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CONTINGENCY PLANNING IN COMPLEX DYNAMICAL
ENVIRONMENTS VIA HEURISTICALLY ACCELERATED

REINFORCEMENT LEARNING

Ashwati Das-Stuart∗, Kathleen Howell†

Unexpected events can cause a spacecraft to significantly deviate from its nominal path,
leading to undesirable impacts on the mission. In such scenarios, the capability for rapid
trajectory re-design is key for mission success. This investigation leverages a reinforcement
learning strategy to automate the search for a transfer route to restore the overall mission
goals after a spacecraft experiences a deviance in its thrusting capabilities during nominal
operations. The route is computed by exploiting natural dynamical flows and accommodating
spacecraft propulsive capabilities to construct an initial guess that is then transitioned to a
continuous solution via traditional optimization techniques.

INTRODUCTION

Increasing mission complexities demand effective trajectory design strategies that balance diverse objec-
tives and constraints to ensure mission success. However, the design and re-design of trajectories in dy-
namically complex environments is challenging and can easily become intractable via solely manual design
efforts. Thus, the problem is recast to blend machine learning techniques with traditional astrodynamics ap-
proaches to develop a rapid and flexible trajectory design framework. In particular, this investigation focuses
on planning for spacecraft contingency scenarios with applications relevant to near term cislunar exploration.1

System failure and/or degradation during flight can cause the spacecraft to significantly deviate from a nomi-
nal transfer path, for example, leading to undesirable impacts on the mission. In such scenarios, the capability
for rapid trajectory re-design is key for mission success.

The construction of a rapid design framework in the cislunar region commences with a fundamental un-
derstanding of the natural dynamics in the Earth-Moon system and the option to leverage existing structures
to enable mission scenarios. Folta et al.2 offer an interactive catalog of orbit families for applications in
multi-body regimes; the advantages of characterizing trajectory parameters to identify potential parking and
transfer options are apparent.3 The utility of natural arcs extends to lowering propellant costs even in effi-
cient low-thrust regimes.4 These hybrid low-thrust/low-energy trajectories are constructed by assessing the
intersections of natural arcs with thrusting ones at a selected hyperplane crossing.5 Additional investigations
demonstrate the ability to link various natural arcs,6 exploit orbit manifolds7 and assess their signatures on
reduced-dimension Poincaré maps8 to generate viable transfers in the Circular Restricted Three Body Prob-
lem (CR3BP); such a first step frequently renders a suitable initial guess for higher-fidelity analysis in an
ephemeris model.

The access to a wide range of natural arcs, to be coupled with powered arcs resulting from available thrust
capabilities, results in the examination of an infinitely large trade space to satisfy mission constraints. Con-
clusions from Radice and Olmo,9 Ceriotti and Vasile,10 Stuart and Howell,11 as well as Furfaro and Linares
12 demonstrate the potential of heuristic methods to be effective in alleviating this challenge in various dy-
namical regimes and in uncovering local optima that may have otherwise remained unknown. Approaches
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employing genetic algorithms13, 14 and Artificial Neural Networks (ANNs)15–17 are also proven as beneficial.
Tsirogiannis18 as well as Trumbauer and Villac19 generate impulsive transfer options by constructing a frame-
work of pre-computed natural arcs and use graph search methods to evaluate the links. The nodes then serve
as waypoints in a complex dynamical regime. Simplifying assumptions in a two body model are exploited
by Parrish20 to employ heuristics in solving for low-thrust initial guesses, and Miller and Linares21 leverage
Reinforcement Learning (RL) techniques to determine control laws to transfer a low-thrust spacecraft in a
multi-body regime.

The current investigation applies the framework developed in Das-Stuart et al.16, 22 that blends machine
learning strategies (specifically reinforcement learning) with traditional trajectory design techniques to con-
struct initial guesses via an automated approach for s/c recovery options, and then transitions them to contin-
uous end-to-end solutions. The foundation is developed for a process that alleviates the challenges associated
with thrust law construction, the sequencing of thrust and coast arcs, and the limited solution options re-
sulting from narrow basins of convergence when implementing traditional numerical techniques. The broad
search capability is realized via the stochastic and parallellizable nature of the RL paradigm, carried out by
software ‘agents’. In this analysis, reference to an ‘agent’ is an abstraction for the software representation of
a decision-making process in lieu of a human operator.

The trajectory design framework is summarized via four individual components in Fig. 1.

Figure 1: Overview of design framework

The first component
determines the reach
of the s/c in a multi-
dimensional and in-
finitely large configu-
ration space via Ac-
cessible Regions (ARs).
The second compo-
nent exists to render
natural conditions for
the s/c to evaluate
within these ARs, and

the third component deploys pathfinding agents to appropriately select and sequence advantageous arcs from
the ARs to construct end-to-end pathways in an automated manner. The discontinuous arcs are then passed
through a traditional numerical corrections process via the final component to produce a continuous solution
for a specified engine model.

The investigation is organized consistent with the design framework. The theory associated with the dy-
namical and force models that support the generation of the accessible regions (framework component 1) and
natural motion conditions (framework component 2) are initially introduced. The background on machine
learning strategies employed in this investigation (framework component 3) is summarized, and the tech-
niques associated with the numerical processes exploited to transition the initial guess to a continuous form
(framework component 4) are then introduced. The implementation details and flow of the design framework
(framework components 1-4) are formalized to enable sample scenarios and preliminary results.

DYNAMICAL AND FORCE MODEL

Although the dynamical sensitivity is evident, the CR3BP offers an opportunity to approximate the higher-
fidelity dynamics and to exploit the natural flows that are otherwise unavailable in simpler dynamical regimes.
For the design framework, a robust cislunar transportation architecture is currently a priority, so the method-
ology is applied within the context of the Earth-Moon CR3BP. Here, the Earth (primary, P1) and the Moon
(secondary, P2) are assumed to revolve in circular orbits around their common barycenter.23 The spacecraft
mass is assumed to be negligible in comparison to the more massive bodies. The Equations of Motion (EOM)
for the spacecraft (P3) as viewed in a rotating frame, also incorporate a thrust force to model the physical
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capabilities of an engine/thruster, i.e.,

χ̇ =
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The differential equations include contributions from both the natural gravitational and the thrust acceleration
sources to capture the motion of the spacecraft (s/c) and its mass history over time. In these equations,χ is the
full state vector comprised of the vehicle position and velocity vectors (r and v, respectively) and the vehicle
mass m. The thrust magnitude is represented by T, and the thrust direction by û (where a caret identifies unit
magnitude). The Isp is the engine specific impulse and g0 is the reference gravitational acceleration. Even
without the engine specific thrusting terms, there is no closed form solution to the natural EOMs. So, in the
thrust-free problem, other quantities such as the period, stability and the Jacobi Constant (JC, an energy-like
quantity) that are associated with the natural solutions aid in characterizing the motion of the s/c within the
confines of the CR3BP model. The JC is defined as:

JC = 2U∗ − v2 (2)

where U∗ is a pseudo-potential term,

U∗(x, y, z) =
1− µ
r13

+
µ

r23
+

1

2
(x2 + y2) (3)

So, U∗ is a function of the s/c position relative to the barycenter (x, y, z) and relative to the two primaries
r13 and r23, as well as the mass ratio of P2 to the total system mass, µ. Note from Eqn. (2) that the JC term
is only constant in the autonomous system where propulsive forces are absent; its time history resulting from
s/c thrusting also offers valuable insights for developing and applying the automated framework. To deliver
the thrust force in Eqn. (1), a relatively new technology, advanced ion-drive propulsion, is gaining popularity
due to its propellant efficiency.24 Thus, in the current analysis, the initial guess is transitioned to a continuous
Constant Specific Impulse (CSI) low-thrust solution.

NUMERICAL CORRECTIONS AND OPTIMIZATION

The construction of low-thrust optimal trajectories typically involves formulating an optimal control prob-
lem, and solving for the time histories of the thrust magnitude and the thrust force direction to meet the
desired boundary conditions. In the CSI regime, the available thrust magnitude is a function of the engine
power allocation (P) and efficiency (Isp). The relationship is modeled as:

T =
2P

Isp g0
(4)

The constant power P and Isp parameters dictate a constant thrust magnitude, and the basis of the control
authority to maneuver the s/c is an on-off engine toggle and thrust vectoring. A continuous low-thrust tra-
jectory is constructed from a discontinuous initial guess by employing a multiple-shooting scheme. A direct
method is implemented to incorporate robustness into the numerical corrections scheme, although this tech-
nique induces large dimensionality.25 An iterative Newton-Raphson scheme is employed to compute the set
of design vector variables (X∗) that satisfy the specified constraints, F (X∗) = 0, i.e.,

X =


χi

ui

$dep

$arr

$i

 F =


χidesired − χiactual

ψdesired −ψactual

ui
Tui − 1

�0 +$dep +
∑n−1

i=1 $i − �f −$arr

 = 0 (5)
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The design vector X , is comprised of the s/c states (χi), thrust directions (ui), propagation durations ($i)
from select nodes (i ∈ n), the duration ($dep) from the departure orbit reference point at epoch �0 to the
spacecraft departure state, and the duration ($arr) from the arrival orbit reference point at epoch �f to
the spacecraft arrival state. In an alternative formulation, the thrust magnitude is also included as a design
variable rather than pre-assigning a binary (on/off) state to the nodes and allowing the inter-node propagation
times to determine the duration of the thrust and coast arcs. The constraint vector F is sought, one that
meets state continuity, boundary condition (ψ), thrust direction unit vector constraints at the specified nodes,
and the rendezvous constraint (when rendezvous is sought). The formulation for this last constraint in this
investigation assumes fixed epochs for the departure and arrival orbit reference points �0 and �f , respectively.
The converged solution is passed through a Nonlinear Programming (NLP) software such as FMINCON or
SNOPT to optimize a cost function that is formulated to offer a favorable solution given the mission objectives
and constraints.

HEURISTICALLY ACCELERATED REINFORCEMENT LEARNING

The creation of an initial guess for a reference solution prior to numerical corrections can be a labor in-
tensive process dependent upon human intuition. So, an automated process to develop and curate effective
initial guesses are sought to aid in the exploration of large and complex trade-spaces. In this investigation,
the generation of an initial guess for a trajectory that transfers a s/c from a departure location to a specific
destination is cast as a routing problem. Such a route is constructed from the appropriate sequencing of
available waypoints in the design space to meet global objectives. The Heuristically Accelerated Reinforce-
ment Learning (HARL) algorithm explored in Das-Stuart et al.16, 22 to strategically assemble advantageous
intermediate natural arcs from a large and complex design space to connect departure and destination when
subject to a set of prescribed constraints is incorporated in this investigation.

The pathfinding is implemented via an agent interacting with its environment and is formalized as a Markov
Decision Process (MDP)26 that is constructed from a tuple: < S,A, P,R >; S is a set of states available to an
agent; A is a set of actions available to an agent; P is P(s,a,s′), is the probability that action a in state s leads
the agent to arrive at state s′, R : S × A → R is the reward received for an action a in state s. The aim is an
optimal policy (π∗) that executes an action at a given state to maximize the cumulative rewards received by
the agent over multiple episodes. The RL theory examined in Das-Stuart et al.16, 22, 27 is summarized below,
and the specific implementation details for application in the CR3BP pathfinding problem are explored later.

In complex regimes where the transition probabilities P defining the system model and the rewards are not
known a priori, it is useful to frame the problem as a model-free, state-action-value approach. A state-action-
value update function is formulated in recursive form as:

(6)F(s, a)← F(s, a) + α[R(s, a, s′) + γU− F(s, a)]

and forms the repository of reinforcements from which the agent learns the desirable behavior. Here, the agent
takes an action a in state s and is then assumed to follow a certain policy from state s′ onwards; an opportunity
for the agent to experience the consequences of varied actions a from state s over time is, thus, conceived. The
term U is formulated as required to reflect an on-policy or off-policy update based on the policy followed from
state s′.28 The agent learning rate is specified by α, which balances the information acquired from recently
rewarded pathways versus a reliance on knowledge about pathways from prior episodes. The discount factor
0 ≤ γ ≤ 1 is a measure of the balance between rewards gained from immediate and future time-steps;
smaller values of γ favor immediate rewards.

Instead of potentially time-intensive infinite visitations to state-action pairs, the Heuristically Accelerated
Reinforcement Learning (HARL) approach introduces a heuristic function to accelerate the learning process
by biasing the selection of an action a, given a state s, possessing a reward R. The associated computational
time-complexity is dependent on the accuracy of the heuristics. Scenarios with large state-spaces and multiple
objectives benefit from a distributed network where the agents work cooperatively by updating a centralized
reinforcement repository based on the distributed knowledge (cumulatively discounted rewards) gained dur-
ing a specific episode. Within the context of mission design, a RL pathfinding agent continues the search until
a stopping condition is satisfied, i.e., a pre-specified search duration, a terminal condition and/or a violation
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of constraints. An overview of the learning process (within the context of mission design) is illustrated in Fig-
ure 2.

Figure 2: An implementation of HARL algorithm

The learning process within each episode is com-
prised of two search scenarios — exploration and
exploitation. Exploration enables a training phase
where the agent learns about likely consequences
of actions in the environment; the exploitation phase
enables the agent to engage in informed decisions by
capitalizing on previously gained knowledge. The
policy at a particular state, as influenced by the state-
action pair and heuristic, is defined :29

π(s) =

{
E[F(s, a) ./ �H(s, a)�], if q > p

arandom, otherwise
(7)

where (H : S × A → R) is the heuristic function,
./ is a math operator as determined by the RL algo-
rithm and its implementation, � and � are weighting
parameters that dictate the influence of the heuristic,
and arandom is the action selected randomly from
all those available in state s. In this investigation,
the exploitation function E incorporates stochastic-
ity to inform the nature of the policy at a state, and
the implementation is discussed later when the de-
tails of the framework are presented. In Eqn. (7), p
(0 ≤ p ≤ 1), is the trade-off parameter between ex-
ploration and exploitation, and q is a random value
from a uniform distribution in [0,1]. The gradual
shift from exploration to exploitation is determined by diminishing the value of p to a steady-state value of
pss by the kth episode from a total number of episodes Ep, as determined by the relationship:11

p = pss + (1− pss)e(−
k−1

ln(Ep)
) (8)

The blending of heuristics with reinforcement learning is a powerful utility in solving many NP-hard and
NP-complete pathfinding problems, e.g., the Traveling Salesman Problem (TSP).

DEVELOPMENT OF THE DESIGN FRAMEWORK

A primary objective of this investigation is the application of the automated pathfinding design frame-
work to address contingency scenarios. Furthermore, the transition of initial guesses (IG) from lower-fidelity
dynamical models such as the CR3BP enhances rapid design and is effective. The first component in the
framework development establishes the reach of a specific spacecraft within the dynamical regime for a
specified time horizon, as influenced by its thrust-to-mass ratio, propellant efficiency and other performance
characteristics. The s/c’s reach then assists in identification of natural options instantaneously accessible
within the dynamical regime. The available trajectory options and the ability of the spacecraft to transition
through them dictates the subsequent component — the sequencing of intermediate pathways to enable a sat-
isfactory path between the departure and destination conditions. The final component involves convergence
and optimization of the initial guesses via numerical techniques to ensure that the mission constraints are not
violated, and the requirements are fulfilled. The details associated with each component follow.

Computation of Accessible Regions

The computation of an Accessible Region (AR) from a particular node ‘n’, originates with a perturbation
of the spacecraft current velocity within a circle/sphere (for the planar/spatial problem, respectively) with

5



a prescribed radius. This step is followed by a propagation of the perturbed and unperturbed states for a
pre-determined duration. The resulting downstream behavior is a stretching of the perturbed states from this
unperturbed natural arc due to the influence of the existing gravitational forces in the system. To simplify
implementation, a measure of the deviations of the perturbed states from the end of the natural arc is mapped
to a circular/spherical Accessible Region (AR) in a planar/spatial setting, respectively, rather than using the
true deformations.16, 22 Also, approximating low-thrust segments via a sequence of impulsive maneuvers is
effective for preliminary mission design,30 and aids in this investigation. Thus, for the low-thrust initial guess
generation, the perturbations in the s/c velocity at node ‘n’, (δVn), are induced via impulsive maneuvers. The
associated impulse magnitude is determined via the relationship

δVn = Isp g0 ln(
m0

mf
) (9a)

where, mf = m0 − (ṁ× δtn), (9b)

once the engine characteristics (e.g., specific impulse, mass flow rate) and the user-defined engine operation
time (δtn) are determined. Figure 3(a) illustrates the difference in the footprint sizes for varying perturbation
magnitudes for a fixed propagation time; a larger AR enables access to more natural arcs. Inspection of
Eqn. (1) and Eqn. (9) indicates that higher specific impulse values result in smaller δVn perturbations at a
given node ‘n’ for a fixed operation / burn time (δtn), and aids in delineating the behavior of propellant
efficient low-thrust and less efficient chemical regimes. Longer propagation durations increase the footprint
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Figure 3: Influence of δV on the accessible region footprints in the (a) planar case (c) spatial case. (b)
Influence of TOF on the footprint of accessible regions in the planar case.

of the AR (Fig. 3(b)), and an AR in the spatial regime is illustrated in Fig. 3(c). Note that the ARs in the
search algorithm accommodate both the position and velocity states.

Instantaneous Generation of Initial Conditions

Accessible regions aid in constraining the searchable design space at any given instant in time. How-
ever, when a priori knowledge of the dynamics in the system is lacking, natural conditions are instan-
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taneously generated within an AR, in real-time.16 Operating under the assumptions of a complex and
highly nonlinear dynamical regime, however, these conditions are a blend of both ordered and chaotic
motion. Ordered motion is distinguished from chaotic by predicting the behavior over all time within the
CR3BP. However, it is beneficial to exploit any available and mission-enabling conditions that do not vi-
olate mission constraints. Thus, chaotic conditions may offer suitable candidates if the resulting natural
motion is predictable over some specified and acceptable time-frame. Once states are populated within the
bounds specified by an AR, a receding horizon technique tests for predictability as illustrated in Fig. 4.

𝜹
StartEnd

AR

𝜹
Start

End

AR

(a) (b)

Figure 4: Two sample scenarios (a) and (b) illustrat-
ing look-ahead trajectory segments from Start to End,
the boundedness value, δ, and the relatively small frac-
tion along the look-ahead segment to establish an Ac-
cessible Region (AR).

Long-term predictability is observed by propagat-
ing a condition from within an AR for some pre-
specified duration; this look-ahead time-frame is a
design parameter and varies based on the dynam-
ical system and/or mission considerations. If the
propagated state does not escape the system as de-
termined by a user-specified threshold for bounded-
ness δ, then it is set aside for selection by the s/c
even if it is chaotic in nature. Note from Fig. 4 that
only a small fraction along this propagation time is
captured for constructing an AR. This unrestricted
approach to natural state selection offers the poten-
tial to uncover non-intuitive transfer geometries oth-
erwise not available from known and ordered natu-
ral families. Thus, the ability to select chaotic states
broadens the design options and eliminates the man-
ual time investment required to identify beneficial families to include in the searchable volume as explored in
Das-Stuart et al.16, 22 The disadvantages are the diminished ability to specify the nature of various pathways
traversed by the spacecraft, as well as the requirement to perform on-line propagations of a candidate state to
confirm that it does not escape the system, possibly slowing the pathfinding process.

Automated Pathfinding Phase

Pathfinding is implemented to sequence the appropriate conditions for maneuvering a s/c from origin to
destination. The available conditions are the natural states randomly populated within an AR that constitute
the frontier of solutions at a given instant in time. The HARL algorithm selects a state from within each
frontier to expand the search towards the destination. A sample schematic illustrating the search process is
displayed in Fig. 5. The dimension of each computed AR is a function of the respective velocity perturbation
magnitude δVn and the propagation duration. The time required to reach any state within a particular AR is
equivalent to this propagation duration required to reach its center state (the state at the end of an unperturbed
natural arc propagation). The pathfinding process terminates when the destination condition falls within an
AR, or when an agent violates a user-defined constraint (e.g., altitude from a primary). The destination condi-
tion could be any state belonging to a discretized arrival orbit or could be a specific user-defined destination.

Figure 5: Schematic illustrating the roles of δVn, ∆Vn and δtn in
single node expansions from a given AR. The colored conditions are
states selected from an AR to enable a sample sequenced pathway. The
black arcs represent the natural propagations, i.e., propagations when
∆Vn = 0 m/s. Note that 0 m/s ≤ ∆Vn ≤ δVn m/s to reach the
states populated along the radius of an AR, and ∆Vn = δVn m/s to
reach the states along its circumference.

The overarching goal for the
pathfinding scheme is posed as
an optimization problem. For
example, the following relation-
ship represents the prioritization
of minimizing propellant consump-
tion (mp) versus minimization of
the transfer duration (tf ) to address
the persistent mass-time tradeoff
challenge:16, 22

min J = Wttf +Wpmp (10)

where, the propellant mass mp is
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always weighted against the transfer duration, tf , such that the weighting on TOF, Wt is always 1, and Wp

is a design variable. The transfer duration tf in Eqn. (10) is the aggregate sum of the propagation durations
associated with each natural arc assembled within the transfer sequence. The total propellant consumption
mp is post-processed analytically via the rocket equation upon computation of each ∆Vn (maneuver cost to
transfer from one frontier to another) in the pathfinding sequence. This approach simplifies computations
for a continuously mass-varying path and supports computational efficiency as the EOM for the mass flow is
not propagated for IG generation. Additionally, the approach supports a modular architecture for assessing
solutions for varied s/c by adjusting the engine / thruster parameters used to compute the maneuvers.

The flexibility of the design framework admits alternative cost function formulations as well. For example,
much like the mass-time trade, spacecraft rendezvous is another challenging goal in mission design. In a
rendezvous problem, a chaser s/c seeks to meet the exact time-dependent states of a target object. One
approach to realizing this goal, given the existing framework, is to (i) exploit the successive AR computation
scheme for a chaser s/c to arrive at states along a target object’s path, and (ii) simultaneously minimize the
difference in epoch between the chaser s/c terminal state that also corresponds to the target state at some
instant in time. The global cost function is mathematically formulated in the form:

min J = |epochfC − epochfT | (11)

where the subscripts fC and fT indicate the final conditions for the chaser s/c and target, respectively. Note
that Eqn. (11) does not incorporate information about the chaser or target states. Given that satisfaction of
the state and epoch component requirements for a rendezvous are independent in the implemented approach,
the pathfinding algorithm does not uncover a path that truly completes the rendezvous with the target; rather,
a path with minimal error in terms of the rendezvous epoch is sought. Such an implementation serves to con-
struct a feasible initial guess for a numerical corrections process that enforces a strict rendezvous constraint.
Although unexplored in this investigation, alternative implementations where the rendezvous constraint is
enforced during the initial guess generation process also produce viable options.

Implementation of HARL Algorithm

A HARL algorithm does not guarantee optimality due to the inclusion of heuristics, but multiple search
episodes enable convergence to a nearly-optimal solution to address the global objective. The inter-node
costs (arc costs) are computed on-demand as an agent progresses in its search towards the destination, and
the search for a transfer path is posed as an episodic problem; i.e., an agent’s search duration is defined by a
user-imposed upper-bound. An agent within a parallelized search episode (i) initiates the search for a suitable
initial guess by randomly exploring the state-space (selecting states at random from within the ARs) and (ii)
gradually employs more exploitation (capitalization on previously gained knowledge about the state-space)
over subsequent episodes as specified by Eqn. (8). During ‘exploitation’, an agent only selects from nodes
that have previously supported successful transport to the destination and are, thus, already reinforced. The
selection of a particular reinforced node from an AR during the ‘exploitation’ phase is guided by a heuristic
Hn, one that is crafted to accommodate two aspects during the decision making process: (a) the propellant
consumption required to transfer from the current state to the reinforced state within the AR mfn, and (b) a
measure of ‘goodness’ dn, for the selected node in terms of its proximity to the target condition(s) in both the
position and velocity dimensions. These factors are incorporated mathematically into the heuristic function
to yield:

Hn =
mf

Wm
n

dn
Wd

(12a)

where, dn = ||χn − χT || (12b)

where χn is the state vector (position and velocity) associated with a particular node in the AR, and χT is
the state vector corresponding to the target condition(s). The weights are also design variables, where Wm

grants control over the desired s/c performance (delivered mass) and Wd influences the manner in which
the transfer trajectory tends towards the destination. These qualities also render the heuristic applicable as a
measure of reward. Specifically, the return for a state-action pair contributing to a successful transfer path is
computed as the accrued sum of the heuristic values along the path (Rn =

∑
Hn). The action ‘a’ undertaken
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from the current state ‘s’ is the executed ∆Vn and is processed as a function of the state s′ selected from
within the associated AR. Recall that the state s′ is selected randomly during ‘exploration’ or as influenced
via heuristics during ‘exploitation’. The discount factor γ is set equal to zero as a design choice in this
preliminary investigation posed as a Monte Carlo28 based approach that computes returns for entire episodes.
Future examination of the impact of variation in the value of the discount factor and the implementation of a
temporal difference learning28 may also offer additional insights.

The automated pathfinding strategy in this investigation aims to establish general desirable pathways to
the destination rather than identify distinct and discrete beneficial nodes in configuration space. Thus, states
neighboring those that support top ranking pathways according to the global cost function (Eqn. (10)) are also
reinforced.22 Furthermore, the quality of a node is only a guide in the overall search strategy, as stochasticity
is introduced in the selection of a favorable node from within an AR with the probability Pn during the
exploitation phase:

Pn =
Fn Hn∑
Fn Hn

(13)

This probability Pn emphasizes two important considerations that bias the selection of a node n: (a) per-
ceived relevance of the node to the transfer via its accrued returns (Fn) over episodes, and (b) its current at-
tractiveness as represented by the heuristic Hn. The HARL design choices are enforced within a distributed,
cooperative environment where the incremental knowledge acquired by each agent combines to furnish at-
tractive transfer trajectories that are then ranked by their overall performance (e.g., Eqn. 10) over multiple
episodes. The aim of this process is the extraction of the transfer solution that optimizes the global cost
function to the best extent while satisfying the goals and constraints.

INITIAL GUESS TO HIGHER-FIDELITY SOLUTION

In this investigation, a final solution is defined as an end-to-end transfer trajectory that adheres to the
constraints imposed within a CR3BP regime, augmented by the selected engine forces. Note that such a
solution is merely an initial guess for a simulation in the CR3BP. The information associated with the arcs
that are assembled by the automated pathfinding process is sufficient to initiate the numerical corrections
process, namely via knowledge of the position, velocity, mass, thrust direction, thrust magnitude and time
estimates along the connecting arcs. The user possesses the freedom to select a desired computational tool
for executing the convergence/optimization process. Note that varying thrust magnitudes are interspersed
within the lower-fidelity solution, thus, it can serve as an initial guess for a range of engine capabilities in a
higher-fidelity simulation. However, the range of thrust magnitudes is bounded in the corrections updates.

SAMPLE RESULTS

The execution of the components in the design framework produce initial guesses for transfer scenarios
that are then transitioned to a continuous solution via a higher-fidelity engine model. A system failure and/or
any degradation during flight can cause the s/c to significantly deviate from its nominal transfer trajectory,
leading to undesirable impacts on the mission. For example, a safing event for the Dawn spacecraft resulted
in ≈ 4 days of missed thrust that then led to a re-design of the s/c baseline trajectory approach to Ceres
with an ultimate delay of ≈ 26 days to capture into a particular science orbit.31 Monte carlo simulations
incorporating information from historical data in Imken et al.32 also suggest that the typical duration of
inoperability due to safing events is≈ 3.5 days. In such situations, there is a critical need for rapid trajectory
design solutions to minimize adverse mission outcomes. This investigation assesses the ability of the machine
learning algorithms to recover mission goals during contingency scenarios via a motivating example where
the engine throughput is compromised. In particular, two types of recovery scenarios are considered: (i)
recovery to the arrival orbit, and (ii) recovery to rendezvous with a pre-positioned target on the arrival orbit.
The terminology associated with the contingency scenarios explored in this investigation is summarized in
Table 1. In this preliminary investigation, orbit determination errors and higher-fidelity ephemeris models
are not incorporated.
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Table 1: Definition of symbols employed in contingency-preparation-related results.

Symbols Definition(
mf

m0

)
N

Delivered mass fraction on nominal trajectory.

t0F Absolute epoch of failure initiation on nominal path.
tFC Absolute epoch of forced coast initiation.
t0N Absolute epoch on nominal path corresponding to absolute epoch of recovery initiation

on recovery path.
tfN Absolute epoch on nominal path corresponding to its terminal state.
t0R = DP Absolute epoch on recovery path corresponding to the termination of the forced coast

segment / initiation of the recovery path from the Decision Point (DP).
tfR Absolute epoch on recovery path corresponding to its terminal state at the target.

Recovery to Arrival Orbit Conditions

Transfer scenarios motivated by long-term scientific observations or end-of-life disposal may seek to tran-
sition a s/c to desired orbital conditions that satisfy orbit stability, communications, and other considerations.
The transfer from an NRHO to a stable DRO in Fig. 6(a) is one such scenario. The nominal transfer path
along with the simulated failure and post-failure routes are illustrated in Fig. 6(a). All the contingency exam-
ples are executed for a s/c initial mass of M0 = 1000 kg, with the s/c performance metrics specific to Fig. 6
summarized in Table 2. The acronym DFD for all the contingency examples refer to Days From Departure
along the NRHO (i.e., from the location on the NRHO where the s/c departs on the nominal trajectory). In

Table 2: Performance metrics for Fig. 6

Scenario t0R (DFD) t0N (DFD) tfN (DFD) tfN − t0N (days)

(
mf

m0

)
N

(%)

Fig. 6(a) 11.86 11.86 28.86 17 98.71
s/c Specifications for Nominal Trajectory

a0 = 2.2× 10−4 m/s2 T = 0.22 N Isp = 4000 s

this example, the engine throughput is diminished from T = 0.22N by 50% at t0F ≈ 5 days into the nominal
transfer (the equivalent to losing the thrust capability of one engine if 2 engines are originally active). Such
a failure leads the s/c to drift from the nominal trajectory over ≈ 4 days, which is followed by a commanded
forced coast at tFC ≈ 8.86 days for a duration of 3 days to simulate a safe mode recovery operation. The
Decision Point (DP) indicates the epoch t0R at which the recovery trajectory is initiated. The duration of
the post-failure propagation and forced coast segment in Fig. 6(a) do not accommodate orbit determination
updates but are intended to introduce significant deviations from the nominal trajectory to investigate the ca-
pabilities of the design framework and machine learning techniques to construct recovery options. The ability
to recover and return to the nominal transfer path after the failure is a function of the failure circumstances
(e.g., where along the trajectory the failure occurs); effective response may also require feedback control. The
results here do not recover the nominal path because of the extensive deviations introduced from the nominal
route. The forced-coast segment in Fig. 6(a) is extended for an additional 32 days in Fig. 6(b) to illustrate
the spacecraft’s departure from the vicinity of the destination in the absence of corrective measures over an
extended duration.

The recovery of a s/c from the failure scenario in Fig. 6(a) is executed out by initial guess generation via
the design framework, followed by numerical corrections to deliver a continuous end-to-end path. Since
the recovery is not constrained to strict time-frames in this non-rendezvous transfer scenario, the global
mass-time cost function (Eqn. (10)) is incorporated with priority placed on TOF. The recovery path resulting
from restoring the s/c with full thrust at t0R is produced by executing the pathfinding framework to target
discretized states over 1 period (≈ 13 days) of the DRO. A reverse-time waypoint seeding process via the
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(a) Nominal transfer scenario with injected failure and forced coast segments

(b) Outcome from no corrective thrusting action after DP

Figure 6: Contingency scenario example — Departure: NRHO (Periapsis Altitude = 1763.31 km), Arrival:
DRO (JC: 2.935, Period: ≈ 13 days). (a) Engine failure simulated ≈ 5 days after departure from NRHO,
and the trajectory deviates due to diminished engine throughput, (b) Illustration of natural motion resulting
from no corrective action for 35 days post DP.

ARs as discussed in Das-Stuart et al.16 is also implemented. The initial guess for the recovery transfer
computed via the pathfinding agents appears in Fig. 7. The total duration for the recovery arcs reflect a

Table 3: Performance metrics for s/c recovery scenario in Fig. 7

Scenario t0R (DFD) tfR (DFD) tfR − t0R (days)
mf

m0 est
(%)

Fig. 7(a) 11.86 32.86 21 99.02
Natural Condition Transport Approach — Free-Form Search.

s/c Specifications Pre-Failure
a0 = 2.2× 10−4 m/s2 T = 0.22 N Isp = 4000 s

s/c Specifications Post-Forced Coast
a0 = 2.205× 10−4 m/s2 T = 0.22 N Isp = 4000 s

slightly longer TOF to that observed for the nominal path after t0N (comparing Tables 2 and 3); observe that
the path assumed during recovery is geometrically similar to the nominal route. The observed discrepancies
are expected, as the combination of the imposed failure and forced-coast segment render a loss in altitude
of ≈ 25, 000 km from the nominal solution at t0N = t0R = 11.86 days and, thus, also results in varied
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Figure 7: Initial guess to recover with T = 0.22 N from failure introduced in Fig. 6(a)

trajectory options for the s/c states on the two trajectories at this epoch to continue towards the destination.

The initial guess is successfully transformed to a low-thrust solution via the process detailed in Das-Stuart
et al.22 that leverages a user-defined thrust-threshold to seed thrust and coast nodes to initiate a numerical
corrections process. Note that, in this example, the discrete ∆Vn values executed to construct each arc in
the initial guess (illustrated in Fig. 8) are not allowed to exceed ≈ 57 m/s. This value is the maximum
maneuver magnitude that the low-thrust s/c is capable of imparting over each 3 day burn arc in the initial
guess according to the assumptions incorporated via Eqn. (9). The user-defined threshold is a design variable
that enables different local optima as demonstrated in Das-Stuart et al.22 The nodes above the threshold are
seeded as thrust nodes, and those below are initialized as coasting nodes; both types of nodes are free to
move in space and time during the corrections process. In addition to the magnitudes, the selection of states
from the ARs during pathfinding also delivers the s/c thrust directions to construct and maneuver from one
arc to another along the initial guess.22 The optimization process yields the mass-optimal continuous low-
thrust final solution displayed in Fig. 9. The mass-optimal objective inserts coasting time along the recovery

Table 4: Performance metrics for mass optimal CSI s/c recovery in Fig. 9

Scenario t0R (DFD) tfR (DFD) tfR − t0R (days) TD (days)
mf

m0
(%)

Fig. 9 11.86 36.40 24.54 23.30 98.41
s/c Specifications Pre-Failure

a0 = 2.2× 10−4 m/s2 T = 0.22 N Isp = 4000 s
s/c Specifications Post-Forced Coast

a0 = 2.205× 10−4 m/s2 T = 0.22 N Isp = 4000 s

solution, leading the s/c to reach the destination orbit approximately a week after the nominal epoch at tfN .
The thrusting period of ≈ 23 days in Fig. 9 enables the s/c to execute the energy and plane change required
to maneuver into the DRO. This thrust duration results in a mass fraction of 98.65% and is close to the value
of 99.26% estimated by the initial guess (IG). The mass fractions computed in this investigation refer to the
ratio of delivered s/c mass to the initial NRHO departure mass of M0 = 1000 kg.

In practical applications, it may not be always possible to recover the s/c with full thrust capabilities after
an engine malfunction. The transfer scenario in Fig. 10 explores the outcome of maintaining the thrust
levels at a diminished 50% capability after t0N to deliver the s/c to the DRO. The diminished thrust and,
therefore, acceleration levels available to the s/c in the example in Fig. 10 lead to a prolonged recovery
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(a) (b)

(c)

Figure 8: ∆V histories enabling construction of the initial guess for a recovery trajectory. (a) Discrete ∆V
values enabling each initial guess transfer arc, (b) Interpolated ∆V curve with sample user-defined thrust
threshold to aid in transitioning discrete initial guess to continuous low-thrust solution, (c) s/c velocity and
maneuver / thrust directions along each arc for the initial guess.

Figure 9: Low-thrust mass-optimal solution for initial guess presented in Fig. 7.

duration compared to the initial guess solution in Fig. 7. The resulting geometry and arrival locations along
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Figure 10: Initial guess to recover with T = 0.11 N from failure introduced in Fig. 6(a)

Table 5: Performance metrics for s/c recovery scenario in Fig. 10

Scenario t0R (DFD) tfR (DFD) tfR − t0R (days)
mf

m0 est
(%)

Fig. 10(a) 11.86 47.86 36 97.70
Natural Condition Transport Approach — Free-Form Search.

s/c Specifications Pre-Failure
a0 = 2.2× 10−4 m/s2 T = 0.22 N Isp = 4000 s

s/c Specifications Post-Forced Coast
a0 = 1.1025× 10−4 m/s2 T = 0.11 N Isp = 4000 s

the DRO are also different. The associated mass-optimal solution is plotted in Fig. 11. As discussed for the

Figure 11: Low-thrust mass optimal solution for initial guess presented in Fig. 10.
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Table 6: Performance metrics for mass optimal CSI s/c recovery in Fig. 11

Scenario t0R (DFD) tfR (DFD) tfR − t0R (days) TD (days)
mf

m0
(%)

Fig. 11 11.86 57.11 45.25 43.53 98.48
s/c Specifications Pre-Failure

a0 = 2.2× 10−4 m/s2 T = 0.22 N Isp = 4000 s
s/c Specifications Post-Forced Coast

a0 = 1.1025× 10−4 m/s2 T = 0.11 N Isp = 4000 s

example in Fig. 9, the mass-optimal solution eliminates the discontinuities in the IG and incorporates coast
arcs where possible to minimize propellant consumption. The result is a recovery path that is almost twice as
long compared to the case in Fig. 7, but note that the delivered mass fraction is similar. Recall that mass-flow
rate is proportional to the s/c thrust levels (Eqn. (1)). So, a degradation in thrust magnitude by 50% leads to
an equally diminished rate of propellant consumption; a thrusting duration that is twice as long thus leads to
similar overall propellant consumption.

The change in inclination and energy levels required to complete the recovery lead to varying thrust du-
rations based on the s/c thrust capabilities. The history of such energy changes for both the T = 0.22 N
and T = 0.11 N recovery scenarios are illustrated in Fig. 12 (a) and (b), respectively. The path resulting

(a) (b)

Figure 12: The Jacobi Constant (JC) history over the low-thrust flight paths in (a) Fig. 9 for s/c with 0.22N
thrust during recovery and, (b) Fig. 11 for s/c with 0.11 N thrust during recovery

from the absence of corrective measures at t0R (i.e., natural motion) is represented by the constant maroon
curve indicative of a JC value > 3. Both the 0.22 N and 0.11 N spacecraft thrust to deviate from the
natural course of motion and maneuver towards the DRO; the more powerful s/c is able to transition through
the energy levels more quickly than the one at the lower thrust level (0.11 N ). Interestingly, both solutions
maneuver through energy levels greater than that of the arrival orbit prior to orbit insertion (JC = 2.935).

Recovery to Complete Rendezvous on Arrival Orbit

The previous examples demonstrate the potential of the automated pathfinding algorithm to transport a s/c
to the desired arrival orbit conditions. However, these examples do not incorporate rendezvous considera-
tions that require the transport to be conducted within a strict TOF to meet the states that correspond to a
specific target s/c. Thus, to rendezvous, a global cost function that seeks to uncover the transfer with the
least discrepancy in epoch between the chaser and target s/c at a given state (Eqn. (11)) is implemented. The

15



failure scenario is the same as that considered in Fig. 6(a). Given the assumption that a target s/c is already
on the DRO and continues its path along this orbit, the goal for the chaser s/c is to initiate its recovery at the
DP (t0R) and meet the target anywhere along the DRO such that minimal error in the rendezvous epoch is
incurred. Recall that the ARs (formed instantaneously during the pathfinding search) inform the chaser s/c of
its ability to reach the target s/c states, but does so with no consideration of the associated epoch of the target
s/c states. The pathways that lead to minimal error in the rendezvous epoch are then ranked according to the
global cost function, and the most attractive options are reinforced. Such a design choice, where the tracking
of the target states and the epoch are considered independently, is chosen such that the design framework
only seeks to uncover an initial guess via the pathfinding agents; then the result is corrected by numerical
techniques. Other design approaches where the states and epoch are considered jointly for rendezvous via
machine learning is beyond the scope of this preliminary investigation.

The initial guess constructed by the agents when the chaser s/c is re-equipped with full thrust at t0R is
displayed in Fig. 13(a) The sequence of the cyan transfer arcs in Fig. 13(a) offers an initial guess for a

(a) (b)

Figure 13: Sample rendezvous recovery initial guess for scenario in Fig. 6 for a chaser s/c with T = 0.22 N
from t0R. (a) Transfer arcs, (b) Transfer arcs colored by epoch (DFD)

Table 7: Performance metrics for s/c rendezvous scenario in Fig. 13

Scenario t0R (DFD) tfR (DFD) tfR − t0R (days)
mf

m0 est
(%)

Fig. 13(a) 11.86 33.86 22 98.18
Natural Condition Transport Approach — Free-Form Search.

s/c Specifications Pre-Failure
a0 = 2.2× 10−4 m/s2 T = 0.22 N Isp = 4000 s

s/c Specifications Post-Forced Coast
a0 = 2.205× 10−4 m/s2 T = 0.22 N Isp = 4000 s

trajectory that delivers the chaser s/c to the target state to within 5.88 hours of the associated true epoch.
For example, a particular target s/c state falls within the chaser s/c AR at tfR = 33.86 days. However, in
reality, the target s/c reaches this state at either tfR − 5.88 hours or tfR + 5.88 hours, and thus, the chaser
s/c does not deliver a ‘true’ rendezvous in terms of initial guess. Also, as seen in Fig. 13(b), the states along
the chaser’s nominal trajectory are not reachable by the chaser’s ARs on the recovery path for a given epoch.
As a consequence, in this example, the large initial deviation between the nominal and recovery trajectories
prohibits the chaser s/c from recovering the nominal path such that rendezvous with the target is possible on
the DRO at the nominal terminal epoch of tfN = 28.86 days.
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The solution in Fig. 13 offers the state and epoch conditions required to initiate a numerical corrections
process to eliminate the discontinuities. The targeting approach is incorporated such that the chaser does meet
the required variable state and epoch of the target along the DRO. Note that the reference epochs in Eqn. (5)
at the departure condition and arrival orbit are t0R = 11.86 DFD and tfN = 28.86 DFD, respectively.
Also, the departure epoch is held fixed at the departure orbit reference epoch (t0R) in this recovery scenario
such that $dep = 0. Thus, the last rendezvous time constraint in FCSIRndzv

in Eqn. (5) is modified to
�0R +

∑n−1
i=1 $i− �fN −$arr. Note that �0R and �fN are defined as the nondimensional epochs associated

with the quantities t0R and tfN , and are constant quantities. The thrust duration of 22.41 days is close

(a) (b)

Figure 14: (a) Low-thrust mass-optimal solution for initial guess presented in Fig. 13; (b) Time history along
mass-optimal low-thrust solution in (a).

Table 8: Performance metrics for mass optimal CSI rendezvous in Fig. 14

Scenario t0R (DFD) tfR (DFD) tfR − t0R (days) TD (days)
mf

m0
(%)

Fig. 14 11.86 35.34 23.48 22.41 98.45
s/c Specifications Pre-Failure

a0 = 2.2× 10−4 m/s2 T = 0.22 N Isp = 4000 s
s/c Specifications Post-Forced Coast

a0 = 2.205× 10−4 m/s2 T = 0.22 N Isp = 4000 s

to the transfer time of 22 days estimated by the initial guess, and the mass-optimal transfer transports the
chaser s/c to the target at 35.34 DFD with an additional ≈ 1 day of coasting time incorporated. The initial
guess for the delivered mass-fraction is also a reliable estimate in this example. The evolution of time/epoch
along the continuous low-thrust trajectory is illustrated in Fig. 14(b); this knowledge informs the user of an
≈ 1 week delay from the nominal epoch in reaching the target along the DRO due to the injected failure and
the availability of a full recovery thrust magnitude of T = 0.22 N from t0R onwards.

The rendezvous example explored in Fig. 13 is extended to a scenario where a diminished thrust magnitude
(T = 0.11 N ) is maintained after t0R. The recovery arcs transporting the chaser to the target are plotted in
Fig. 15(a). Similar to the ≈ 36 day transfer in Fig. 10, a recovery with a lower thrust magnitude results
in a longer TOF compared to that observed in the example in Fig. 13. The look-ahead time is extended
from 1 period (as with the example in Fig. 13) to 2 periods to construct a solution for the more complex
rendezvous scenario with diminished thrust capabilities. The complicated nature of the transfer leads to a
high rendezvous epoch error of ≈ 1.96 days as illustrated in Fig. 15. However, such an initial guess offers
all the state and epoch information to seed the optimization process and compute a successful continuous
low-thrust rendezvous solution as illustrated in Fig. 16. The mass-optimal trajectory incorporates coast arcs
to conserve propellant, and≈ 11 days of thrusting time is added to the initial guess estimate to accommodate
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(a) (b)

Figure 15: Sample rendezvous recovery initial guess for scenario in Fig. 6 for a chaser s/c with T = 0.11 N
from t0R. (a) Transfer arcs; (b) Transfer arcs colored by epoch (DFD)

Table 9: Performance metrics for s/c rendezvous scenario in Fig. 15

Scenario t0R (DFD) tfR (DFD) tfR − t0R (days)
mf

m0 est
(%)

Fig. 15 11.86 41.86 30 99.12
Natural Condition Transport Approach — Free-Form Search.

s/c Specifications Pre-Failure
a0 = 2.2× 10−4 m/s2 T = 0.22 N Isp = 4000 s

s/c Specifications Post-Forced Coast
a0 = 1.1025× 10−4 m/s2 T = 0.11 N Isp = 4000 s

Table 10: Performance metrics for mass optimal CSI rendezvous in Fig. 16

Scenario t0R (DFD) tfR (DFD) tfR − t0R (days) TD (days)
mf

m0
(%)

Fig. 16 11.86 60.86 49 41.42 98.53
s/c Specifications Pre-Failure

a0 = 2.2× 10−4 m/s2 T = 0.22 N Isp = 4000 s
s/c Specifications Post-Forced Coast

a0 = 1.1025× 10−4 m/s2 T = 0.11 N Isp = 4000 s

the large state and epoch discontinuities. The chaser s/c is delivered to the target s/c at tfR = 60.86 days
from departure. The extended and elongated deviation of the chaser s/c from the DRO as seen in Fig. 16(b)
aids in the phasing required to complete the rendezvous as well. The time-evolution knowledge along this
recovery path informs the user of an ≈ 1 month delay from the nominal epoch in reaching the target on the
DRO due to the injected failure and the constricted thrust magnitude of T = 0.11 N from t0R onwards.
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(a)

(b)

Figure 16: (a) Low-thrust mass-optimal solution for initial guess presented in Fig. 15; (b) Time history along
mass-optimal low-thrust solution in (a).

CONCLUDING REMARKS

Trajectory design is a careful balance that juggles diverse constraints, priorities and requirements to enable
successful missions. So, preparing for operations contingencies necessitates a rigorous mission design frame-
work to offer solutions for varied spacecraft capabilities and objectives. Maneuvering in close proximity to
the Earth and the Moon renders the CR3BP model appropriate for capturing the complex dynamical inter-
actions in this gravitational system, and facilitates pathways for preliminary design. However, in contrast to
the two body problem, the CR3BP represents a large state space for which approximations are generally not
available. Thus, an infinitely large combinatorial optimization problem emerges — one that is intractable to
explore thoroughly via a manual approach. So, an automated search strategy is sought where human efforts
are refocussed on defining the constituents of the broader mission recovery goals, and software agents are
tasked with undertaking the laborious task of filtering various recovery trajectory scenarios to then deliver
only attractive options.

The design of end-to-end trajectories is facilitated by constructing a framework composed of four essential
components: (1) simulation of the reach of the s/c to assess instantaneous accessible regions (ARs) within the
dynamical regime; (2) exploitation of natural flows in the dynamical regime (CR3BP) to serve as potential
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waypoints for transfer paths; (3) implementation of automated pathfinding algorithms to sequence the natural
arcs and formulate a discontinuous yet complete route to the destination; and (4) transition of the solution to
a higher-fidelity engine/dynamical model via a numerical corrections process.

The results from this analysis demonstrate the applicability of the reinforcement learning aided framework
to deliver recovery solutions for failure scenarios, including transporting the s/c to a destination orbit or some
rendezvous condition. The goals of the pathfinding process are enabled by the flexibility to incorporate varied
overarching global objective functions. For example, the TOF-payload delivery trade-space is explored by
posing a weighted mass-time priority global cost function. In contrast, a cost function to minimize the time-
to-rendezvous error uncovers initial guesses for routes that are numerically corrected to enable a chaser s/c
to rendezvous with the states and absolute time of a target object in its destination orbit. Although the HARL
algorithm may not deliver globally optimal initial guesses, its parallellizable capability and stochastic nature
enable the exploration of broad trade spaces to offset common restrictions such as a narrow convergence radii
associated with some traditional trajectory design approaches. Furthermore, the design space is broadened
by the free-form search informed solely by natural system dynamics — the agents traverse both chaotic
and ordered motion to deliver unconstrained pathfinding. Consequentially, insights are also offered into
the dynamical regime including natural structures for more detailed analysis in support of the particular
contingency scenario.

The available state and time histories from the sequenced natural arcs are suitable initial guesses for tran-
sition to a higher-fidelity engine model. Advantageous thrust and coast locations emerge due to the freedom
allowed to construct transfer segments with zero to a maximum bounded position and velocity discontinuities
within the ARs. The ability to generalize the design capability across varied engine capabilities (including
varied thrust levels due to failure modes) is realized by incorporating the reach of the spacecraft via these
ARs during the automated search process. Differing implementations also render the methodology flexible
to the incorporation of varied constraints during the design process, e.g., targeting desired arrival conditions
or maintaining a minimum altitude relative to a primary.

The automated trajectory design framework offers a capability that responds to the challenges associated
with a large trade space for mission design. The examples illustrate the potential of the framework to support
the design of complex transfers in preparation for contingencies.
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