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TRAJECTORY DESIGN USING QUASI-PERIODIC ORBITS
IN THE MULTI-BODY PROBLEM

Brian P. McCarthy∗ and Kathleen C. Howell†

Incoporating quasi-periodic orbits (QPOs) into the preliminary design process of-
fers a wider range of options to meet mission constraints and address the chal-
lenges in a complex trade space. In this investigation, QPO stability and alter-
native QPO family continuation schemes are examined to meet various types of
trajectory constraints. Additionally, trajectory arcs from QPOs are exploited to
generate transfers between periodic orbits. By leveraging the natural dynamical
structures associated with QPOs, novel low cost transfers emerge.

INTRODUCTION

There has been a growing interest in the exploitation of libration point orbits in space explo-
ration, in both robotic and human spaceflight. In 2010, ARTEMIS became the first mission to
leverage the Earth-Moon L1 and L2 libration point orbits.1 In 2015, the DSCOVR mission was
launched into a quasi-periodic Lissajous orbit about the Sun-Earth L1 point as the first deep space
mission for NOAA.2 NASA currently plans to launch the Orion spacecraft into a lunar Distant Ret-
rograde Orbit (DRO) for Exploration Mission 1 (EM-1)3 in 2019 and to utilize a southern L2 Near
Rectilinear Halo Orbit (NRHO) for the Gateway in the 2020s.4 While both DROs and NRHOs
are periodic in the circular restricted three-body problem (CR3BP) and periodic NRHOs are avail-
able in the bicircular four-body problem,5 these orbits are quasi-periodic when transitioned to the
ephemeris model. However, the CR3BP also offers an understanding of the fundamental character-
istics for quasi-periodic behavior. Incorporating quasi-periodic orbits during preliminary design in
the CR3BP leads to greater efficiency when transitioning to the ephemeris model.

All of the previous mission scenarios offer unique challenges associated with the trajectory de-
sign. First, EM-1 will test the Orion capsule, the first human-rated vehicle in deep space since the
Apollo era. A 90-minute shadow constraint limits the duration that the Orion vehicle can spend in
the shadow of another body. In this investigation, a lunar eclipse strategy is developed that exploits
the natural dynamics of quasi-DROs to offset the shadow geometry. Second, the current baseline
orbit for the Gateway is nearly stable and there are known challenges associated with transfer de-
sign to and from these orbits.6, 7 A strategy that leverages quasi-periodic motion to develop transfer
trajectories between NRHOs, similar to those being used for the Gateway, is explored. Lastly,
quasi-periodic orbits are locations of interest for both space telescopes and heliophysics missions;
the quasi-periodic hyperbolic stable manifolds are integrated to construct direct transfers from the
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Earth vicinity to quasi-periodic orbits. In general, quasi-periodic orbits provide alternative trajectory
design strategies to meet a variety of mission constraints.

DYNAMICAL MODELS

The dynamical model for most of the preliminary designs in this investigation is the CR3BP. In
the CR3BP, two gravitational bodies, P1 and P2, remain in circular, Keplerian orbits about their
mutual barycenter or center of mass. A third body, i.e., a spacecraft, moves under the influence
of the two gravitational bodies and is assumed to be massless. The model is defined relative to
a rotating coordinate system, where the +x̂-direction is defined from the barycenter to the second
primary, P2. The ẑ-direction is defined in the direction of orbital angular momentum for P1 and
P2; the ŷ-direction completes the orthonormal triad. The position and velocity of P3 relative to

the barycenter in the rotating frame are defined ~x =
[
x y z ẋ ẏ ż

]T
, where the first three

elements are the position components and the last three elements are the velocity components. A
CR3BP system is characterized by a single nondimensional parameter, µ = m2/(m1 +m2), where
m1 and m2 are the masses of P1 and P2, respectively. There are five well known equilibrium
solutions in the CR3BP, denoted Li, where i = 1, ..., 5. The CR3BP admits a single integral of
motion, the Jacobi Constant (JC). The Jacobi Constant is a function of the pseudo-potential and
the velocity magnitude as determined relative to the rotating reference frame,

JC = 2U∗ − v2 (1)

where v =
√
ẋ2 + ẏ2 + ż2, or the velocity magnitude in the rotating frame. Note that U∗ is the

pseudo-potential, a function of the position of the third body relative to the center of mass in the
rotating frame,

U∗ =
1

2
(x2 + y2) +

µ

r
+

1− µ
d

(2)

where d =
√

(x+ µ)2 + y2 + z2 and r =
√

(x− 1 + µ)2 + y2 + z2, or the distance of the third
massless body relative to P1 and P2, respectively. The Jacobi Constant is an energy-like quantity
that characterizes motion in a CR3BP system. Thus, the Jacobi Constant defines the bounds for
the motion in 3-dimensional space. In Equation (1), the v2 term cannot be negative, so the motion
is bounded by locations where v2 > 0. These bounding surfaces are called the Zero-Velocity
Surfaces (ZVS). One of the advantages of the CR3BP is that the system is time invariant since the
motion of only the third body is reflected in the state vector. The CR3BP offers higher fidelity and
additional behaviors in comparison to conics, but reduced complexity compared to the ephemeris
model. Furthermore, trajectory characteristics generally persist when moving results in the CR3BP
to the higher fidelity ephemeris model.

The ephemeris model offers a high fidelity gravity model by incorporating the ephemeris states
of the planets included in the model. For this investigation, the ephemeris model includes the Sun,
Earth, and Moon as point mass bodies. Examining trajectories transitioned to the ephemeris model
validates the existence of geometries that represents the space environment for an actual mission
scenario.

QUASI-PERIODIC ORBITS

Quasi-periodic orbits exist in the vicinity of periodic solutions in the CR3BP. The eigenvalues
from the monodromy matrix associated with a periodic orbit determine the type of motion in the
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vicinity of a periodic orbit. Complex eigenvalues of unit magnitude indicate the existence of a
center subspace and indicate quasi-periodic motion in the vicinity of the orbit. In fact, an infinite
number of quasi-periodic solutions exist in families of invariant tori in the vicinity of a periodic
orbit. An invariant torus is defined by the number of number of fundamental frequencies, such that
an n-dimensional torus possesses n fundamental frequencies that characterize the motion. Equilib-
rium solutions and periodic orbits in the CR3BP are examples of 0-dimensional and 1-dimensional
tori, since the equilibrium solutions remain fixed and periodic orbits possess a single fundamental
frequency associated with the period of the orbit. Quasi-periodic orbits exist on tori where two or
more frequencies defined the motion, or n > 1. The current investigation builds upon the com-
putation and applications of 2-dimensional tori. The two fundamental frequencies that define the
motion for a 2-dimensional torus are termed the longitudinal and latitudinal frequencies. Consider
a sample torus rendered in configuration space in Figure 1(a). The longitudinal frequency is repre-
sented by the motion of the blue circle, while the latitudinal frequency corresponds to the red circle,
or the transverse motion around the surface. Subsequently, any location on the 2-dimensional torus
is defined by two angles, θ0 and θ1. Various analytical approximations and numerical techniques
are available to compute quasi-periodic orbits. Analytical and semi-analytical techniques using
the Lindstedt-Poincaré method as well as center manifold reduction are computationally efficient,
but limited effectiveness beyond the close proximity of the central periodic orbit.8–10 Numerical
techniques are computationally expensive, however, a wider range of solutions are accessible.11–15

This investigation employs a method developed by Olikara and Howell,16 and further generalized
by Olikara and Scheeres.13 This method employs a stroboscopic mapping technique to develop a
discretized invariant circle or invariant curve for use in a differential corrections scheme. In the
CR3BP, the time associated with the stroboscopic map, T0, is defined by the period of the longitu-
dinal frequency for a particular quasi-periodic orbit. The invariant curve is a representation of the
2-dimensional flow on a quasi-periodic orbit in the CR3BP. However, given that the full represen-
tation of flow cannot be propagated, individual trajectories are numerically integrated to discretize
the flow. A simple representation of an invariant curve is then represented in Figure 1(b). A single
trajectory segment, with the initial state located on the invariant curve is integrated for time T0,
where the trajectory path has a first return to the stroboscopic map. The integration time is the
period associated with the longitudinal frequency, such that,

T0 =
2π

θ̇0
(3)

where θ̇0 is the longitudinal frequency. The state at the first return to the invariant curve on the
stroboscopic map rotates by an angle, ρ, relative to the initial state on the invariant curve, defined,

ρ =
2πθ̇1

θ̇0
= T0θ̇1 (4)

where θ̇1 is the latitudinal frequency. For each return through the stroboscopic map, the state at
each return rotates by ρ relative to the previous state. Subsequently, at the mth return through the
stroboscopic map, the initial state rotates by mρ. Furthermore, if a single trajectory arc associated
with a quasi-periodic orbit is propagated for t → ∞, then the full invariant curve is represented on
the stroboscopic map. Also note, if the rotation angle is a factor of 2π, then the frequency ratio is
commensurate, resulting in a period orbit.
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(a) (b)

Figure 1. (a) Longitudinal and latitudinal frequency representation on 2-dimensional
torus in configuration space. (b) A 2-dimensional torus with the invariant curve
(blue), the rotation angle ρ, and a single trajectory (yellow) propagated to the first
return to the invariant curve.

Computation

The invariant curve is constructed numerically given the fundamental periodic orbit and its char-
acteristics including the period and stability properties. The invariant curve is discretized into N
states, ~ui(θ0, θ1i), where i = 1, 2, ..., N and N is number of discretized states representing the in-
variant curve, θ0 is the longitudinal location, and θ1i is the latitudinal location for the ith discretized
state on the invariant curve. An invariance constraint is formulated using the rotation angle, ρ,

~ui(θ0, θ1i)−R(−ρ)~u(θ0, θ1i + ρ) = ~0 (5)

where R(−ρ) is the rotation operator that removes the rotation of the states around the invari-
ant curve at the first return to the stroboscopic map. By enforcing the invariance constraint, 2-
dimensional toroidal motion is ensured. A free variable and constraint differential corrections
scheme is employed using the invariance constraint in Equation (5), in a single or multiple shooting
formulation.17 However, an initial guess is required to seed the differential corrections scheme, one
that is reasonably accurate. First, the states representing the invariant curve are defined, i.e.,

~u0i (θ0, θ1i) = ε
(
Re[~vC ] cos(θ1i) + Im[~vC ] sin(θ1i)

)
(6)

where ~u0i (θ0, θ1i) is the ith state on the invariant curve associated with θ1i, ~vC is the eigenvector
associated with the center mode of the underlying periodic orbit, and ε is a small quantity. The
period of the fundamental orbit is employed as the initial guess for the integration time, T 0

0 , or the
longitudinal period. An initial guess for the rotation angle is generated using the angular location of
the center subspace eigenvalue on the unit circle in the complex plane, i.e.,

ρ0 = tan−1
(

Im(λC)

Re(λC)

)
(7)

where λC is the eigenvalue associated with the center subspace. For a single shooting formulation,
the elements of the free variable vector are comprised of the discretization states, ρ, and T0. The
elements of the constraint vector include the invariance constraint from Equation (5) and one se-
lected parameter to maintain as fixed relative to the associated period orbit; this parameter typically
possesses some physical significance and serves as the continuation parameter. To generate a family
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of solutions, two phase constraints are also enforced to ensure uniqueness of each family member.
In this investigation, Jacobi Constant, mapping time, and frequency ratio are examined as the fixed
continuation parameters. Figure 2 illustrates a few members of the resulting three different families
that originate from the same periodic vertical orbit. For constant energy families, as in Figure 2(a),

(a) (b) (c)

Figure 2. Given the same periodic vertical orbit: (a) Constant energy quasi-vertical
family (b) Constant mapping time quasi-vertical family and (c) constant frequency
ratio quasi-vertical family with the same underling periodic vertical orbit.

each member of the family possesses the same Jacobi Constant value as the underlying periodic
orbit. Constant energy families are useful for designs that require accessing regions of space for the
lowest cost, i.e., minimum energy change. Plotted in Figure 2(b), all members of a constant mapping
time family share same longitudinal period which is equal to the period of the central periodic orbit.
Eclipse avoidance is a focus for application of a constant mapping time family of orbits, specifically
when the mapping time is in resonance with the eclipsing body. However, both constant energy
and constant mapping time families encounter difficulties during numerical continuation when in-
teger values in the fundamental frequency ratios are encountered, as noted by Bosanac.18 When the
fundamental frequencies are commensurate, the torus collapses to a period-M orbit, where M is
the integer ratio, and the continuation scheme terminates. To avoid the difficulties associated with
commensurate frequency ratios, a constant frequency ratio family is also generated. The frequency
ratio is defined as a function of only the rotation angle, ρ, for 2-dimensional tori,

θ̇0

θ̇1
=

2π

ρ
(8)

Subsequently, constant frequency ratio families are also termed constant rotation angle families. By
initializing a constant frequency ratio family from a periodic orbit that does not occur near a period
multiplying bifurcation, integer frequency ratios are not encountered during continuation. Quasi-
periodic orbit families are not limited to the these three types, this characterization is appropriate
for the applications in this investigation.

QUASI-PERIODIC ORBIT STABILITY

Assessing the stability of orbits in the CR3BP supplies information on motion in the vicinity of
that orbit and aid in exposing new types of solutions. Stability properties associated with quasi-
periodic orbits are explored via the differential of the variations relative to the tori identified on the
stroboscopic map. In particular, rather than assessing a fixed point, deviations from the invariant
curve are examined. Additionally, due to the reduceability of the CR3BP, a metric defined as a
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stability index is characterized for quasi-periodic orbits. For unstable quasi-periodic orbits, hyper-
bolic stable and unstable invariant manifolds exist that asymptotically approach and depart the torus
corresponding to the given quasi-periodic orbit. Olikara and Scheeres previously examined stability
as well as hyperbolic manifolds for quasi-periodic orbits in the CR3BP; Baresi and Scheeres exam-
ined stability associated with quasi-periodic orbits in the vicinity of small bodies.13, 19 Recall that
the invariance constraint ensures that the states used to discretize an invariant curve are equal to the
states at the first return to the map, after removing the rotation by the angle ρ around the invariant
curve. The partial derivative of the invariance condition with respect to the state variations yields a
differential of the discretized invariant curve on the stroboscopic map, i.e.,

DG = Φ̃(R(−ρ)⊗ I) (9)

where R(−ρ) is the rotation operator, I is a 6 × 6 identity matrix, ⊗ is the Kronecker product
operator, and Φ̃ a block diagonal matrix comprised of STMs. The STMs are all propagated from
the initial time to the first return to the stroboscopic map. The resulting dense matrix, DG, of
dimension 6N × 6N , represents the differential of the variations for the discretized invariant curve.
The eigenstructure of DG provides information on the stability of the quasi-periodic orbit. As Jorba
notes, tori in the CR3BP are reduceable.20 Consequently, the eigenvalues of the DG are related to
the eigenvalues of the Floquet matrix through the relationship

~λ = Λre
−i~kρ (10)

where ρ is the rotation angle defined in Equation (4), Λr is the rth eigenvalue of the Floquet matrix,
where r = 1, 2, ..., 6, and ~λ is a vector of eigenvalues associated with the rth eigenvalue of the
Floquet matrix, and ~k is defined,

~k =


[
−N−1

2 . . . −1 0 1 . . . N−1
2

]
if N is odd[

−N
2 . . . −1 0 1 . . . N

2

]
if N is even

(11)

Consider an L2 quasi-halo orbit in the Earth-Moon system, rendered in Figure 3. The eigenstructure
of the quasi-halo orbit is plotted on the complex plane in Figure 3(b). As illustrated in the figure, the
eigenvalues exist on concentric circles about the origin in the complex plane. A circle with a radius
greater than 1 is associated with the unstable mode of the torus, while a circle with a radius less
than 1 reflects the stable mode. Furthermore, the stable mode radius is the reciprocal of the unstable
mode radius since eigenvalues in the Floquet matrix exist in reciprocal pairs for a Hamiltonian
system.21 Given the concentric circle structure for the eigenvalues, a stability index, ν, is defined
such that,

ν =
1

2
(Ru +

1

Ru
) (12)

where Ru is the radius of the circle associated with the unstable mode. Quasi-periodic orbits that
possess a stability index equal to 1 are considered stable, while stability indices greater than 1
indicate that the orbit is unstable. The stability index for the unstable quasi-halo orbit rendered
in Figure 3(a) is ν = 1.3837. The stability index over the family of constant energy quasi-halo
orbits (JC = 3.1389) is plotted as a function of mapping time in Figure 4. The stability index
characterizes the stability of a quasi-periodic orbit in a single, convenient metric. Stable and unstable
quasi-periodic orbits are easily identified and the stability evolution for a family is represented as a
single curve.
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(a) (b)

Figure 3. (a) Earth-Moon L2 quasi-halo orbit (JC = 3.044) (b) Eigenstructure of
DG matrix corresponding to the quasi-halo orbit computed with N = 25.

Figure 4. Stability index as a function of mapping time for an Earth-Moon L1 con-
stant energy quasi-halo family (JC = 3.1389). The red point represents the stability
index of the periodic halo orbit associated with this quasi-halo orbit family.

Hyperbolic Manifolds

Hyperbolic invariant manifolds exist for quasi-periodic orbits that are considered unstable. The
stable and unstable hyperbolic manifolds asymptotically approach and depart the torus, respec-
tively. To compute stable/unstable manifolds, the eigenvectors associated with the stable and un-
stable eigenvalues of the DG matrix are exploited. Selecting the real stable/unstable eigenvalue
ensures that the associated eigenvector also has no imaginary components. Consider the real stable
and unstable eigenvalue, λs,r and λu,r, respectively, from the DG matrix. The stable and unstable
eigenvectors associated with the purely real stable and unstable eigenvalues are denoted ~vs,r and
~vu,r, respectively. The eigenvectors are defined with 6N elements, corresponding to the N dis-
cretized states that represent the invariant curve. The elements of the eigenvectors are subdivided,
such that

~vs,r =


~v1,s,r
~v2,s,r

...
~vN,s,r

 , ~vu,r =


~v1,u,r
~v2,u,r

...
~vN,u,r

 , (13)
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where ~vi,s,r and ~vi,u,r correspond to the 6-element stable and unstable directions, respectively, for
the ith state on the invariant curve. Subsequently, the states along the invariant curve are perturbed
by a small value ε in the stable/unstable directions and integrated backwards/forwards to generate
the global stable/unstable manifolds

~xi,s = ~xi + ε
~vi,s,r
|~vi,s,r|

(14)

~xi,u = ~xi + ε
~vi,u,r
|~vi,u,r|

(15)

where ~xi,s and ~xi,u represent the 6-dimensional stable and unstable initial state, respectively, of the
ith state on the invariant curve in non-dimensional barycentered coordinates, ~xi represents the ith

state on the invariant curve with non-dimensional barycentered coordinates. However, Equations
(14) and (15) only provide the initial states at a single longitudinal location. The STM is used to
obtain the stable and unstable directions for states at other longitudinal locations along a torus. The
projection of a torus in configuration space for an unstable quasi-halo orbit appears in Figure 5 along
with snapshots at various times as the unstable manifold trajectory states evolve upon departure from
the quasi-periodic orbit. The torus projection of the unstable manifold, as viewed in configuration

(a) (b)

(c) (d)

Figure 5. Unstable manifold in the +x-direction for an Earth-Moon L1 quasi-halo
orbit (JC = 3.1389). Trajectories associated with one invariant curve are plotted in
black. A snap shot of the points comprising the manifold, in red, are recorded after
(a) 7.79 days, (b) 9.75 days, (c) 11.39 days and (d) 13.02 days.

space, morphs as it is propagated forward in time towards the Moon. Similarly, the projection of the
other unstable half-manifold in the direction of the Earth is rendered in Figure 6.
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(a) (b)

(c) (d)

Figure 6. Unstable manifold in the -x-direction for an Earth-Moon L1 quasi-halo
orbit (JC = 3.1389). Trajectories associated with one invariant curve are shown in
black. A snap shot of the points comprising the manifold, in red, are recorded after
(a) 7.79 days, (b) 9.75 days, (c) 11.39 days and (d) 13.02 days.

ECLIPSE AVOIDANCE IN AN EARTH-MOON DRO

While numerous constraints drive a particular design, the impact of eclipsing influences many
mission scenarios and nearly all mission concepts in cislunar space. For an operational orbit, eclipse
avoidance is a common driver for trajectory design contraints, as many spacecraft rely on solar
exposure to meet thermal and power requirements. These requirements subsequently limit the time
interval during which a spacecraft is allowed to remain within the shadow of an occulting body.
In the EM-1 mission plan, eclipse avoidance is an important aspect of the trajectory design due to
the 90 minute maximum eclipse duration constraint for Orion.3 Additionally, the target 70, 000 km
DRO is planar in the Earth-Moon rotating frame, causing a disruption in the line of sight with the
Earth when the trajectory passes behind the far side of the Moon.

To mitigate potential eclipsing in the Earth-Moon system while maintaining a constant line of
sight with Earth, a synodic resonance is leveraged. A p:q synodic resonance is defined such that
p periods of the spacecraft orbit are completed for every q synodic periods of the Moon, where
the synodic period of the Moon is approximately 29.5 days. The Sun, Earth, and Moon geometry
repeats over a synodic period of the Moon, Tsyn, as illustrated in Figure 7. The repeatable geometry
of the Moon relative to the Sun leads to repeatable eclipsing geometry as well. As a consequence,
a 2:1 lunar synodic resonant DRO possesses a period equal to half of the synodic period of the
Moon, or approximately 14.75 days. Since the Moon is a major occulting body, exploiting a syn-
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Figure 7. Sun-Earth-Moon geometry over two lunar synodic periods

odic resonance ensures the repeatability of the trajectory path with respect to the Moon location
relative to the Sun. The family of constant mapping time quasi-DROs associated with the 2:1 lunar
synodic resonant periodic DRO is computed, introducing an out of plane component. The constant
mapping time is selected to preserve the resonance in terms of the mapping time in the quasi-DRO
family relative to the 2:1 resonant planar, periodic DRO, plotted in Figure 8(a). All members of
the quasi-DRO constant mapping family are stable, as the stability index is equal to 1 across the
family. The planar, periodic 2:1 resonant DRO in green in Figure 8(a) and 8(b). One member of the
associated constant mapping time family is plotted in configuration space as the grey transparent
surface in Figure 8(b). The Sun-spacecraft line of sight disruption for the planar periodic DRO is
approximately 2.3 hours for every revolution of the orbit. A quasi-DRO from the constant mapping
time family is identified such that the ẑ-component in the Earth-Moon rotating frame allows for
unobstructed line of sight with the Earth. On the invariant curve (black), a insertion location (red)
is selected at a location of θ1 = 0◦ such that a constant line of sight with Earth is achieved after 10
returns through the stroboscopic map. To visualize lunar eclipsing, CR3BP trajectories are viewed

(a) (b)

Figure 8. (a) Periodic 2:1 lunar synodic resonant DRO. (b) Quasi-DRO with a map-
ping time of 14.75 days (grey) and the associated planar periodic DRO (green). A
trajectory segment (blue) is propagated for 10 returns through the stroboscopic map,
or 147.5 days, where the red circle indicates the beginning of the trajectory. The initial
invariant curve is plotted in black.

in the Sun-Moon rotating frame. The JPL DE421 ephemerides were used to obtain state information
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of Sun, Earth and Moon in the ephemeris model.22 When viewed in the Sun-Moon rotating frame,
the lunar shadow is fixed and an eclisping event is evident when the path passes through the lunar
shadow. Distinct gaps exist resonant quasi-DRO trajectory when viewed in this frame. If phased
properly, a spacecraft avoids the lunar shadow without the use of eclipse avoidance maneuvers. The
phasing is adjusted by inserting at different locations on the invariant curve. Figure 9 depicts two
trajectories, plotted in Sun-Moon rotating frame; both trajectories are initiated with an initial epoch
of June 1, 2020. The trajectory in Figure 9(a) has an insertion angle θ1 = 0◦ and encounters a
lunar eclipse, plotted as the red arc in Figure 9(a) and the ŷẑ-projection in Figure 9(b). However, if
the latitudinal insertion angle is changed to θ1 = 80◦, lunar eclipses are avoided. The quasi-DRO
trajectory with no eclipsing events is plotted in Figure 9(c), with a ŷẑ-projection in Figure 9(d) illus-
trating that the trajectory does not pass behind the dark side of the Moon. The grey box in Figures
9(a) and 9(c) depicts the depth of the projections in Figures 9(b) and 9(d). Controlling the insertion
location along the invariant curve allows a designer to adjust the phasing of the quasi-DRO to avoid
lunar eclipse events.

(a) (b)

(c) (d)

Figure 9. Quasi-DRO with eclipsing event (red) in the Sun-Moon rotating frame with
an latitudinal insertion angle of θ1 = 0◦ in (a) 3-dimensional view and (b) the ŷẑ-view
looking toward the Sun from the dark side of the Moon. The grey box shows the depth
of the ŷẑ projection. Using an latitudinal angle of θ1 = 80◦, eclipses are avoided, as
plotted in (b) and (c).

Now consider the scenario where the insertion location along the invariant curve is fixed, but the
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insertion epoch is varied. A quasi-DRO trajectory arc is plotted in Figure 10(a) in the Sun-Moon
rotating frame with an initial insertion epoch of June 1, 2020 and a latitudinal insertion location of
θ1 = 0◦. Again, an eclipsing event occurs, plotted in red, when the path passes through the lunar
shadow. The ŷẑ-projection of the trajectory, rendered in Figure 10(b), shows the red arc of the
trajectory experience an eclipsing event as it passes behind the Moon. By changing the insertion
epoch to June 15, 2020, and fixing the insertion location on the invariant curve to θ1 = 0◦, the lunar
shadow passes through a gap in quasi-DRO trajectory, as plotted in Figure 10(c), avoiding eclipsing
events for the duration of the simulation. A ŷẑ-projection of the trajectory in the Sun-Moon rotating
frame is plotted Figure 10(d), showing that the trajectory does not pass through the dark side of the
Moon. Finally, to ensure the geometry persists in the higher fidelity model, the quasi-DRO trajectory
with a initial epoch of June 15, 2020 and a latitudinal insertion angle of θ1 = 0◦ is converged in
the Sun-Earth-Moon ephemeris model using differential corrections. The ephemeris trajectory is
rendered in Figure 11 viewed in the Sun-Moon rotating frame. By choosing the insertion epoch and
the insertion location on the invariant circle such that the lunar shadow passes through gaps in the
trajectory, lunar eclipse avoidance is achieved for long term duration in the quasi-DRO.

(a) (b)

(c) (d)

Figure 10. Quasi-DRO with eclipsing event (red) in the Sun-Moon rotating frame
with an insertion epoch of June 1, 2020 in (a) 3-dimensional view and (b) the ŷẑ-view
looking toward the Sun from the dark side of the Moon. The grey box shows the depth
of the ŷẑ projection. Using an insertion epoch of June 15, 2020, eclipses are avoided,
as plotted in (b) and (c).
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Figure 11. Quasi-DRO trajectory converged in the Sun-Earth-Moon ephemeris
model as viewed in the Sun-Moon rotating frame.

TRANSFER TRAJECTORY DESIGN IN THE EARTH-MOON SYSTEM

Any transfer between periodic orbits requires that the periodic orbits intersect one another, or that
a transfer path intersects both the originating and destination orbits in position space. Maneuvers
adjust the energy to achieve desired destination orbit or transfer trajectory characteristics. In a conic
model, various numerical and analytical methods are available to compute transfer trajectories that
minimize time of flight, required energy, or maneuver magnitude.23 However, in regimes where
multiple bodies significantly influence the path of the spacecraft, the dynamics are more complex,
necessitating new techniques to compute transfer trajectoies. Moreover, there are no known analyt-
ical solutions for periodic orbits in multi-body regimes. Various strategies are effective to compute
transfer trajectories between periodic orbits in multi-body regimes, however, incorporating quasi-
periodic trajectory arcs into transfer trajectories between periodic orbits has not yet been widely
explored.7, 24–31 Consider two periodic orbits in the Earth-Moon system, plotted in Figure 12(a).
The originating orbit, in blue, is an unstable northern L2 halo orbit and the destination orbit is a
planar L2 Lyapunov orbit. Introduce an L2 quasi-halo orbit in the vicinity of both periodic orbits.
A trajectory arc from the quasi-periodic orbit offers a good initial guess for a corrections scheme
that converges on a continuous solution. With departure and arrival maneuvers on the periodic or-
bits, and allowing the location of the departure and arrival locations to vary, a transfer trajectory is
computed in Figure 12(b). Exploiting a trajectory arc along the quasi-periodic provides a signif-
icant plane change that is required to arrive on the Lyapunov orbit. The maneuvers are modeled
as impulsive for all examples. The departure ∆V1 = 139.4 m/s and the arrival ∆V2 = 4.0 m/s,
for a total ∆Vtot = 143.4 m/s. The time of flight required to complete the transfer is 186.9 days,
where most of the time is spent approaching the x̂ŷ-plane to minimize the ẑ-component of velocity.
The example demonstrates that trajectory arcs from quasi-periodic orbits serve as successful initial
guesses for transfers between periodic orbits. The ARTEMIS transfer trajectory design exploited a
similar plane change technique using a quasi-periodic orbit1

The next step in the human spaceflight program is the Gateway program.4 Plans for the lunar
Gateway facility is operation in an L2 NRHO that exists in a regime where the gravitational influ-
ence of the Earth cannot be neglected. Capabilities are required for excursions from the NRHO (near
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(a) (b)

Figure 12. (a) Originating unstable halo orbit (blue), quasi-halo orbit torus used
for a transfer initial guess (grey), and the destination planar Lyapunov orbit. (b)
Converged transfer from an unstable halo orbit to a planar Lyapunov orbit in the
Earth-Moon system.

the Moon) to other halo orbits (near the Earth-Moon L2 libration point). Difficulties are known to
exist in generating transfers between stable and nearly stable periodic orbits;6, 7 these transfer strate-
gies add additional complexity. Quasi-periodic trajectories offer alternatives for transfers between
nearly stable periodic NRHOs, similar to those considered for the lunar Gateway.32, 33 Consider two
northern L2 NRHOs in the Earth-Moon system with lunar periapsis radii of rp = 4, 800 km (blue)
and rp = 12, 610 km (red), plotted in Figure 13. Both of these orbits are nearly stable and the sta-
bility indices are 1.5425 and 1.1762 for the departure and destination NRHOs, respectively. Also,
consider a quasi-NRHO from constant frequency ratio family, whose fundamental periodic orbit has
a lunar periapsis rp = 8, 065 km and a θ̇0

θ̇1
= 5.0305. The quasi-periodic orbit is rendered as a grey

surface in Figure 13. Both periodic NRHOs intersect the quasi-NRHO surface at multiple points
and by selecting a quasi-periodic arc that is near the intersection points with both periodic orbits on
the torus, an initial guess is generated. The light blue circles on the departure NRHO identify two
locations where the periodic orbit intersects the quasi-NRHO surface. By allowing maneuvers at
the departure and arrival locations and allowing the time of flight to vary, transfer trajectories are
computed for both departure locations in Figure 13. The converged solution for departure location
1 is plotted in Figure 14(a). The departure maneuver ∆V1 = 48.3 m/s and the arrival maneuver
∆V2 = 32.2 m/s, for a total ∆Vtot = 80.5 m/s. The converged transfer trajectory is plotted in
green with a time of flight of 23 days. The transfer trajectory associated with departure location 2
is rendered in Figure 14(b). The transfer for departure location 2 occurs over a significantly shorter
time of flight, 12.4 days, however the total maneuver cost is higher. For departure location 2, the
∆Vtot = 86.6 m/s, where ∆V1 = 51.3 m/s and ∆V2 = 35.3 m/s.

A similar transfer strategy is also leveraged for transfers between synodic resonant NRHOs. The
current baseline for the lunar Gateway is a 9:2 lunar synodic resonant southern L2 NRHO (rp =
3, 200 km). Additionally, a 4:1 lunar synodic resonant southernL2 NRHO (rp = 5, 700 km) delivers
favorable eclipse avoidance properties.33 A constant frequency ratio quasi-NRHO is computed from
a periodic NRHO with a lunar periapsis radius of rp = 4, 680 km. A single quasi-NRHO from the

14



Figure 13. Departure (blue) and destination (red) NRHOs, with two potential depar-
ture locations (light blue) that intersect the torus projection (grey).

(a) (b)

Figure 14. Converged transfer trajectories for (a) departure location 1 and (b) departure location 2.

family is selected such that the 9:2 and 4:1 resonant periodic NRHOs intersect the quasi-NRHO
torus in configuration space, as depicted in Figure 15(a). At an intersection location along the
9:2 synodic resonant NRHO, a trajectory arc is propagated on the quasi-NRHO until it reaches
the vicinity of the 4:1 synodic resonant NRHO. A differential corrections scheme permits impulsive
departure and arrival maneuvers, converging on the solution rendered in Figure 15(b). The departure
∆V1 = 25.6 m/s and the arrival ∆V2 = 24.0 m/s, for a total ∆Vtot = 49.6 m/s. The time of
flight for the 9:2 to 4:1 synodic resonant NRHO is 11.4 days. Lunar synodic resonant NRHOs
possess useful eclipse avoidance properties and quasi-NRHOs offer trajectory arcs for applications
as transfer initial guesses.

The NRHO transfers in Fiqures 14 and 15 serve as feasible solutions in the CR3BP; the transfers
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(a) (b)

Figure 15. (a) Quasi-NRHO leveraged for transfer initial guess with departure orbit
(blue) and arrival orbit (red). (b) Converged transfer trajectory (green) departing
from a 9:2 lunar synodic resonant southern L2 NRHO (blue) to a 4:1 lunar synodic
resonant southern L2 NRHO (red)

are not initially optimized. However, a theoretical minimum ∆V is computed to assess the feasible
transfers in comparison to some theoretical minimum. Recall the Jacobi Constant as a function of
the pseudo-potential and the velocity magnitude from Equation (1). To accommodate only the en-
ergy difference between the departure and arrival orbits, a theoretical minimum ∆V is constructed.
Rearrange the Jacobi Constant equation to solve for velocity magnitude by simply computing the
different between the departure velocity and the arrival velocity,

∆Vmin =
√

2U∗ − JC2 −
√

2U∗ − JC1 (16)

where JC2 is the desired Jacobi Constant, JC1 is the Jacobi Constant corresponding to the de-
parture location, and U∗ is the pseudo-potential function from Equation (2). The pseudo-potential
is evaluated at the departure location, since the equation provides the minimum maneuver magni-
tude to change to energy at that departure location. The resulting ∆Vmin is the minimum velocity
change required to achieve a Jacobi Constant of JC2 at the departure location. From Equation (16),
the theoretical minimum energy change is computed for each of the NRHO transfers and displayed
in Table 1. Maneuver costs associated with feasible transfer solutions are not necessarily locally
optimal minimum ∆V solutions. Using an optimization algorithm that employs an SQP routine,
locally optimal ∆V solutions are also computed. Table 2 summarizes the local optimal total ∆V
costs for each transfer. Note that the theoretical minimum maneuver costs are different than the
same computation for the feasible solutions since the departure location is allowed to shift within
the optimization routine. Optimal solutions that are near the theoretical minimum indicate that
the maneuver directions that are nearly tangential. In summary, trajectory arcs from quasi-periodic
orbits offer feasible NRHO transfer solutions with ∆V results near the theoretical minimum values
and local optimal solutions further reduced total maneuver costs.
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Table 1. Feasible transfer ∆V and theoretical minimum ∆V at the locally optimal departure location

Transfer Theoretical Minimum ∆V (m/s) Feasible Transfer ∆V (m/s)

Location 1 50.41 80.5
Location 2 51.19 86.6

9:2 to 4:1 NRHO 34.23 49.6

Table 2. Local optimal ∆V and theoretical minimum ∆V at the locally optimal departure location

Transfer Theoretical Minimum ∆V (m/s) Optimal Transfer ∆V (m/s)

Location 1 21.2 41.6
Location 2 31.4 71.5

9:2 to 4:1 NRHO 20.5 34.5

HYPERBOLIC MANIFOLDS FOR P2 ACCESS IN THE SUN-EARTH SYSTEM

Unstable quasi-periodic orbits imply associated stable and unstable hyperbolic manifolds that de-
fine flow that asymptotically approaches and departs the unstable quasi-periodic orbit, respectively.
Stable and unstable manifolds also supply transfer options in the vicinity of P2 without determin-
istic maneuvers to insert or depart a quasi-periodic orbit, respectively. Some quasi-periodic orbits
in the vicinity of L1 and L2 in various systems possess stable and unstable manifolds that pass in
close proximity to the second primary. Consequently, hyperbolic manifolds deliver unique design
alternatives in the vicinity of P2.

Sun-Earth Lissajous Orbit Access from Earth

The Sun-Earth L1 libration point is proven as a useful location for operations in support of so-
lar observatory missions in recent years. Currently, NASA’s ACE, WIND, and SOHO as well as
NOAA’s DSCOVR spacecraft reside in quasi-periodic orbits in the vicinity of the Sun-Earth L1 li-
bration point.2, 34 Additionally, the James Webb Space Telescope plans to operate in a quasi-periodic
orbit near the Sun-Earth L2 point in the early 2020s35 and the WFIRST mission is scheduled to
launch in 2026 to an libration point orbit in the same region.36 Minimizing propellant costs aids
in maximizing the science payload on the spacecraft and enabling missions that might otherwise
not be possible, so efficient transfer trajectories serve as one approach for increasing efficiency
and expanding options. Consider a Lissajous orbit in the vicinity of the Sun-Earth L1 point in the
CR3BP with a ẑ-amplitude of 940,000 km and a ŷ-amplitude of 660,000 km. By perturbing 3,500
states along the Lissajous orbit and propagating each state in reverse time, a time history for the
trajectories representing the global stable half-manifold is computed. A minimum periapsis radius
relative to Earth is recorded for a each trajectory arc and a heat map is created with the results
appearing in Figure 16. The horizontal axis in Figure 16 is the longitudinal location, θ0, for the
initial condition on the torus and the vertical axis identifies the latitudinal location, θ1. The color on
the heat map corresponds to the minimum periapsis radius encountered along the propagated path,
where warmer colors indicate higher periapsis radii and cooler colors indicate lower periapsis radii.
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Figure 16. Periapsis heat map

Selecting a point on the map with a periapsis ra-
dius relative to Earth near a Low Earth Orbit (LEO)
perigee value yields a stable manifold trajectory that
serves as an initial guess for a final transfer from
the desired LEO perigee radius. The red circle on
the heat map in Figure 16 corresponds to a periap-
sis radius of approximately 7,033 km. However, a
perigee radius of 6,563 km matches the radius of
a 185 km altitude LEO parking orbit. A differen-
tial corrections scheme is employed that constrains a
185 km altitude perigee at the Earth and ensures the
trajectory is on the manifold approaching the quasi-
vertical orbit. Using this corrections scheme, the parking orbit departure maneuver to insert onto
the stable manifold is the only deterministic maneuver required in the model. The final converged
trajectory is rendered in Figure 17; note that the transfer delivers the large out-of-plane component.
Quasi-periodic stable manifolds yield transfer trajectory options from the close vicinity of P2 to the
quasi-periodic orbit in the CR3BP, where no deterministic maneuver is required to insert.

(a) (b)

Figure 17. (a) 3D view and (b) x̂ŷ projection of a transfer from LEO to quasi-periodic
Sun-Earth L1 Lissajous orbit.

SUMMARY

This investigation seeks to explore and develop useful techniques to leverage quasi-periodic or-
bits for trajectory design applications in multi-body environments. Three types of quasi-periodic
families are discussed, each with specific advantages. Challenges are identified with the construc-
tion of constant energy and constant mapping time quasi-periodic orbits families through continu-
ation. When integer ratios of fundamental frequencies are encountered, the numerical challenges
are mitigated by modifying the continuation parameter to a constant frequency ratio. Stability of
quasi-periodic orbits are characterized with a single stability metric and the hyperbolic manifolds
are then computed. Three specific applications that employ quasi-periodic orbits in trajectory de-
sign illustrate the concept. First, lunar eclipse avoidance strategies are developed employing lunar
synodic resonant quasi-DROs and the results are validated in a high-fidelity ephemeris model. The
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use of quasi-periodic trajectory arcs as initial guesses for transfers between periodic orbits is also
demonstrated. A trajectory arc from a quasi-halo orbit provides a significant plane change for a
transfer from an unstable periodic halo orbit to a planar Lyapunov orbit. Quasi-NRHO trajectory
arcs are leveraged to generate feasible transfers between nearly stable periodic NRHOs that deliver
a transfer near the theoretical minimum energy change ∆V . Finally, the stable manifolds associated
with a L2 quasi-vertical orbit in the Sun-Earth system are exploited to determine a transfer trajectory
from the Earth vicinity to the quasi-vertical orbit and a non-intuitive transfer trajectory is computed
using periapsis heat maps.
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