating science
constraints and phase con-
straints such as eclipse avoid-
ance.4, 11 The virtual reference
is updated over time as appro-
priate. Several stationkeep-
ing techniques are evaluated
on the Earth-Moon L1 and L2
orbits, i.e., Lyapunov and halo
orbits, both stable and unsta-
ble.4, 11, 13, 14, 18–21 Since the
Gateway mission is planned
for launch in the early 2020s
and is expected to operate
in the 9:2 synodic resonant
NRHO, with a radius of peri-
apsis approximately 3200 km
from the Moon, it serves as a
baseline trajectory to test the
efficiency of a control strategy

3



for stationkeeping on NRHOs. Of course, the control strategy must also be applicable to other low perilune
radius NRHOs. This investigation focuses on leveraging the underlying dynamics to improve the control
algorithm and parameter selection process.

Recent analyses have focused on the x-axis control algorithm for successful missions14, 21 and is currently
employed for analysis on the Gateway mission.4, 11, 22 The x-axis control strategy generally relies on the
symmetry of the NRHOs across the xz plane in the rotating frame of reference. In the CR3BP model, the
rotating ẋ value along the orbit at the xz plane crossing is zero. The notion of a zero value for the rotating ẋ
velocity component at the xz plane crossing is exploited for orbit maintenance operations. Due to complex
dynamics in the higher-fidelity ephemeris model, the natural trajectory that resembles the NRHO does not
possess a precise value of ẋ = 0 at the xz plane crossing, hence, it is further constrained that the rotating
ẋ value along the actual trajectory matches the ẋ value along a long horizon virtual reference path at the xz
plane crossing, within an acceptable tolerance.

The stationkeeping operation is a sequential process. A baseline trajectory is introduced that acts as a
long horizon virtual reference solution. From previous invesigations,4, 11 it is seen that targeting xz plane
crossings near the periapsis region yields low stationkeeping costs. Since the periapsis region of the NRHO is
particularly sensitive to perturbations, delivering an accurate maneuver that reduces deviations in the rotating
ẋ value at the xz plane crossings near the periapsis is worth exploring for long-term low-cost maintenance.
The algorithm also targets the rotating ẋ value at subsequent xz plane crossings along the evolving path. The
ẋ values at each of the xz plane crossings near the periapsis on the long horizon virtual reference solution are
recorded. The spacecraft state is originally introduced at the halo orbit injection epoch with additional white
noise in both position and velocity states, and with specified mean and variance. In the ephemeris model,
additional uncertainty in solar radiation pressure is introduced with errors in the coefficient of reflection
Cr and the surface area of the spacecraft model. The perturbed states are propagated to a predetermined
maneuver location, generally closer to the apoapsis region, and a maneuver ∆v̄ is computed to meet the
goal of achieving the ẋ value along the virtual baseline at a specified downstream xz plane crossing, within
some predefined tolerance, considered as 0.45 m/s is this investigation.4 The target xz plane crossing may be
the 1st, 2nd, ..., nth crossing, increasing further downstream along the propagated trajectory. If the targeting
process fails to compute a successful maneuver that meets the goal for a specified target, the target horizon
time is reduced and the process is simulated again until a successful maneuver is computed. Additional white
noise modelled as maneuver execution error is incorporated into the maneuver and implemented. Along the
subsequent path, the states are updated and further perturbed with navigational errors and solar radiation
pressure errors and the procedure is continued till the end of the mission duration. In contrast, if none of
the target horizon times delivers a successful maneuver, the particular simulation is considered as failed.
The total sum of the maneuvers |∆v̄| over each run is recorded. Since white noise is generated randomly,
a Monte Carlo simulation is performed over 100 runs and the mean cost is estimated.18 With 100 samples,
the standard error of the mean is reduced to 10% of the sample standard deviation.10, 23 The total cost is then
linearly extrapolated over one year to estimate an annual maintenance cost.

Orbit determination and model error

Spacecraft experience multiple perturbations due to unmodeled forces and limitations on orbit determina-
tion. To simulate these perturbing conditions, different error levels in the orbit determination process and
modeling formulations are introduced. The spacecraft is intentionally perturbed from the reference trajectory
to simulate a stationkeeping operation. Two different navigation error levels are considered, a low orbit de-
termination error (ODE) level with mean 0 and standard deviation (3σ) of 1 km in position magnitude and
1 cm/s in velocity magnitude, and a relatively high orbit determination error (ODE) level with mean 0 and
standard deviation (3σ) of 10 km in position magnitude and 10 cm/s in velocity magnitude. Consistent with
the navigation error, the same error levels are used for orbit insertion. Further, maneuver execution error is
introduced as a fixed error with a perturbation of 0.03 cm/s in any arbitrary direction.

Solar radiation pressure (SRP) is introduced into the model to simulate the spacecraft motion, however, the
exact orientation of the spacecraft is unknown, hence SRP errors are introduced to simulate the perturbing
force. A cannonball model for the spacecraft is assumed with mass 25848 kg, projected area of 50 sq.m. and
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a perfectly reflective surface with coefficient of reflectivity Cr = 2.4, 12 Uncertainty (1σ) in the projected
area is assumed to be 5% and uncertainty in Cr to be 10% for all simulations.

Stationkeeping parameters

The stationkeeping algorithm depends on various parameters that influence the annual cost and the bound-
edness of a spacecraft trajectory near a virtual reference solution. The stationkeeping parameters that are
user-defined impact its performance. For orbit maintenance using the x-axis control approach, three factors
that impact the overall cost and the deviation from the reference path are explored in this investigation:

• Coast duration
Currently, the stationkeeping process is based on impulsive maneuvers and, hence, between two succes-
sive maneuvers the spacecraft coasts under the natural dynamics. The minimum time duration between
two successive maneuvers is defined as the coast duration. It is generally expected that, for a stable
orbit, maneuvers with wider spacing are effective in reducing costs, in contrast to an unstable orbit that
may require maneuvers spaced relatively close for effective orbit maintenance. In addition, NRHOs
frequently possess close lunar passages, a nonlinear effect that influences the dynamical flow near the
reference orbit over time.

• Maneuver location
Not all locations around the orbit offer the same characteristic properties. Some locations are notably
more sensitive depending on the proximity to different gravitational bodies. These sensitive locations
may offer maximum benefits if stationkeeping maneuvers are implemented accurately.24 However,
the primary function of a stationkeeping maneuver is to overcome error build-ups due to limitations
in the orbit determination process and errors due to prior maneuvers. These sensitive locations often
increase the measurement uncertainty, therefore, precise maneuvers are impossible in practice. These
drawbacks, coupled with errors in maneuver execution, result in these sensitive regions being inferior
maneuver locations as errors in the sensitive regions amplify rapidly over time.

• Target horizon
The length of time between the maneuver location and the targeted xz plane crossing near the periapsis
region is denoted the target horizon. Since the target horizon is user defined, the target is placed at
the first xz plane crossing near the periapsis, or the second crossing near the next periapsis or so on.
Since the target location is an xz plane crossing, the target horizon is labelled in terms of the number of
revolutions downstream from the maneuver location. A precise maneuver is generated by targeting the
rotating ẋ value at the specified xz plane crossing. Because of the error-free maneuvers generated in
a single shooting process, it is generally reliable to target a sensitive region, e.g., the periapsis region,
to yield the most economic maneuver. Guzzetti et al. suggest the same principle based on their results
by targeting the xz plane crossings near the periapsis.4 A longer target horizon, i.e., targeting further
downstream, is expected to produce lower maneuver magnitudes, however, mission requirements or
constraints may necessitate shorter target horizons.

The inter-dependency of the parameters, i.e., coast duration, maneuver location and target horizon, is il-
lustrated in the flowchart in Figure 3. The simultaneous interactions between the flow evolving from one
maneuver location to the next along a coast arc, and the flow evolution from the maneuver location to the
target, determines the performance of the maneuver.

Effect of maneuver location and coast duration The spacecraft coasts under the natural dynamics between
two successive impulsive maneuver locations, and the time interval is termed the coast duration. The flow
between the maneuver locations then determines the impact of the deviations in the initial states that are prop-
agated downstream to the end states where the subsequent maneuver is generated. The dynamics of the flow
in the circular restricted three-body problem as well as in the ephemeris model are complex, however, for
small perturbations in a linear model, predictions of the flow variations in the vicinity of a reference trajec-
tory using the state transition matrix (STM) is generally reliable for these NRHOs. The Cauchy-Green tensor

5



Figure 3: Stationkeeping parameter efficiency flowchart.

(CGT) is a function of the STM and aids in visualizing linear flow by decomposing it into different mutu-
ally orthogonal directions, along which components of perturbations grow independent of the other. Since
maneuvers are allowed anywhere along the orbit (multiple maneuvers per orbit or multiple orbits between
maneuvers) the mutual impact of maneuver location and coast duration is vital.

The Cauchy-Green tensor (CGT) is a function of the state transition matrix (STM) that yields valuable
information concerning the linearized variational dynamical flow in the vicinity of a reference solution.25, 26

While the STM, φ, relates the variation of each individual state over time such that φ(t, t0) = ∂x̄(t)
∂x̄0

, the CGT
relates the evolution of the perturbations represented as a material volume over time. The STM evaluated on
a reference trajectory, x̄∗(t), maps the initial perturbation, δx̄0, to the final perturbed states, δx̄f , as a linear
correlation, i.e.,

δx̄f = φ(tf , t0)δx̄0 (1)

where, t0 and tf are the initial and final epochs. The isochronous perturbations are measured relative to this
reference path as δx̄(t) = x̄(t)− x̄∗(t). The CGT, or simply ‘C’ is evaluated as

C(tf , t0) = φ(tf , t0)Tφ(tf , t0) (2)

and defines the deformation, as a product of the transpose (superscript T) of the state transition matrix, φ, with
itself. Physically, CGT renders the square of the magnitude of the final deformation to the initial deformation
as

||δx̄f ||2 = δx̄T
fδx̄f = δx̄T

0φ(tf , t0)Tφ(tf , t0)δx̄0 = δx̄T
0C(tf , t0)δx̄0. (3)

The growth or decay of the quantity ||δx̄f ||2 describes the sensitivity of the trajectory to the initial perturba-
tion, δx̄0, however, when the size of an initial perturbation is undefined, the sensitivity information is directly
extracted from CGT. The eigen-decomposition of the CGT, or the singular value decomposition of the STM,
yields details about directions and magnitudes of the stretching.

The flow reflecting the impact of the perturbation and emulated by a material volume is characterized
primarily by the magnitudes and directions of the elongation. The flow for any volume is visualized either
using the eigen-decomposition or the singular value decomposition of the corresponding matrices. The eigen-
decomposition of the CGT yields the eigenvalues λi and the eigen-vectors Vi. For a linear system, the
contraction or expansion of the local phase space is captured by σi in the directions in Vi. Note that σi =
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√
λi. The singular value decomposition (SVD) of the STM, reveals the same critical details about the flow in

the phase space but with an additional directional information, Ui. Mathematically, the STM is decomposed
into the matrices, U, Σ and V, such that,

UΣV∗ = φ(tf , t0) (4)

where, the columns of U yield the stretching directions at the final epoch. For a square matrix, φ, Σ is
a diagonal matrix with the magnitude of the stretching along different directions in descending order, i.e.,
σ1 > σ2 > . . . > σn, such that σi = Σii, an element in Σ in the ith row and ith column. The matrix V then
provides the principal stretching directions at the initial time along the propagated arc. The matrices Σ and
V essentially supply the same details, acquired using an eigenvalue decomposition of C, while U offers addi-
tional information captured using singular value decomposition, also derivable from the Cauchy-Green tensor.
The matrices U and V are each orthogonal. Figure 4 illustrates the contraction or expansion along different

𝕍1

𝕍2 𝕌2

𝕌1

ℂ = 𝜙𝑇𝜙
𝜎2

𝜎1

Figure 4: Principal stretching directions.

flow directions with the example of
a two-dimensional system transitioned
through CGT. Consider a unit circle in
the phase space near an initial refer-
ence path that undergoes deformation
and evolves into a stretched ellipse. The
evolution of this unit circle into an el-
lipse is a combination of translation and
rotation. The matrices U and V supply
the rotation information while the matrix
Σ yields information concerning linear
translation. The columns of the matrix V represented by Vi indicate the principal directions at the initial
time that evolve into Ui (the columns of matrix U). The diagonal elements of the matrix Σ, or σi, indicate
the stretching along corresponding principal directions.

A maneuver is deliverable anywhere along a range of locations on the orbit, hence, identifying precise
maneuver locations is vital for the analysis. Maneuver locations and trajectory segment lengths are, thus,
denoted in terms of a mean anomaly and an osculating true anomaly. Since the NRHO is a closed orbit in the
CR3BP, the mean anomaly is defined as θMA = 2π t/T rad = 360 t/T deg where T is the time period for
the selected orbit while t is the time of propagation beyond the most recent periapsis as defined in the circular
restricted three-body problem. Since the NRHO is not a Keplerian orbit, an osculating true anomaly, θTA,
is defined with respect to a central body, the Moon.27 The mean anomaly quantifies the relative locations in
terms of the actual time of propagation while true anomaly offers the geometric interpretation of locations as
noted in Figure 5.

The flow between the nth and (n+1)th impulsive maneuvers, at time tn and tn+1 respectively, is measured
by the state transition matrix evaluated along the coast segment, i.e., ϕC , such that ϕC = φ(tn+1, tn).
Without loss of generality, assume, tn = t0, as the initial time at which the maneuver is implemented, and
tn+1 = tf , as the final time along the propagated natural trajectory segment. Consider

ϕC(tf , t0) =

[
ϕC,r,r ϕC,r,v

ϕC,v,r ϕC,v,v

]
=

[
∂r̄f
∂r̄0

∂r̄f
∂v̄0

∂v̄f
∂r̄0

∂v̄f
∂v̄0

]
(5)

where ϕC,r,r, ϕC,r,v, ϕC,v,r and ϕC,v,v are the 3× 3 submatrices of 6× 6 matrix ϕC . In the stationkeeping
problem, however, only the initial velocity terms are controllable, hence tracking the flow generated by
the 6 × 6 state transition matrix ϕC is inconsequential. Specific submatrices of ϕC yield more relevant
characteristics. For example, the 3× 3 dimensional submatrix, ϕC,r,v, maps the initial velocity perturbation,
δv̄0, to the final position change, δr̄f , and the 3× 3 dimensional submatrix, ϕC,v,v , maps the initial velocity
perturbation, δv̄0, to the final velocity change, δv̄f . Also, combined, the 6×3 dimensional submatrix ϕC,rv,v ,
where

ϕC,rv,v =

[
ϕC,r,v

ϕC,v,v

]
(6)
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(a) Mean anomaly (b) Osculating true anomaly

Figure 5: Definition of orbit locations (L2 NRHO with 3200 km
perilune radius).

that maps the initial velocity perturba-
tion, δv̄0, to the final position and veloc-
ity state change, δr̄f and δv̄f , yields sig-
nificant characteristics, as only the ini-
tial velocity states, δv̄0, are subject to
change. The sensitivity of the orbit states
to initial velocity changes is measured by
monitoring the magnitude of maximum
stretching, σ1, corresponding to each of
the ϕC,r,v, ϕC,v,v and ϕC,rv,v submatri-
ces. The values of the largest stretching
magnitudes, σ1, corresponding to each of
the ϕC,r,v, ϕC,v,v and ϕC,rv,v submatri-
ces for various combinations of maneu-
ver locations and coast durations along
the 9:2 synodic resonant orbit with per-
ilune radius 3200 km is plotted in Fig-
ure 6. Not surprisingly, the maximum
stretching magnitudes corresponding to ϕC,v,v and ϕC,rv,v , the submatrices that include velocity perturba-
tions at the final time, are significantly larger, suggesting that the velocity changes generally must be tightly
controlled. Due to such behavior, flow described by the ϕC,v,v and ϕC,rv,v submatrices offer measurements
to identify sensitive regions along the orbit. Since the stationkeeping algorithm is required to reduce the
successive maneuver magnitudes, the stretching direction from the ϕC,v,v submatrix, that monitors the final
velocity change, is incorporated throughout this investigation. Further, as is evident from Figure 6, trajectory
segments that terminate close to or originate near the periapsis regions are highly sensitive to perturbations,
i.e., hotter shades in the map, hence, maneuvers are generally avoided in such regions. The cooler shades in
the map, highlight the likely regions suitable for selecting the maneuver locations.

Effect of maneuver location and target horizon The flow between the maneuver location and the target
determines the maneuver characteristics. As previously introduced, for an x-axis control strategy, the ro-
tating ẋ value at different xz plane crossings near the periapsis region serves as a target parameter. The
stationkeeping control effort is represented by

∆ẋf =
[
ϕT,44 ϕT,45 ϕT,46

]
∆v̄0 (7)

where, ∆ẋf is the change in the rotational ẋ value at the target and ∆v̄0 = [∆ẋ0, ∆ẏ0, ∆ż0]T defines a
column vector with three scalar independent control variables that comprise the impulsive maneuver. Finally,
[ϕT,44 ϕT,45 ϕT,46] is the appropriate submatrix of the state transition matrix, ϕT . The subscripts, i and
j, in ϕT,ij , indicate the element in ϕT in the ith row and jth column. Moreover, ϕT is the state transition
matrix from the maneuver location to the target, i.e., ϕT = φ(tTarget, t0). The time difference between
t0 and tTarget is the target horizon time. Define M̄ = [ϕT,44 ϕT,45 ϕT,46]T as a 3 × 1 column vector
and, therefore, ∆ẋf = M̄T∆v̄0. The goal for the stationkeeping process is minimizing the propellant costs,
hence, a minimum norm solution that delivers the smallest maneuver is generally an appropriate choice for
this problem. Since the control equation ∆ẋf = M̄T∆v̄0 is equivalent to the dot product between M̄ and the
∆v̄0 vector, the maneuver magnitude is deduced as

|∆ẋf | = |M̄ ||∆v̄0| cosϑ −→ |∆v̄0| =
|∆ẋf |
|M̄ | cosϑ

(8)

where cosϑ is the angle between M̄ and the ∆v̄0 vector. Of course, M̄ includes components of the state
transition matrix ϕT but ∆v̄0 and ϑ are variables. In any case, the smallest maneuver |∆v̄0| is generated only
if cosϑ = 1, i.e., ϑ = 0o or ∆v̄0 vector is aligned in the direction of M̄ . Therefore, a minimum norm solution
for stationkeeping renders a maneuver magnitude of

|∆v̄0|min−norm =
|∆ẋf |
|M̄ |

(9)
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(a) Maximum stretching of ϕC,r,v for measurements in
mean anomaly

(b) Maximum stretching of ϕC,r,v for measurements in
true anomaly

(c) Maximum stretching of ϕC,v,v for measurements in
mean anomaly

(d) Maximum stretching of ϕC,v,v for measurements in
true anomaly

(e) Maximum stretching of ϕC,rv,v for measurements in
mean anomaly

(f) Maximum stretching of ϕC,rv,v for measurements in
true anomaly

Figure 6: Maximum stretching magnitudes for different submatrices of the state transition matrix along the
NRHO with a perilune radius of 3200 km.

9



in the direction of M̄ . The maneuver magnitude that is generated depends on the change in rotational velocity
∆ẋf , one that varies with time, however, the maneuver magnitude as a function of the initial perturbation is
a better metric, i.e.,

|∆v̄0|min−norm =
|B̄T∆x̄0|
|M̄ |

≤ |B̄
T||∆x̄0|
|M̄ |

(10)

where ∆ẋf = B̄T∆x̄0 with B̄ = [ϕT,41 ϕT,42 ϕT,43 ϕT,44 ϕT,45 ϕT,46]T as the submatrix of ϕT that relates
the initial state perturbation that delivers a final ẋ change. The initial perturbed state is defined as ∆x̄0 =
[∆x0, ∆y0, ∆z0 ∆ẋ0, ∆ẏ0, ∆ż0]T. The inequality in equation (10), represented in the standardized form
as

|∆v̄0|min−norm

|∆x̄0|
≤ |B̄|
|M̄ |

(11)

expresses the influence of different target horizons on the stationkeeping maneuver. A plot of |B̄||M̄ | for different
targets, i.e., 1st, 2nd and 7th xz plane crossings near the periapsis region is represented in Figure 7 for an L2
NRHO with perilune radius 3200 km. For different target horizons, maneuver locations along the orbit
offer distinct characteristics. A lower value of |B̄||M̄ | suggests that the maneuver executed produces a smaller
magnitude in that region. From Figures 7(e) and 7(f), it is evident that when targeting the 7th xz plane
crossing, there exists a wide range of maneuver locations that result in low maneuver magnitudes compared
to targeting the rotating ẋ at the 1st or 2nd xz plane crossings as in Figures 7(a), 7(b), 7(c) and 7(d).

The ratio |B̄||M̄ | provides the upper limit on the value of the maneuver magnitude for a given magnitude of

the initial perturbation, however, the direction of the maneuver is governed by the direction of the M̂ vector.
The direction of the maneuver is an important parameter that yields an assessment for the efficiency of the
maneuver in maintaining the spacecraft in the vicinity of the reference path. The stretching directions for the
submatrices of the STM along the coast segment, ϕC , are available; such a quantity offers insight for pre-
dicting a maneuver that likely results in the spacecraft deviating from the reference trajectory. Geometrically,
if the maneuver direction M̂ is aligned in the most stretching direction V1, with σ1 > 1, then the executed
maneuver produces the maximum change in the state at the following maneuver location thereby increasing
the spacecraft deviation from the reference. In contrast, if the maneuver direction M̂ is aligned perpendicular
to the most stretching direction V1, the executed maneuver reduces the deviation at the following maneuver
location. If the stretching along the directions associated with σ2 and σ3 are less than a nondimensional value
of 1, then the plane represented by the V2 − V3 vectors defines a restoring plane. If, only σ3 < 1, then the
direction along the V3 vector is a restoring direction. The restoring plane or the restoring direction is vital
as deviations at the end of the propagated arc diminish in comparison to deviations at the beginning. The
maneuvers, when executed in the restoring plane or along the restoring direction, reduces the spacecraft devi-
ation at the downstream locations, thereby maintaining the spacecraft boundedness. A map for the direction
between the maneuver and the most stretching direction for different combination of maneuver location and
coast duration for three different target horizons is presented in Figure 8, for an L2 NRHO with perilune
radius 3200 km. Regions such that the maneuver and the most stretching direction are almost perpendicular
facilitate efficient maneuvers.

Conventional approach

For orbit maintenance operations as simulated in the ephemeris model by Davis et al.11 as well as Guzzetti
et al.4 for Earth-Moon L2 NRHOs, maneuvers are implemented once per revolution, generally at (or near)
the apoapsis. Since the period of the NRHO is approximately one week, performing maneuvers only in the
apoapsis region provides ample time for orbit determination. The annual stationkeeping costs estimated by
targeting the rotating ẋ value at the xz plane crossing 6.5 revolutions ahead produces the most economic
result, for various orbit determination error levels, both in position and velocity. A similar trend is observed
for simulations in the CR3BP model. The intuition that a longer target horizon consistently produces a lower
maneuver cost, is not necessarily true for the L2 NRHOs, however. For the L2 NRHO with a radius of
periapsis 3200 km, the target horizon at 1.5 revolutions results in several failed Monte Carlo cases or a high
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(a) Target: 1st xz plane crossing near periapsis. Measure-
ment: Mean anomaly.

(b) Target: 1st xz plane crossing near periapsis. Measure-
ment: Osculating true anomaly.

(c) Target: 2nd xz plane crossing near periapsis. Measure-
ment: Mean anomaly.

(d) Target: 2nd xz plane crossing near periapsis. Measure-
ment: Osculating true anomaly.

(e) Target: 7th xz plane crossing near periapsis. Measure-
ment: Mean anomaly.

(f) Target: 7th xz plane crossing near periapsis. Measure-
ment: Osculating true anomaly.

Figure 7: Ratio of maximum maneuver magnitude per magnitude of the initial state deviation, |B̄||M̄ | , for
different target horizons. Reference orbit: L2 NRHO with perilune radius 3200 km.
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(a) Target: 1st xz plane crossing near periapsis. Measure-
ment: Mean anomaly.

(b) Target: 1st xz plane crossing near periapsis. Measure-
ment: Osculating true anomaly.

(c) Target: 2nd xz plane crossing near periapsis. Measure-
ment: Mean anomaly.

(d) Target: 2nd xz plane crossing near periapsis. Measure-
ment: Osculating true anomaly.

(e) Target: 7th xz plane crossing near periapsis. Measure-
ment: Mean anomaly.

(f) Target: 7th xz plane crossing near periapsis. Measure-
ment: Osculating true anomaly.

Figure 8: Estimated angle between maneuver direction and most stretching direction V1(ϕC,v,v) for different
target horizons. Reference orbit: L2 NRHO with perilune radius 3200 km.
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maintenance cost, irrespective of the magnitude of the ODE errors and the model, CR3BP or ephemeris
model. Contrary to targeting a 1.5 rev target horizon, other target horizons produced successful cases. The
results from Davis et al.11 and Guzzetti et al.4 are analogous to this observation.

In the conventional x-axis control approach, once the maneuvers are executed at (or near) the apoapsis, the
spacecraft is allowed to coast till the subsequent apoapsis where the next maneuver is generated and imple-
mented. Since maneuvers induce a change in the state at the apoapsis, the effect of an implemented maneuver
at the following apoapsis is vital. If the maneuver is implemented in the most stretching direction, the space-
craft experiences a larger deviation when it reaches the subsequent apoapsis and the phenomenon continues
till the deviation is sufficiently magnified and the spacecraft is escaping. The flow defined by the Cauchy-
Green tensor provides the magnitude and direction of the stretching, as available from the components of the
monodromy matrix between two consecutive apoapses computed along a virtual reference orbit. The plot
in Figure 9 summarizes the stretching as computed from the monodromy matrix for certain members of the
NRHO family. For the orbit of interest, the 9:2 synodic L2 resonant orbit with perilune radius 3200 km, the
three stretching directions are seen to possess magnitudes of stretching σ1 = 2.34, σ2 = 0.78 and σ3 = 0.25.
Since σ1 > 0, the directions given by V1 and U1 correspond to direction of the perturbation growth at the
initial and final times, respectively. On the contrary σ2, σ3 < 1, therefore directions V2, V3 at the initial time
and U2, U3 at the final time are restoring directions where the magnitude of the perturbation diminishes over
the propagated time. It is to be noted that the directions V1, V2 and V3 are perpendicular. For the L2 NRHO
orbits with perilune radius between 2000-9000 km and with one maneuver per orbit, executed at the apoapsis,
there exists a stretching direction and a restoring plane, thereby, ensuring maneuvers are perpendicular to the
stretching direction that establishes the stability of the maneuvers.

The maneuver direction as compared to the stretching and restoring directions play an important role in
determining the efficiency of the stationkeeping scheme. If successive maneuvers are implemented that are
aligned closely to the V1 direction, the perturbations increase over time. On the contrary, any
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Figure 9: Magnitude of stretching σi along different Ui directions for
various NRHOs in the L2 region.

maneuvers aligned perpendic-
ular to the V1 direction, in
the restoring V2 − V3 plane,
the perturbations do not grow
sinificantly over the propagated
time, hence, a better suc-
cess rate for stationkeeping is
achieved. When targeting dif-
ferent xz plane crossings near
the periapsis region, i.e., down-
stream at 0.5 rev, 1.5 rev, and
so on, a different maneuver di-
rection, M̂ , is computed. The
angle between the direction of
the maneuver M̂ and the most
stretching direction of ϕC,v,v

for different target horizons, are summarized for an L2 NRHO with perilune radius 3200 km in Figure 10. A
curve is also included for the angle between the direction of the maneuver M̂ and the most stretching direction
of ϕC,rv,v . Both these curves demonstrate a similar trend, but as noted previously, comparing with ϕC,v,v

is a good choice for halo orbits that are significantly sensitive to velocity perturbations. When targeting 1.5
revs ahead, the angle between the maneuver and the most stretching direction for ϕC,v,v is approximately 50
degrees, while for the 6.5 rev target horizon the angle is nearly 90 degrees. For target horizons where the
angle is almost perpendicular to the most stretching direction, i.e., aligned with the restoring plane, the state
variations at the initial time do not induce a large final variation, hence, the spacecraft remains bounded closer
to the reference trajectory. In contrast, at the 1.5 rev target horizon, the maneuver has a significant component
in the most stretching direction that results in amplification of state variation at the final time for a specific
initial state perturbation. In such a case, the deviation size and the maneuver size continuously increase with
time and, eventually, divergence from the virtual reference trajectory occurs.
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The maneuvers are based, of course, on the states along the actual trajectory nearby the baseline path and
may not precisely align with the angles in Figure 10, therefore, the angle between the actual maneuvers as

Figure 10: Angle between the maneuver and the most stretching directions
for the 9:2 synodic resonant L2 NRHO with perilune radius 3200 km.

compared to the most stretch-
ing direction that result from
Monte Carlo simulations are
plotted in Figure 11 for both
the CR3BP as well as the
ephemeris model. For each
of the target horizons, 0.5 rev,
1.5 rev and so on, the angle
between the actual maneuvers
and the most stretching direc-
tion V1 are well estimated in
Figure 10. For the ephemeris
case, due to the complex dy-
namics, the angles do not pre-
cisely coincide with the esti-
mated values, but do follow
the underlying trend. The maneuvers as viewed in configuration space in Figure 12 for both the CR3BP
and the ephemeris case, demonstrate distinctly different directions for the 1.5 rev target horizon and the 6.5
rev target horizon. Not surprisingly, a larger variance is observed for maneuvers in the ephemeris model as
compared to the CR3BP model. In addition, the stretching direction as well as the restoring plane that are
estimated using the underlying CR3BP dynamics are plotted in Figure 12(a), for the L2 NRHO with 3200 km
perilune radius. Clearly, the direction of the maneuvers computed for different target horizons influences the
performance of the stationkeeping algorithm. Not surprisingly, the characteristics of the flow along the orbit
delivers a poor performance for the 1.5 rev target horizon, as the maneuvers have a significant component in
the most stretching direction. In contrast, the 6.5 rev target horizon proves superior for the L2 NRHO with
perilune radius 3200 km, as maneuvers are closely aligned with the restoring plane.

In the conventional x-axis control approach, the target condition determines the effectiveness of the ma-
neuvers to maintain the spacecraft in the close vicinity of a virtual reference trajectory over time. The flow
from the maneuver location to the target determines the direction and the magnitude of the maneuvers. As
noted, although the maneuver magnitude depends on the initial error, the ratio of the maximum maneuver
magnitude for an unit initial perturbation is deterministic in the linear sense. Similarly, the direction of the
maneuver with respect to the most stretching direction is computable for any NRHO under investigation. The
trend in maneuver magnitude and direction offers a control leverage metric, that evaluates the effectiveness of
the maneuver and assists in an informative selection for the target horizon. The angle between the estimated
maneuver and the most stretching direction appears in Figure 13(a). Clearly, for the range of NRHOs under
investigation, the 1.5 rev target horizon is not recommended, as maneuvers possess a significant component
in the most stretching direction that deviates away from the virtual reference trajectory over time. Depending
on the orbit of interest, selecting 6.5 rev, 4.5 rev and 2.5 rev target horizons offer good performance. Targeting
further downstream beyond 6.5 rev horizon is computationally intensive and does not necessarily yield any
substantial improvements in stationkeeping costs. Other NRHOs, independently evaluated, may offer flow
patterns that differ from the 9:2 synodic resonant NRHO in the L2 region, and different target horizons may
yield different performance.

The x-axis approach is a loose control strategy that targets only two of the seven states (including time),
i.e., the rotating ẋ component at y = 0, thus providing low cost stationkeeping solutions. For different
NRHOs, the annual orbit maintenance costs are computed for both low (3σ: 1 km and 1 cm/s) and high (3σ:
10 km and 10 cm/s) orbit determination error levels in Tables 1 and 2, respectively. For a particular orbit,
irrespective of the orbit determination error levels, the annual stationkeeping costs generated by targeting
relatively larger horizon times, i.e., 4.5, 5.5 and 6.5 revs, are not significantly different. For very low target
horizon of 0.5 rev, significantly higher cost of operation is observed in contrast to targeting a longer time
horizon. As noted earlier, no Monte Carlo runs yield successful maneuvers for a target horizon of 1.5 rev.
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(a) CR3BP model

(b) Ephemeris model
Figure 11: Angle between the actual maneuver and the most stretching direction V1(ϕC,v,v) for the 9:2

synodic resonant L2 NRHO with perilune radius 3200 km. Low orbit determination error (3σ: 1 km and 1
cm/s) case.

Table 1: Annual orbit maintenance cost [m/s] with low orbit determination error level (3σ: 1 km and 1 cm/s).

Perilune radius [km] Target horizon [rev]

0.5 1.5 2.5 3.5 4.5 5.5 6.5

3200 0.28 DNC 0.18 0.13 0.14 0.15 0.16
4000 0.29 DNC 0.18 0.13 0.14 0.15 0.15
4800 0.32 DNC 0.16 0.13 0.15 0.15 0.15
5645 0.45 DNC 0.16 0.13 0.15 0.14 0.15
6400 0.58 DNC 0.17 0.13 0.15 0.15 0.16
7200 0.72 DNC 0.18 0.13 0.16 0.15 0.15

* DNC - Did not converge

Phase control approach

Precise orbit control is expensive and may be nontrivial for spacecraft operations. The conventional x-axis
control approach is effective in maintaining the spacecraft in the vicinity of a virtual reference solution at a
low cost. By only targeting two of the seven states, the spacecraft remains loosely bounded in the neighbor-
hood of the virtual reference path that is originally generated over a significantly longer duration. However,
the low cost stationkeeping solutions generated by the conventional approach do not necessarily synchronize
in phase space with the virtual reference trajectory, resulting in the actual trajectory lagging or leading the
virtual reference in time space. Figure 14(a) illustrates the time difference between the actual trajectory and
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(a) CR3BP (b) Ephemeris

Figure 12: Maneuvers in configuration space for L2 NRHO with perilune radius 3200 km.

Table 2: Annual orbit maintenance cost [m/s] with high orbit determination error level (3σ: 10 km and 10
cm/s).

Perilune radius [km] Target horizon [rev]

0.5 1.5 2.5 3.5 4.5 5.5 6.5

3200 5.84 DNC 1.81 1.02 0.96 0.90 0.91
4000 3.78 DNC 1.86 0.92 0.90 0.89 0.91
4800 3.73 DNC 1.58 0.93 0.86 0.85 0.82
5645 4.53 DNC 1.43 0.86 0.85 0.82 0.86
6400 7.16 DNC 1.42 0.88 0.80 0.81 0.83
7200 7.45 DNC 1.66 0.88 0.81 0.78 0.78

* DNC - Did not converge

the virtual reference measured at periapsis over different Monte Carlo runs, i.e., cases with different seeds
for random errors to mimic an uncertainty in orbit determination. The phase difference between the actual
trajectory and the virtual reference path increases either positively or negatively over time. If the baseline
trajectory is generated to satisfy any eclipse avoidance properties or any other phase constraints, the phase
shift between the actual and reference trajectories may impede the mission objectives. To overcome such
a scenario, additional restrictions are imposed on the x-axis control algorithm to generate maneuvers that
adhere to appropriate phasing of the actual trajectory. For controlling phase shift, Davis et al.22 target the
rotating ẋ value as well as the periapsis altitude simultaneously. With the updated strategy a decrease in the
rate of phase shift is observed. For any cases, where the spacecraft states have deviated significantly, a long
horizon orbit correction maneuver is implemented to drive the states on to the virtual reference trajectory. An
alternate approach with time shift feedback is explored.

To maintain the correct phasing between the actual trajectory and the virtual reference path, a phase con-
straint is delivered either at periapsis, or apoapsis, or even the xz-plane crossing, as they are complimentary.
Since the x-axis control approach targets a condition at the xz-plane crossing, adding additional phase control
constraints at the xz-plane crossing satisfies the requirement. A fixed time targeting scheme is incorporated
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(a) Angle between the estimated maneuver and the most stretching direction

(b) Maximum maneuver magnitude per unit initial deviation (max value capped at
1.2)

Figure 13: Maneuver effectiveness for different target horizon over various NRHOs.

that targets conditions at the xz-plane crossing to occur at the same time relative to the virtual reference at
the corresponding xz-plane crossing. A feedback constraint is formulated as

∆yf − ẏf∆t0 =
[
ϕT,24 ϕT,25 ϕT,26

]
∆v̄0 (12)

and solved along with the control equation as in equation (7) to compute the required maneuver. Here,
the final time of propagation, tf = tTarget = t∗xz is the time along the virtual reference trajectory at the
appropriate xz plane crossing. The term ẏf∆t0 in equation (12) is a feedback term to compensate for the
adjustment in the phase difference detected at the apoapsis where the maneuver is executed. Additionally,
∆yf corresponds to the difference in y position between the actual and the reference trajectory at the end of
the propagated trajectory. For a trajectory with no phase difference, ∆t0 = 0 and ∆yf = 0. With an iterative
process, the states are updated to drive the left side of equation (12) to zero. The maneuver generated with an
additional phase constraint bounds the spacecraft motion in the vicinity of the virtual reference trajectory in
the time states as well.

Using a phase control approach, the phase shift between the actual trajectory and the virtual reference
is minimized. Since the virtual reference is generated satisfying any eclipse or phase constraint, the ac-
tual trajectory also does not violate any phase constraint, to within a few seconds tolerance. Figure 14(b)
demonstrates the efficacy of the phase control approach to minimize the time shift at periapsis for 100 Monte
Carlo runs completed on the L2 NRHO with perilune radius 3200 km. The time difference, measured at the
periapsis location is low, in contrast to Figure 14(a) using the conventional x-axis control approach.

The annual orbit maintenance cost for the stationkeeping with the phase control approach is higher than
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Figure 14: Phase shift measured at periapsis with and without phase control. L2 NRHO with perilune radius
3200 km.

the conventional approach. Not surprisingly, an additional constraint equation that is solved simultaneously
with the control equation decreases the solution space and results in a higher cost of operations. The phase
control approach works efficiently when the target horizon is sufficiently long. The approach produces fa-
vorable solutions for the 9:2 synodic resonant L2 NRHO when targeting 6.5 rev, 5.5 rev, 4.5 rev and 2.5 rev
downstream. Although considerably better phasing than the conventional approach, diminishing returns are
observed at 3.5 rev target horizon time. For short target horizons, i.e., 0.5 rev and 1.5 rev, the stiffer targeting
conditions using phase control approach do not generate satisfactory results. Due to an additional constraint,
an increase in the annual maintenance cost is detected. The costs for different NRHOs under consideration
are listed in Tables 3 and 4 for low and high orbit determination errors, respectively. Marginal increases in
costs are apparent as the perilune radius of the NRHOs increase.

CONCLUDING REMARKS

A stationkeeping technique using x-axis control is evaluated for low perilune radius NRHOs that offer
candidate solutions for the Gateway mission. A systematic and straightforward approach is demonstrated
that describes the interaction between the flow evolving from one maneuver location to the next during coast
segments and the flow evolution from the maneuver location to the target, to identify the effectiveness of a
generated maneuver. The convergence characteristics and the cost of operations using the conventional x-axis
control approach is correlated to the flow along the corresponding reference orbit. For the L2 NRHOs with
stationkeeping maneuvers only implemented at the apoapsis location, the maneuvers generated by targeting
the rotating ẋ value at the xz plane crossing 1.5 rev downstream yield maneuvers with a significant com-
ponent in the stretching direction while the maneuver generated by targeting the xz plane crossing 6.5 rev
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Table 3: Annual orbit maintenance cost [m/s] with low ODE level (3σ: 1 km and 1 cm/s) with phase con-
straints.

Perilune radius [km] Target horizon [rev]

0.5 1.5 2.5 3.5 4.5 5.5 6.5

3200 DNC DNC 0.24 0.33 0.26 0.30 0.31
4000 DNC DNC 0.24 0.27 0.29 0.34 0.33
4800 DNC DNC 0.23 0.27 0.33 0.37 0.34
5645 DNC DNC 0.24 0.32 0.39 0.41 0.36
6400 DNC DNC 0.26 0.42 0.51 0.50 0.39
7200 DNC DNC 0.33 0.57 0.61 0.52 0.38

* DNC - Did not converge

Table 4: Annual orbit maintenance cost [m/s] with high ODE level (3σ: 10 km and 10 cm/s) with phase
constraints.

Perilune radius [km] Target horizon [rev]

0.5 1.5 2.5 3.5 4.5 5.5 6.5

3200 DNC DNC 2.02 2.51 1.98 2.28 2.62
4000 DNC DNC 1.91 2.00 2.06 2.23 2.13
4800 DNC DNC 1.80 1.89 2.03 2.31 2.09
5645 DNC DNC 1.77 2.08 2.19 2.33 1.99
6400 DNC DNC 1.79 2.46 2.49 2.31 2.09
7200 DNC DNC 1.85 2.84 2.74 2.47 2.14

* DNC - Did not converge

downstream generates maneuvers aligned in the restoring directions resulting in efficient maneuver charac-
teristics and lower orbit maintenance costs.

The low stationkeeping costs generated by the x-axis control approach is a result of a loose requirement for
boundedness around a virtual reference solution, and appropriate in various mission scenarios. The absence
of an active phase control, however, causes the actual trajectory to shift in phase from the virtual reference
solution. When a tight phase control is required to satisfy mission constraints such as eclipse avoidance, a
feedback phase constraint is introduced along with targeting the rotating ẋ value to compute a maneuver.
Such a strategy maintains tight phasing between the actual and the virtual reference over long duration.
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