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The investigation focuses on blending machine learning strategies with traditional trajectory design techniques to uncover
solutions and enhance human intuition. A free-form search indiscriminately leverages chaotic and ordered motion to scope
the trade-space. Alternatively, models of periodic orbit families trained via Artificial Neural Networks and Support Vector
Machines exert more control over the transfer profile and geometry. A spacecraft’s performance capabilities deliver accessible
regions, where supervised learning and free-form strategies illuminate potential waypoints to the destination. Reinforcement
learning agents then sequence advantageous waypoints to construct end-to-end solutions. The initial guess is transitioned to a
continuous form via traditional numerical strategies.

1. Introduction

Recent advancements in the space exploration field
o↵er opportunities to reach a wide array of destina-
tions, from the Moon, to the asteroid belt, as well as
to the outer planets. Such endeavors demand e↵ec-
tive mission design strategies that trade-o↵ diverse
constraints to ensure mission success. Consequen-
tially, an increase in mission complexity suggests that
a rapid trajectory design framework is valuable — one
that o↵ers the exploration of broad trade-spaces and
is, at least, semi-automated. Such a framework is
particularly beneficial in the near term, e.g., to sup-
port an e�cient cis-lunar transportation architecture
that also aids the emergence of new mission concepts
beyond the Earth-Moon neighborhood. The knowl-
edge gained from many prior e↵orts form an integral
part of the current investigation.

The construction of a rapid design framework com-
mences with a fundamental understanding of the nat-
ural dynamics in the Earth-Moon system and the op-
tion to leverage existing structures to enable mission
scenarios. Folta et al.1 o↵er an interactive cata-
log of orbit families for applications in multi-body
regimes, and additional investigations demonstrate
the ability to link various arcs belonging to such or-
bits in the Circular Restricted Three Body Problem
(CR3BP).2–4 The utility of natural arcs can serve as a
basis for transfer design, frequently lowering propel-
lant costs even in e�cient low-thrust regimes.5 As-
sessments of hyperplane crossings,6 steering law as-
sumptions and optimal control theory are common
tools exploited to facilitate design in such regimes.
Collocation and direct transcription strategies have
also emerged to address the challenges associated

with constrained basins of convergence, and the sen-
sitivity of indirect optimization methods to the initial
guess.7

The access to a wide range of natural arcs, to
be coupled with powered arcs resulting from avail-
able thrust capabilities, results in the examination of
an infinitely large trade-space to satisfy mission con-
straints. This approach quickly becomes intractable
when addressed solely via manual search methods.
Thus, some recent investigations address the prob-
lem via combinatorial optimization techniques, gen-
erally employing two di↵erent strategies. In the first
formulation, traditional numerical processes are em-
ployed to construct an initial guess database com-
prised of locally optimal solutions. Then, well known
graph-search and machine learning methods are ex-
ploited to solve a multi-objective problem by ex-
amining combinations within the database to pro-
duce a global or nearly-global optimum. Conclusions
from Radice and Olmo,8 Ceriotti and Vasile,9 Stu-
art and Howell,10 as well as Furfaro and Linares11

demonstrate the potential of heuristic methods such
as Ant Colony Optimization (ACO), and Reinforce-
ment Learning (RL) to be e↵ective in various dynam-
ical regimes and in uncovering local optima that may
have otherwise remained unknown. Approaches em-
ploying genetic algorithms have also proven as ben-
eficial.12,13 The second type of strategy recasts the
problem in terms of pathfinding — where the initial
guess itself is constructed via Artificial Intelligence
(AI) techniques and is then subjected to a numer-
ical corrections process. Tsirogiannis,14 as well as
Trumbauer and Villac15 generate impulsive transfer
options by constructing a framework of pre-computed
natural arcs and using graph search methods to eval-
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uate the links. The nodes then serve as waypoints in a
complex dynamical regime. Simplifying assumptions
in a two-body model are exploited by Parrish16 to
employ heuristics in solving for consistent low-thrust
initial guesses. Das-Stuart et al.17,18 demonstrate
the ability to construct end-to-end initial guesses in
a CR3BP regime for low-thrust and impulsive trans-
fers via exact and reinforcement learning strategies,
which are then readily transitioned to continuous op-
timal solutions via traditional numerical techniques.

The current investigation builds upon the previ-
ous work undertaken in Das-Stuart et al.,17,18 and
Figs. 1 and 2 summarize the modified design ap-
proach. The first step in Fig. 1 determines the reach
of the s/c in a multi-dimensional and infinitely large
configuration space via its Accessible Regions (ARs).
Multiple avenues exist to render natural conditions
for the s/c to evaluate in step 2 (expanded upon in
Fig. 2). This step is followed by deploying reinforce-
ment learning agents to appropriately select and se-
quence advantageous arcs from the ARs to construct
end-to-end pathways in an automated manner. The
discontinuous arcs are then passed through a tradi-
tional numerical corrections process in the final step
to produce a continuous solution for a specified engine
model. In contrast to the previous investigations17,18

where the natural conditions in step 2 in Fig. 1 are
established via a pre-generated and discretized cata-
log (Fig. 2(a)), the modified approach in this paper
establishes potential waypoints to the destination on-
the-fly within these ARs. Such an approach liber-
ates the pathfinding agents from restriction to way-
points defined within the discretized catalog. A free-
form search facilitates the flexibility to leverage both
chaotic and ordered motion to broaden the design op-
tions, and engage human intuition in the development
of the relevant trade-space (Fig. 2(b)). Supervised
learning strategies such as Support Vector Machines
(SVMs) and Artificial Neural Networks (ANNs) are
also exploited to train flow-models that aid in influ-
encing the design process (Fig. 2(c)). The framework
design e↵ort focuses on addressing the challenges as-
sociated with thrust law construction, the sequencing
of thrust and coast arcs, and expanding the solution
pool to mitigate the limited solution options resulting
from narrow basins of convergence when implement-
ing traditional numerical techniques. Such an ap-
proach is beneficial in time-critical contingency plan-
ning scenarios.

The force models and numerical techniques that
support the initial guess generation process are in-
troduced in Sections 2 and 3. A high-level overview
of the supervised and reinforcement learning strate-
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gies appear in Section 4, and a detailed discussion on
the associated design choices, along with derivations
of the algorithms, are presented in the Appendix.
The design framework formalized in Section 5 en-
ables a number of examples in Section 6 that demon-
strate the process, including some scenarios that are
relevant to current proposals for a facility near the
moon.

2. Dynamical and Force Model

Although the dynamical sensitivity is evident, the
CR3BP o↵ers an opportunity to approximate the
higher-fidelity dynamics and to exploit the natural
flows that are otherwise unavailable in simpler dy-
namical regimes. For the design framework, a ro-
bust cis-lunar transportation architecture is currently
a priority, so the methodology is applied within the
context of the Earth-Moon CR3BP. Here, the Earth
(primary, P1) and the Moon (secondary, P2) are as-
sumed to revolve in circular orbits around their com-
mon barycenter.19 The spacecraft mass is assumed to
be negligible in comparison to the more massive bod-
ies. The Equations of Motion (EOM) for the space-
craft (P3) as viewed in a rotating frame, also incorpo-
rate a thrust force to model the physical capabilities
of an engine/thruster, i.e.,

�̇ =

8
<

:

ṙ
v̇
ṁ

9
=

; =

8
>>>><

>>>>:

v

f(r)+ g(v)| {z }
natural

+
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û

|{z}
low-thrust

�T
Isp go

9
>>>>=

>>>>;

[1]

The di↵erential equations include contributions from
both the natural gravitational and the thrust accel-
eration sources to capture the motion of the space-
craft (s/c) and its mass-history over time. In these
equations, � is the full state vector comprised of the
vehicle position and velocity vectors (r and v, respec-
tively) and the vehicle mass m. The thrust magni-
tude is represented by T, and the thrust direction by
û (where a caret identifies unit magnitude). The Isp
is the engine specific impulse and g0 is the reference
gravitational acceleration. Even without the engine-
specific thrusting terms, there is no closed-form so-
lution to the natural EOMs. So, in the thrust-free
problem, other quantities such as the period, stability
and the Jacobi Constant (JC, an energy-like quan-
tity) that are associated with the natural solutions
aid in characterizing the motion of the s/c within the
confines of the CR3BP model. The JC is defined as:

JC = 2U⇤ � v2 [2]

where U⇤ is a pseudo-potential term,

U⇤(x, y, z) =
1� µ

r13
+

µ

r23
+

1

2
(x2 + y2) [3]

So, U⇤ is a function of the s/c position relative to the
barycenter (x, y, z) and relative to the two primaries
r13 and r23, as well as the mass ratio of P2 to the
total system mass, µ. Note from Eqn. [2] that the
JC term is only constant in the autonomous system
without propulsive forces.

To deliver the thrust force in Eqn. [1], a rela-
tively new technology, advanced ion-drive propulsion,
is gaining popularity due to the ability to improve
payload delivery capabilities. This e�ciency, how-
ever, is delivered at lower thrust levels and, therefore,
potentially lengthy flight durations.20 Transitions to
a higher-fidelity model enabled by chemical engines
is also investigated.

3. Numerical Corrections and Optimization

Constructing low-thrust optimal trajectories typ-
ically involves formulating an optimal control prob-
lem, and solving for the time-histories of the thrust
magnitude and the thrust force direction to meet the
desired boundary conditions using direct or indirect
approaches. Direct methods are more robust than
indirect ones, but induce a large dimensionality21,22

and often require assumptions on the thrust profile
(e.g., constant thrust direction over each arc).

3.1 Constant Specific Impulse Engine Parameters

In the Constant Specific Impulse (CSI) regime, the
available thrust magnitude is a function of the engine
power allocation, (P) and e�ciency (Isp). The rela-
tionship is modeled as:

T =
2P

Isp g0
[4]

The constant power and Isp parameters dictate a con-
stant thrust magnitude. The basis of the control au-
thority to maneuver the s/c is an on-o↵ engine toggle
and thrust-vectoring. A continuous low-thrust trajec-
tory is constructed from a discontinuous initial guess
by employing a multiple-shooting scheme. Also, due
to the inherent numerical sensitivities associated with
indirect methods for the CSI trajectory design, di-
rect methods are selected in this preliminary analysis.
An iterative Newton-Raphson scheme is employed to
compute a set of design vector variables (X⇤) that
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satisfy the specified constraints, F (X⇤) = 0, i.e.,

X =

2

664

xi

ui

⌧i
TDi

3

775 F =

2

664

xidesired � xiactual

⌧i + TDi � ⌧i+1

 desired � actual

ui
Tui � 1

3

775 = 0 [5]

The design vector X, is comprised of the states
(xi), thrust directions (ui), epoch times (⌧i), and
propagation durations (TDi) at select-nodes (i) that
are available from the initial guess. The constraint
vector F is sought to meet state-continuity, epoch-
continuity, boundary condition ( ), and thrust di-
rection unit-vector constraints at the specified nodes.
The converged solution is passed through a Nonlinear
Programming (NLP) software such as FMINCON or
SNOPT to optimize a cost function that is formulated
to o↵er a favorable solution to the mission objectives
and constraints.

3.2 Chemical Engine Parameters

Construction of a converged/optimized trajectory
enabled by a chemical engine allows velocity discon-
tinuities as a design parameter. So, a process similar
to the direct approach as discussed in Section 3.1 is
implemented, with the exclusion of the thrust mag-
nitude and thrust direction terms in the design and
constraint vectors.

4. Machine Learning Paradigm

The generation of an initial guess trajectory that
transfers a s/c from a departure location to a spe-
cific destination is cast as a routing problem. Such
a route, however, is constructed from the appropri-
ate sequencing of available waypoints to meet the
user’s global objectives. Thus, the design process
is predicated on the ability to 1) recognize desirable
waypoints, and then 2) construct pathways between
them. Varied aspects of Machine Learning (ML), a
data-driven approach within the field of Artificial In-
telligence (AI) to learn complex and nonlinear rela-
tionships, are adopted to address these separate de-
sign constituents. Specifically, traversal towards the
destination is achieved by exploiting Reinforcement
Learning (RL) to strategically assemble advantageous
intermediate conditions uncovered via random explo-
ration and also from those determined to be accept-
able via Supervised Learning (SL) strategies.

4.1 Supervised Learning Strategies

Supervised learning algorithms are often employed
for pattern recognition and function approximations
to aid in data classification and regression tasks.
Since the 1950s, numerous algorithms have emerged,

e.g., decision trees, naive Bayes, Artificial Neural Net-
works (ANN) and Support Vector Machines (SVM).
The algorithm choice depends greatly on its unique
strengths to address the nature, size and complex-
ity of the problem and the ability to balance the de-
sired levels of accuracy and computational e�ciency.
In this investigation, using both ANNs and SVMs
to learn complex relationships in a highly nonlinear
and high-dimensional multi-body regime is explored.
Both techniques learn from sample pairs of input data
with the corresponding categorical assignments (la-
bels) or continuous outputs during a training phase.
Successful training enables inferences concerning the
underlying function relating the variables in the de-
sign space and, subsequently, leads to the satisfactory
prediction of outputs on unseen datasets.

4.1.1 Artificial Neural Networks

Artificial Neural Networks are a collection of algo-
rithms inspired by the functioning of biological neural
networks to solve complex problems. Their inception
lies in the perceptron, an artificial adaptation of a sin-
gle biological neuron, first studied by Frank Rosen-
blatt in the late 1950s.23 In the 1960s, the discovery
of a perceptron’s inability to process data that are
not linearly separable (e.g., Exclusive-Or, XOR) tem-
porarily halted progress.24 A decade later, the ability
to overcome this challenge by introducing at least one
extra layer of artificial neurons evolved into multi-
layer feedforward networks and, thus, deep learning.
The most basic feed-forward network consists of an
input, hidden and output layer; the schematic of a
slightly more sophisticated 3-layer network (2 hid-
den layers) is portrayed in Fig. 3. Similar to human

Input 
Layer

Hidden 
Layer 1

Hidden 
Layer 2

Output 
Layer

!"#
!#$

!$%

Fig. 3: Sample Artificial Neural Network Architecture (Mod-
ified from Bapu25)

brains, the iterative and dynamic strengthening of
signals between neurons enable the identification of
important relationships to process the data and re-
port results in the output layer. In an ‘o’-layer net-
work, the output or logit zj , of the jth neuron in layer
l is formulated as the inner product between the sig-
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nal strengths from neurons i, in previous layer (l�1)
(captured via the weights wi,j), and the inputs xi,j :26

z
(l)
j =

mmX

i=1

wi,j • xi + B
(l) [6]

where, B is a constant bias term that identifies the
range of inputs that exercise the greatest influence
over the outputs of a layer l, and mm is the total
number of neurons in this layer. The output from a
hidden layer is modeled as the matrix operation:

Z
(l) = W

T
X + B

(l) [7]

Accurate predictions are achieved via iterative tun-
ing of the weight matrices and bias terms. Various
techniques to accomplish this goal render di↵erent va-
rieties of ANNs. Note that within the feed-forward
network implementation, there are no links between
neurons within a given layer, and there is no require-
ment to enforce equal number of neurons within each
hidden layer as well. The choices involved in build-
ing an ANN architecture play a key role in its per-
formance and applicability for a given scenario, and
consists of the following considerations:27

A Feature and Label Initialization

In a supervised learning realm, careful selection of
the user-specified inputs (features) comprising the x

vector in Eqn. [6] as well as the corresponding out-
puts/labels greatly influence the learning absorbed
by the neurons; the e�ciency of the networks is im-
pacted as well. The multiplicative and additive op-
erations of the weighted values through each hidden
layer also yield fresh features within the hidden lay-
ers, introducing additional insights for the network.

B Data Allocation

Within a sample-based platform, the quantity of data
to which a network is exposed, and the proportion
of available points from each data-type to be clas-
sified/regressed also impact the training outcomes.
The goodness of a trained network is assessed via
validation and testing phases on unseen data. So,
appropriate allocation within a larger dataset for the
training, validation and testing phases is an essen-
tial consideration - one that can be determined via
empirical testing for a particular scenario.

C Training Components

Training an ANN involves seeking continual im-
provements on the weights (signal strengths) to
identify critical relationships within the dataset.
This goal is achieved by the merits of the techniques
flowing the information forward through the hidden

layers, and those tracing the errors backwards
(backpropagation) to rectify the associated weight
parameters accordingly.

C.a. Activation Function
In a biological network, a neuron fires only after the
received signal strength exceeds a threshold value. A
neuron’s logit is, thus, passed through an activation
function to help emulate this behavior and also in-
troduce nonlinearity into the outputs to enable the
learning of complex relationships. Equation [7] is
then modified as follows to compute a layer’s output:

Y
(l) = f(WT

X + B
(l)) = f(Z(l)) [8]

The frequency with which the spikes (outputs) are re-
leased from a neuron is determined by the activation
function, f(Z). The nuances associated with a par-
ticular problem guide the selection of this function.
Although a variety of options are available, the linear,
hyperbolic tangent and softmax functions have been
incorporated in this investigation. The information
associated with their derivation and implementation
are detailed in Appendix 9.0.1A.

C.b. Error Minimization
Backpropagation algorithms o↵er feedback to the ac-
tivated neurons and, thus, create an opportunity for
the weights (signal strengths) to be updated prior to
being passed forward through the layers in the next
iteration. The updates to the weights are informed
by the rate of change of the error E between the
true solution (Yt) and the ANN prediction (Yp) at
the output layer (o), with respect to the weights in

each layer, w
(l)
i,j :

�w
(l)
i,j = �✏

@E

@w
(l)
i,j

[9]

Here, ✏ is a hyper-parameter called the ‘learning rate’,
that can be tuned during the training phase. The goal
then, is to maneuver towards the global minimum
of a multi-dimensional error surface engendered by
the weight coordinates and is commonly achieved by
following the negative gradient on the surface (gra-
dient descent). However, the exacerbation of saddle-
point-type conditions due to high dimensionality, and
potential ill-conditioning of the Hessian matrix, can
lead to fluctuating gradient directions and poor con-
vergence properties. So, the appropriate combina-
tion of backpropagation and the associated optimiza-
tion is problem-specific and does influence the val-
ues of the weight updates in Eqn. [9] as well. Con-
jugate gradient and quasi-Newton methods such as
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Levenberg-Marquardt algorithms that aid in navi-
gating challenging/ill-conditioned error surfaces27,29

have been leveraged in this analysis. The selection of
the error function E in Eqn. 9 depends on the activa-
tion function employed in the output layer and thus,
the problem type. The information associated with
the loss functions incorporated in this investigation
are detailed in Appendix 9.0.1B.

D Generalizability

The Universal Approximation Theory, first proved in
the 1980s by Cybenko,32 demonstrated that a single
hidden layer could approximate any continuous func-
tion. This realization was extended by Funahoshi33

in 1989 to clarify that a combination of hidden layers
and neurons can be exploited by an ANN architec-
ture to approximate any continuous function. How-
ever, more neurons/layers do not necessarily result in
better approximations. In fact, the challenge in bias-
variance trade-o↵ necessitates a careful selection of
the size of the ANN.34 For example, a small network
may result in insu�cient parameters to satisfactorily
capture the underlying complexities of the problem
leading to a high bias and under-fitting of the rela-
tionships in the training set. In contrast, a large net-
work can tend to over-fit the function, thus, leading to
modeling even the noise in the dataset and exhibiting
high variance when subject to new and unseen data.
The goal is, therefore, generalizability - the ability to
strike a balance between adequate learning of the un-
derlying relationships on known data and adequate
predictions of the relationships on unmodeled data.
One approach to the iterative training process to es-
tablishing a generalizable ANN model is summarized
in Fig. 4.

4.2 Support Vector Machines

Similar to ANNs, Support Vector Machines
(SVMs) also originate in the perceptron and the
ability to discriminate between data within a non-
separable set. However, rather than the multi-layered
filtering techniques adopted by ANNs, SVMs rely on
the construction of maximum margin hyperplanes to
deliver conclusions on the relationships within the
dataset. Vapnik o↵ered the underlying mathemat-
ics supporting this novel decision-making approach
in 1963, and further developments over 2-3 decades
led to the current form of SVMs.35

A Training Components

Parallels are apparent between a single-layer ANN
and a simple linear SVM classifier. Recall the equa-
tion for the hyperplane separating two linearly sepa-
rable classes of interest in Eqn. [6]. This equation is

Problem 
Definition

Define ANN 
architecture

Collect (or add 
more) data

Train for an 
epoch

Training-set
error decreasing

Validation-set
error decreasing

Training-data 
prediction 
accuracy 

acceptable 

Test-data 
prediction 
accuracy 

acceptable 

Yes

No

Yes

Yes

Terminate 
training

Yes

No

No

No

Fig. 4: An implementation of Artificial Neural Network Work
Flow. (Modified from Buduma27)
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re-written in the form:

f(X) =
mmX

i=1

xi•wi,j + B
(l) = X

T
W + B

(l) = 0. [10]

Two more hyperplanes are introduced to bound the
margin of separation, d, between the two types of
data within the set,36 f(X) = X

T
W + B � ±1. Fig-

ure 5 illustrates the mathematical formulation con-
ceptually. The orientation of the hyperplanes is in-

Class 2

Class 1

!
"
= "

$ %
+
' =

0

=m
ar
gin

! "
=
"$
%
+ '

=
−1

!
"
=
"$
%
+
' =

1

Fig. 5: Schematic illustrating formulation for SVM.

fluenced by the weights W, and the bias B shifts the
hyperplanes along the plane. These two parameters
(weights and bias) then comprise the controls to max-
imize the margin between the separable data types,
or the distance between the hyperplanes defining the
separation boundaries, d = 2

||W|| . Solving for the max-
imal margin is equivalent to the optimization prob-
lem, where ||W|| is minimized (Eqn. [11]). However,
data are frequently not easily separable. So, slack
variables, ⇣, are introduced.37 Equation [11] then
assumes a form where the objective function is ap-
pended with penalty measures:

minimize
1

2
||W||2+C

NX

i=1

⇣i
 [11a]

subject to: yi[wixi + b] � 1� ⇣i
 [11b]

⇣i � 0 [11c]

where, yi = ±1, indicates the true classes. The vari-
able C is exploited to trade-o↵ the desired size of the
discriminating margin and the flexibility allowed with
misclassifications, and the selection of  determines
the regularization technique to establish a generaliz-
able trained model. The data-points xi that lie on the
boundaries, |yif(xi)|= 1 are denoted the support vec-
tors, as they define the separating regions (Fig. 5).
Further derivations to compute the weights and bi-
ases are outlined in Appendix 9.0.2A.

In many real-world applications, and especially in
astrodynamics, the data is often not linearly sep-
arable; i.e., the data is non-separable. This chal-
lenge is met by mapping the available information
to a higher dimensional space by employing the ker-
nel trick, where a separating hyperplane for the
same data exists. The derivations for computing

Class 1
Class 2

Separating 
Hyperplane

Class 1
Class 2

(a) (b)

Fig. 6: Schematic demonstrating transformation of (a) non-
separable data into (b) separable data in a higher dimen-
sion.

the weights, and biases, and the details associated
with the classification-enabling transformation of the
feature-space to a higher dimension are outlined in
Appendix 9.0.2B.

B Generalizability

As discussed with ANNs, the generalizability of a
model enables it to render accurate predictions on
unseen data. The balance between training and test-
ing accuracy is achieved by regularization measures,
and the appropriate tuning of values for C and other
hyper-parameters introduced during the mapping to
a higher dimensional feature-space. The details asso-
ciated with the generalization approach implemented
in the investigation are discussed in Appendix 9.0.2C.

4.3 Heuristically Accelerated Reinforcement
Learning

The generation of an initial guess trajectory that
transfers a s/c from a departure location to a spe-
cific destination is cast as a routing problem. Das-
Stuart et al.17,18 explore the advantages of employing
heuristic methods over exact strategies to construct
solutions in a large and complex design space. The
automated agent (software)-based search for a path
that achieves a specified goal, when subject to a set
of prescribed constraints is summarized from these
papers.

Any endeavor in the space environment is com-
plex. A flexible and sustainable infrastructure ben-
efits from a mission design approach that delivers
transfer solutions while accommodating uncertainties
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in the environment, variable performance measures,
and is responsive to shifting goals. Reinforcement
Learning (RL) algorithms, originating in the artifi-
cial intelligence domain, are an e↵ective tool in bal-
ancing sometimes conflicting goals. Implemented via
an agent interacting with its environment, such an
agent learns to deliver appropriate choices that lead
to desirable outcomes. The reinforcement learning
approach is commonly formalized as a Markov Deci-
sion Process (MDP)41 that is constructed from a tu-
ple: < S,A, P,R >; S then, is a set of states available
to an agent; A is a set of actions available to an agent;
P is P(s,a,s 0), the probability that action a in state
s leads the agent to arrive at state s0, R : S⇥A! R
is the reward received for an action a in state s. The
aim is an optimal policy (⇡⇤) that executes an action
at a given state to maximize the cumulative rewards
received by the agent over multiple episodes. A strat-
egy to accomplish this task involves a value function
(V⇡) that iterates over all the possible actions such
that an originating state evolves the system to even-
tually arrive at the optimal choice (V⇤):

V
⇤(s) max

a

X

s0

P(s, a, s0)[R(s, a, s0)+�V
⇤(s0)] [12]

Equation [12] is essentially the Bellman Equation,
employed widely in dynamic programming, and sat-
isfies the necessary conditions for optimality. The
prime symbol (0) indicates a state(s) accessible from
the frontier of neighbors of the current state ‘s’. In
complex regimes where the probabilities defining the
system model and the rewards are not known a priori,
it is useful to formulate the problem as a model-free,
state-value pair approach. A state-value update func-
tion is formulated in recursive form as:

(13)
F(s, a) F(s, a) + ↵[R(s, a, s0)

+ �max
a0

F(s0, a0)� F(s, a)]

and forms the repository of reinforcements from
which the agent learns the desirable behavior. The
discount factor 0  � < 1 is a measure of the balance
between immediate and future rewards; smaller val-
ues of � favor immediate rewards. The learning rate
of the agent is specified by ↵. It diminishes over sub-
sequent episodes to avoid fixation on only the most re-
cently gained knowledge, and expands trust on prior
knowledge that is posed as reinforcements over time.
The optimal policy is then constructed as:

⇡⇤(s) = argmax
a

X

s0

F(s, a) [14]

The convergence in response to such an optimal pol-
icy using the RL approach is guaranteed by re-visiting

state-action pairs infinitely many times, and the pro-
cess may be prolonged in scenarios subject to a large
state-space. So, it is beneficial to introduce a heuris-
tic function that accelerates the learning process by
biasing the selection of an action a, given a state
s, with a reward R. Such an algorithm is termed
a Heuristically Accelerated Reinforcement Learning
(HARL) algorithm, and the time-complexity depends
on the accuracy of the heuristics. The ability of
the heuristic function to influence the action-choice
is based on the ability to exceed the variations in
F(s, a).42 Scenarios with large state-spaces and mul-
tiple objectives also motivate a coordinated e↵ort in
a multi-agent distributed HARL approach, particu-
larly one that exploits parallel processing. In such
a distributed network, the agents work cooperatively
by updating a centralized reinforcement repository
based on the knowledge (cumulatively discounted re-
wards) gained during a specific episode. Within the
context of mission design, the agent continues the
search until a stopping condition is satisfied, i.e., a
terminal condition and/or a violation of constraints.
An overview of the learning process (within the con-
text of mission design) is illustrated in Fig. 7. Clearly,

Fig. 7: An implementation of HARL algorithm

the learning process within each episode is comprised
of two search scenarios — exploration and exploita-
tion. Exploration enables a training phase where the
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agent learns about likely consequences of actions in
the environment; the exploitation phase enables the
agent to engage in informed decisions by capitaliz-
ing on previously gained knowledge. The policy at a
particular state as influenced by the state-action pair
and heuristic is:42

⇡(s) =

(
E(F(s, a) ./ ⇠H(s, a)�), if q � p

arandom, otherwise
[15]

where (H : S ⇥ A ! R) is the heuristic function, ./
is a math operator as determined by the RL algo-
rithm and its implementation (e.g., Q-learning, Ant
Colony Optimization), ⇠ and � are weighting param-
eters that dictate the influence of the heuristic, and
arandom is the action selected randomly from all those
available in state s. The construction of the exploita-
tion function E is specific to a particular application;
some variants include a greedy strategy that incor-
porates max(E), a minimax approach that minimizes
the losses in a maximum loss scenario, and a ‘soft-
max’ process that stochastically selects an action.43

In this equation, p, (0  p  1), is the trade-o↵ pa-
rameter between exploration and exploitation, and q
is a random value from a uniform distribution in [0,1].
Greater values of p encourage exploration and lower
values bias the process toward exploitation. Exten-
sive exploration in earlier episodes is beneficial, then
a gradual shift to exploitation. A convenient func-
tion to control the steady-state value of the trade-o↵
probability, pss by the kth episode (Ep) is constructed
as:10

p = pss + (1� pss)e
(� k�1

ln(Ep) ) [16]

The blending of heuristics with reinforcement learn-
ing is a powerful utility in solving many NP-hard and
NP-complete pathfinding problems, e.g., the Travel-
ing Salesman Problem (TSP).

5. Development of the Design Framework

The investigation in Das-Stuart et al.17,18 demon-
strates the ability to incorporate automated pathfind-
ing to generate initial guesses, which are then nu-
merically corrected and optimized to enable mission
scenarios. The pathfinding process is facilitated by
sequential construction of Accessible Regions (ARs)
that enable a spacecraft to select natural conditions
from within these accessible volumes, to maneuver
towards the destination. Sequencing an initial guess
from natural arcs is also a focus of the current anal-
ysis to (i) eliminate the a-priori discretized database
generation phase and allow free-form searches based
only on the system-dynamics, and to (ii) exploit su-
pervised learning strategies to develop flow-models.

This recent e↵ort also sequences natural arcs that
capture the general characteristics of the flow associ-
ated with notable periodic orbits families, rather than
satisfy any set of exact conditions. The generation of
accessible regions and the subsequent interfaces to the
natural flow conditions and the pathfinding process
serve as the foundation of the design framework.

5.1 Computation of Accessible Regions

An accessible region establishes the reach of a s/c
in the design space, and its characteristics are influ-
enced by the spacecraft thrust-to-mass ratio, propel-
lant e�ciency, and other performance characteristics.
The computation of an Accessible Region (AR) orig-
inates with a perturbation of the spacecraft current
velocity within a circle/sphere (for the planar/spatial
problem, respectively) with a prescribed radius, fol-
lowed by a propagation of the perturbed and unper-
turbed states for a fixed time-horizon. The resulting
downstream behavior includes a stretching of the per-
turbed states from the unperturbed natural arc due
to the influence of the existing gravitational forces
in the system. A measure of the deviation of the
perturbed states from the end of the natural arc is
exploited to formulate a circular/spherical accessi-
ble region in a planar/spatial setting. These simpli-
fied geometric shapes are leveraged over the realistic
irregular-shaped ARs that result from a numerical
propagation, to enable greater control over the quan-
tity of natural arcs available to the s/c. Empirical
testing has supported the decision to employ such an
approximation. For both the chemical and low-thrust
analyses, perturbations in the s/c velocity are intro-
duced via chemical impulses; the magnitude is deter-
mined by the engine characteristics and the engine
operation/burn time (�t), i.e.,

�V = Isp g0 ln(
m0

mf
) [17a]

where,

mf = m0 � (ṁ⇥ �t) [17b]

Inspection of Eqn. [1] and Eqn. [17] illustrate that
higher specific impulse values result in smaller �V
perturbations for a fixed operation time and aid in
delineating the behavior of propellant e�cient low-
thrust and less e�cient chemical regimes. The deter-
mination of the perturbation modeled as a �V is not
dependent on the horizon-time/propagation-time for
the perturbed and unperturbed conditions. However,
it influences the footprint of the AR. Figure 8(a) illus-
trates that larger �V ’s for a fixed horizon-time yield
more extensive ARs and, therefore, a greater number
of available natural arcs. Longer propagation times,
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Fig. 8: Influence of �Vs on the accessible region footprints in
the (a) planar case (c) spatial case. (b) Influence of TOF

on the footprint of the accessible regions in the planar case.

for a fixed �V , produce a similar e↵ect as plotted in
Fig. 8(b) for planar applications and an AR in the
spatial regime is illustrated in Fig. 8(c). Note that
these ARs for reachable position and velocity condi-
tions are 4-dimensional in the planar realm and 6-
dimensional in the spatial problem.

5.2 Sample Conditions from Accessible Regions

Mission design is sometimes envisioned as harness-
ing the appropriate combination of orbit family ge-
ometries, velocities and energy levels to satisfy ar-
chitecture constraints such as altitude relative to a
primary body, line-of-sight for communications, as
well as eclipsing conditions, and balancing such con-
straints with mission objectives. The CR3BP o↵ers
a multitude of natural solutions to enable such a
combinatorial search — periodic and quasi-periodic
orbits in the vicinity of the primaries and the li-
bration points, and manifold behaviors that reflect
the flow throughout the region. Only periodic or-
bit families are included in this analysis, because in
many instances, resonant orbits (periodic) qualita-
tively capture the essence of manifold behavior as
well. Das-Stuart et al.17,18 discuss the inclusion of
families within a searchable database based on the
geometric semblance between them, during transfer
construction. Figure 9 illustrates the advantage of
including the Resonant 4 : 3 family in the search-
able database when designing transfers between the
L1 and L3 Lyapunov families; this resonant orbit of-
fers intermediate arcs with suitable flows to transport
the s/c between the departure and destination orbit
families. In this case, the user controls the motion of
the s/c to follow the flow associated with these three
families in the searchable volume. The appropriate

EarthL3 L1 Moon

Fig. 9: Illustrating similarities and di↵erences in geometry
between the L3 Lyapunov, Resonant 4:3 and L1 Lyapunov
families. Arrows indicate direction of flow within each fam-
ily.

selection of intermediate families is a challenge, how-
ever, especially when the user is unfamiliar with a
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particular Three Body (3B) regime. So, it may be
desirable to conduct an unconstrained exploration of
the configuration-space to o↵er intuition about the
flow in the dynamical regime and also assess the po-
tential trade-space. Hence, there are benefits to both
approaches: (i) a free-form search and (ii) a search
through a compilation of known families.

5.2.1 Free-Form Search

Accessible regions aid in constraining the search-
able design space at any given instant in time. How-
ever, with the lack of pre-discretized conditions (as
available in Das-Stuart et al.17,18), natural conditions
are instantaneously generated within an AR, in real-
time. Operating under the assumptions of a com-
plex and highly nonlinear dynamical regime, how-
ever, these conditions are a blend of both ordered
and chaotic motion. Ordered motion is distinguished
from chaotic by context of the predictability of the
behavior over all time within the CR3BP. However,
it is beneficial to exploit any available and mission-
enabling conditions that don’t violate mission con-
straints. Thus, chaotic conditions may o↵er suitable
candidates, if it is predictable over some specified and
acceptable time-frame. A receding horizon technique
is illustrated in Fig. 10, one that tests for such pre-
dictability. Long-term predictability is observed by

!
StartEnd

AR

!
Start

End

AR

(a) (b)

Fig. 10: Two sample scenarios (a) and (b) illustrating look-
ahead trajectory segments from Start to End, the prox-
imity tolerance, �, and the relatively small fraction along
the look-ahead segment to establish an Accessible Region
(AR).

propagating a condition from within an AR for some
lengthy duration; this look-ahead time-frame is a de-
sign parameter and varies based on the dynamical
system and/or mission considerations. If any of the
states along the propagation return to to the initial
position and velocity, to within some specified toler-
ance value, �, then the motion is confirmed to remain
bounded in the 3B system, and not escape for the
specified duration. Such a chaotic arc is set aside
for selection by the s/c. Note from Fig. 10, only
a small fraction along this propagation time is cap-
tured for constructing an AR. The ability to select

chaotic states broadens the design options, and elim-
inates the time investment required to pre-generate
a discretized database. This unrestricted approach
o↵ers the potential to uncover non-intuitive transfer
geometries, otherwise not available from known and
ordered natural families.

5.2.2 Flow-Models via Supervised Learning

A free-form search is especially powerful for iden-
tifying potential options for a new scenario where
the design possibilities are unknown. However, the
unrestricted approach diminishes the capacity to
bound the motion to a particular geometric profile.
Re-introducing an a priori discretized database com-
prised of select families addresses this challenge, but
at the cost of increased computational memory, and
risks the emergence of any solution, depending on
the fineness of the implemented discretization. So,
flow-models for these natural families are developed
via ANNs and SVMs to mitigate such additional
complications. The design strategy involves employ-
ing a regression network and alternatives to fully
determine the states for the conditions populated
within an AR and then confirming the legitimacy of
their belonging to a family of interest via classifica-
tion schemes.

::::::::::::::
Implementation

::
of

::::::::::
Regression

:::::
Flow

:::::::
Models

The position and velocity attributes establish the
unique identity of a state within a 3B system - assign-
ing its ‘belonging’ to a particular periodic orbit fam-
ily, and its location within the family as well. Thus,
a first step in incorporating specific family conditions
within the searchable volume involves resolving the
identity of populated data points within each AR.
This task is accomplished by training the neural net-
works to compute the velocity components associated
with the positions in an AR. Therefore, the train-
ing input attributes must also be instantaneously ex-
tractable from within an AR. The position compo-
nents of the points within an AR, and the general
direction of flow as suggested by the in-plane and
spatial velocity angles (� and  ) corresponding to the
center AR state are such quantities. These attributes
are exploited to train the regression models as illus-
trated in Fig. 11. Discretized conditions for each orbit

Regression 
Model in 
Training

!, #, $ !̇, #̇, $̇

Fig. 11: Input and output components for a regression model
in training
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family are generated via the scheme discussed in Das-
Stuart et al.17,18 A subset of this discretized dataset
(3% � 5% of the total data, amounting to ⇡ 60, 000
points) is further partitioned into training, validation
and test data to train a periodic orbit family model.
The Levenberg-Marquardt technique along with eval-
uation of the Mean Square Errors (MSE) and early
stopping conditions as introduced in Section 4.1.1 are
employed for the training process. Three-layer net-
works (2 hidden layer, 1 output layer) are observed as
satisfactory in modeling the underlying relationships
in the data for the various orbit families in this in-
vestigation. A modification to these neural network
architecture components may be warranted for other
scenarios.

The results associated with training both a pla-
nar and spatial orbit family are reported in Table 1.
Each trained model is queried using the entire dataset

Family Training
MSE

Validation
MSE

Testing
MSE

(a) 5.88e� 08 6.30e� 08 6.47e� 08

(b) 1.84e� 08 2.07e� 08 2.62e� 08

Table 1: Quantification of training, validation and testing er-
rors for sample periodic orbit family regression flow mod-
els. (a) L2 Lyapunov, (b) L2 Southern Halo.

for the corresponding periodic orbit family to assess
their prediction capabilities for the remaining 99%
of the unseen dataset. Figure 12 illustrates the out-
comes for the planar L2 Lyapunov family, and the
spatial L2 southern halo flow models. The largest

Moon

Moon

(a) (b)

Fig. 12: Examples demonstrating ability of regression ANN
flow models to predict the velocities for planar and spatial
families.

discrepancies are observed to be near the primary.
Further improvement on the training accuracy via
further tuning of the ANN architectures is not pur-
sued here, as these models are su�cient and success-
ful in generating initial guesses for this preliminary
investigation. During real-time pathfinding, the an-
gular components (� and  ) for the AR center ve-
locity only serve to aid in approximating the true
velocity components associated with other positions

in the AR. This implementation operates under the
assumption that the flow-directions emanating from
within a given AR are similar. Confidence in these
approximations improves when verified by classifica-
tion schemes. An inspection of the families in Fig. 13
demonstrates that a position can be non-unique for
di↵erent velocity conditions, within the same fam-
ily. The results in Fig. 14, however, illustrate that

Moon L2

Velocity 
direction

Earth Moon

Velocity 
direction

(a) (b)

Fig. 13: (a) Each position along an L2 Lyapunov orbit pos-
sesses a unique velocity direction. (b) Each position along
a Resonant 4:3 orbit does not possess a unique velocity di-
rection.

the training inputs are not always su�cient to o↵er
accurate predictions for all conditions within the Res-
onant 4:3 family. However, a comparison of Figs. 13

Earth

Moon

Fig. 14: Challenge for regression models to resolve velocities
for overlapping position conditions, when no insight into
the associated energy conditions is provided.

and 14 illustrate that large prediction errors do not,
in fact, overlap at positions for a single orbit, but
rather, where di↵erent family members overlap in po-
sition space. At these junctures, a lack of information
about the di↵ering energy levels (and, thus, velocity
magnitudes) inhibits accurate predictions. However,
the velocity magnitudes are not available as inputs to
the training process; because the exact velocity for a
particular position within an AR is not known, and,
in fact, is the output. Thus, an alternative strategy
in contrast to Fig. 11 is employed as per Fig. 15. Due
to the absence of a regression model, a set of veloc-
ity magnitudes to characterize the AR are computed.
These range from the spacecraft instantaneous veloc-
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Analytic 
Formulation

!, #, $ !̇, #̇, $̇

Fig. 15: Analytic approach to computing velocity component
approximations

ity at the center of the specified AR to a maximum
value that establishes the radius of the velocity AR.
Incorporation of the velocity magnitude ||V ||, along
with the angular facets (� and  ), resolves the carte-
sian velocity components analytically. Thus, a suf-
ficiently large pool of solutions is populated to in-
troduce to the classification models for filtration and
identification. Both the regression models and the an-
alytical computations successfully support pathfind-
ing by delivering family-like velocity conditions. The
latter approach demands an increased online compu-
tational e↵ort (i.e., during the pathfinding phase),
whereas the former requires an o✏ine time invest-
ment to train and pre-generate the regression mod-
els. The analytical approach is especially useful when
the regression models are challenged to deliver pre-
dictions for the more complex periodic orbit families
with multiple member overlaps. Nevertheless, the ap-
proximations and assumptions for computing the ve-
locities aid the pathfinding agents in sequencing nat-
ural arcs that capture the general characteristics of
the true conditions within each AR to generate a fea-
sible initial guess - that eventually facilitates higher-
fidelity analysis.

A regression network always produces an output
based on the best-fit model determined during the
training phase, even when the bounds on the input
variables are violated. The analytical approach
also always delivers a solution for the given inputs.
So, recognizing invalid queries and disregarding the
corresponding outputs is also incorporated - one
approach might include allowable sets for the inputs
over all the periodic orbit families for validation.
However, this technique is not a failsafe process
since families might assume complex structures in
configuration space, possess self-intersections, or
lack monotonic growth in space. Thus, classification
models are also trained and adopted to judge the va-
lidity of a regressed output belonging to a particular
family. For the sake of clarity, a trained regression
model is labelled MR and a trained classification
model as MC .

::::::::::::::
Implementation

::
of

::::::::::::
Classification

:::::
Flow

:::::::
Models

Classification of states into orbit families, or desirable
and undesirable categories are typically executed via
various techniques. One approach is training mod-

els that distinguish conditions between a select va-
riety of families. However, if an input is introduced
that does not belong to the available families in the
trained classification model MC , it is re-assigned to a
family with the closest relationship. An alternative,
more sophisticated approach trains separate models
for each family - and a simple assessment determines
if a given condition belongs. Thus, a binary classi-
fier is trained. The two classes are - Class1 : condi-
tions from the desired family, and Class2 : any other
conditions that do not belong. This second class is
termed chaos in association with a particular MC .
It is generated by introducing random perturbations
(within a prescribed radius) in position and veloc-
ity from each of the family conditions (Fig. 16(a)).
This perturbation radius is a design parameter. Fig-
ure 16(b) illustrates the binary classes that are em-
ployed to train a model for an L2 Lyapunov fam-
ily. The ANN and SVM binary classifiers are trained

Perturbation bounds
Family bounds

Perturbation radius
Family state

(b)

Perturbation bounds
Family condition

Moon

Chaos
Family

Fig. 16: (a) Generating chaos for family conditions. (b) Fam-
ily and chaos conditions for the L2 Lyapunov family.

by supplying labeled examples from the two-classes.
They are employed to accept the position and ve-
locity information for a certain condition, and then
report the associated classification output/posterior
probability. The condition then belongs to the class
with the greater value for these probabilities. Fig-
ure 17 captures this process. These input conditions

Classification 
Model in 
Training

!, #, $
!̇, #̇,$̇ Family / Chaos

Fig. 17: Input and output components for a classification
model in training
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to an MC can either be outputs from an MR, or state
conditions selected directly from an AR. Once each
of the conditions from an AR passes the regression
and classification tests, they become available for se-
lection by the pathfinding module.

Similar to the discussion on the accuracy of the re-
gression networks, the classification models are also
tested for reliability. Figure 18 illustrates a confusion
matrix that aids in quantifying the accuracy of pre-
dictions from a trained model. In this example, the
trained model is one that distinguishes between the
true L2 Lyapunov conditions (class 1) and the chaotic
conditions (class 2) as introduced in Fig. 16(b). The
performance of the trained model is tested by assess-
ing its ability to accurately classify the entire pop-
ulation of a discretized periodic orbit family. The
confusion matrix in Fig. 18(a) illustrates that there
are no chaotic conditions in the input dataset and
that ⇡ 0.1% of the total data have been misclassified
as chaos. These misclassifications are identified in

Moon

(a) (b)

Fig. 18: Quantifying performance of trained L2 Lyapunov
ANN classification model on the full population of the
periodic orbit family. Output layer probability cut-o↵ =
0.5.

red in Fig. 18(b), and their locations are traced back
to areas of relatively sparse L2 Lyapunov conditions
in Fig. 16, and also the highly nonlinear region near
the primary (Moon). Some approaches to increasing
this accuracy include incorporating additional data
in the areas corresponding to misclassifications, and
assessing the impact of varying the choices made for
the ANN architecture as well. Hence, training the
models is an iterative process.

The SVM classification models are trained via
Gaussian kernels that transform the data to a higher-
dimensional space where they are separable. The val-
ues for the corresponding kernel hyper-parameter �

(in Eqn. [39] in Appendix 9.0.2B) and box constraint
C, that aid in training SVMmodels, are computed via
cross-validation and Bayesian optimization40 which
minimizes the classification errors. Figure 19 illus-
trates a sample of the profile associated with opti-

mizing the hyper-parameter values for the L2 Lya-
punov family SVM model using a subset of the larger
data-set. The values of � and C that correspond to
the minimum for the error surface are extracted to
train the entire training data-set to develop the fi-
nal L2 Lyapunov family SVM model. A grid-search
across ranges of � and C is also a valid option to de-
termine suitable values for these hyper-parameters.
Figure. 19 illustrates an example of the error surface
that results during the Bayesian optimization process
adopted to minimize the classification losses by vary-
ing the value of the hyper-parameters in unison (see
Appendix 9.0.2C for details).

Box Constra
int

• Observed points
• Minimum feasible

Fig. 19: Optimizing hyper-parameters in preparation for
SVM training for the L2 Lyapunov family.

The tuned hyper-parameters aid in constructing
an optimized classifier, that subsequently leads to
fewer classification errors on unseen data. Fig-
ure 20(a) reports the performance of the trained SVM
model when it is directed to classify all the discretized
conditions for the L2 Lyapunov family. A compari-
son of the results to Fig. 18(a) demonstrates that the
SVM classifier outperforms the ANN model in classi-
fying the L2 Lyapunov family conditions. A smaller
number of data points have been misclassified as
chaos in Fig. 20(a), but the misclassifications that do
occur, exist closer to the primary (Fig. 20(b)), where
the dynamics are highly nonlinear. Recall that these

Moon

(a) (b)

Fig. 20: Quantifying performance of trained L2 Lyapunov
SVM classification model on the full population of the
periodic orbit family. Posterior probability cut-o↵ = 0.5.
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binary classifiers are developed to identify any ‘non-
belonging’ condition as chaos. Thus, an additional
test considers the use of these models to also classify
conditions belonging to other periodic orbit families
as chaos. Referring to the previous discussion on the
degree of overlap in position/velocity-space and also
to the direction of flow along various periodic orbit
families (e.g., Fig. 9), the L2 Lyapunov SVM model
accurately classifies all the L4 short-period conditions
as chaos (Fig. 21(a)), due to the low similarities be-
tween these families. In contrast, certain regions of
the DRO family that overlap in position and possess a
semblance to the L2 Lyapunov family flow character-
istics are more challenging for the L2 Lyapunov SVM
model to label as chaos. These hard-to-distinguish
areas are colored in cyan within the highlighted box
in Fig. 21(b). Since the output probabilities of the

Earth Earth Moon

(a) (b)

Fig. 21: Quantifying performance of trained L2 Lyapunov
SVM classification model by assessing its capability to
identify other periodic orbit families as chaos. (a) L4
short period family, (b) DRO family. The boxed region in
(b) highlights the conditions that the L2 Lyapunov model
finds challenging to distinguish as a DRO/L2 Lyapunov
member due to the high geometric similarities between
these families in this particular region.

output layer/posterior probabilities always sum to 1,
the higher the probability output associated with the
family class, the higher the confidence that the con-
dition is not chaotic. Note that a lower cut-o↵ does
assign conditions as belonging to a family that actu-
ally do not truly belong to the test family, but quali-
fies as family-like (e.g., Lyapunov L2-like) motion for
selection during the pathfinding phase. Such a clas-
sification cut-o↵ lever is, thus, exploited to capture
the desired general characteristics of the flow asso-
ciated with a particular family, for supporting the
path-finding phase. It can be observed from Fig. 22,
that the ANN MC is not as successful at correctly
classifying many Lyapunov L2 conditions, compared
to the SVM model. As mentioned earlier, the ac-
curacy of the ANN models could be improved with
additional training data. However, such an e↵ort has
not been pursued here, and the ANN classifiers are
not incorporated during the pathfinding phase. The
SVM models, even with very similar training condi-

Moon
Moon

(a) (b)

Fig. 22: Comparing performance of trained L2 Lyapunov
ANN and SVM classification models under similar train-
ing conditions, and highlighting the impact of selecting
varied posterior-probability cut-o↵s (0.9 in this example).
(a) ANN model (b) SVM model

tions, o↵er superior and su�ciently accurate classi-
fication models to demonstrate one of the primary
aims of this investigation, the ability to constrain the
geometric profile of the initial guess to involve only
specified families. Passing a classification test marks
a regressed input-output pair (position and velocity
states) as acceptable for selection from an AR by the
pathfinding phase.

5.2.3 Pathfinding via HARL Algorithm

Pathfinding is implemented to sequence the appro-
priate conditions for maneuvering the s/c from origin
to destination. The available conditions are the nat-
ural arcs available within each constructed accessible
region; they constitute the frontier of solutions that
are selectable by the pathfinding agents. The over-
arching goal is posed as an optimization problem to
prioritize the payload mass or the transfer duration
in the persistent mass-time tradeo↵ challenge:

min J = Wttf +Wpmp [18a]

min J = Wttf +Wp�V [18b]

where, the propellant mass mp or �V are always
weighted against the transfer duration, tf , such that
the weighting on TOF, i.e., Wt is always 1, and Wp

is a design variable. Note that �V in Eqn. [17] is the
velocity perturbation to generate the ARs, and �V
in Eqn. 18b represents the cumulative sum of the ma-
neuvers executed within each AR to reach the desti-
nation. The transfer duration is the aggregate sum
of the horizon times associated with each natural arc
assembled within the transfer sequence, and the pro-
pellant consumption/�Vs are computed as a result of
the velocity discontinuities between each of the arcs
based on the ideal rocket equation. The schematic
of an AR in Fig. 8(a) illustrates that exercising the
maximum �V at a given node locates a s/c on the
circumference of its associated AR, whereas a coast
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arc places it in the center of this region. So, the �V at
a given node to reach another node within an AR lies
in the interval [0, �V ]. The associated mass updates
are computed using Eqn. [17].

A HARL algorithm does not guarantee optimality
due to the inclusion of heuristics, but multiple search
episodes can enable convergence to a nearly-optimal
solution to address the mass-time priority objective.
The parallelizable capabilities within HARL o↵ers a
flexible architecture where the inter-node costs are
computed on-demand as the agent progresses through
the database towards the destination. As a result,
either equation in Eqn. [18] may be adopted based
on the priorities of the user. Given the process in
Figure 7, the agent initiates the search by randomly
exploring the state-space and gradually employs more
exploitation over subsequent episodes as devised by
Eqn. [16]. The exploitation of a particular node from
an AR is guided by a heuristic constructed as:

H =
mWm

f

dWd
[19a]

H =
1

�V Wv ⇥ dWd
[19b]

where, d = ||x� xT || [19c]

and x is the full state vector associated with a par-
ticular node, and xT is the full state vector corre-
sponding to the target condition(s). The heuristic,
H, is crafted to accommodate two aspects during the
decision making process for selecting a node from a
frontier: (a) the discontinuities in velocity or mass
loss between selected arc segments (�V, mf ); and
(b) a measure of ‘goodness’ d, for the selected node
in terms of its proximity to the target condition(s).
The weights are also design variables, where Wv or
Wm grant the user control over the desired s/c per-
formance (�V and propellant consumption), and Wd

influences the manner in which the transfer trajectory
tends towards the destination. These qualities also
render the heuristic applicable as a measure of reward
for a select number of agents ranked by their overall
performance (Eqn. 18) for successful completion of
the transfer. Specifically, the reward is computed as
the accrued sum of the heuristic values (R =

P
H)

along a successful transfer path, and is assigned to
each contributing node. The automated pathfinding
strategy aims to establish general desirable pathways
toward the destination rather than identify distinct
and discrete beneficial nodes in configuration space.
So, neighboring nodes along the successful pathways
are also reinforced using the same rewards (Fig. 23).
As a consequence, additional local variability is in-
troduced even during the exploitation phase to en-

Center of AR
Rewarded condition for reaching destination
Reinforced neighboring points

Fig. 23: Reinforcing neighbors of the rewarded condition
within an AR to aid the pathfinding process and also in-
troduce further variability to the stochastic search.

courage local improvements during the search for a
pathway that addresses the global objectives. The
sheer volume of the state-space variable combinations
prompts the tracking of a node’s relevance to the
transfer by recording its cumulative rewards over the
evaluated episodes within a global repository. This
implementation is a variation on the traditional ap-
proach in reinforcement learning algorithms where a
table of the link quality between the nodes is main-
tained. As a result, concerns regarding the link qual-
ity on an arc between particular nodes that is poten-
tially identical regardless of the originating node is
allayed by enforcing ARs that constrain the accessi-
bility between nodes. This adjustment also sets the
discount factor � equal to zero such that only the
immediate rewards are solely valued. This decision is
also supported by the fact that the node-to-node cost
is variable and is a function of the s/c mass history.
Note that the reward function may require scaling
in Eqn. [13] to ensure that the bracketed term re-
mains positive. Furthermore, the quality assigned to
a node is simply a guide in the overall search strategy,
as stochasticity is introduced in the selection of a fa-
vorable node from within an AR with the probability
P:

P =
Fi HiP

Fi Hi
[20]

This probability P emphasizes two important con-
siderations that bias the selection of a node i: (a)
consistency in the relevance of the node to the trans-
fer via its accrued rewards over prior episodes (Fi),
and (b) its current attractiveness as represented by
the heuristic Hi. The previous measures are enforced
within a distributed, cooperative environment where
the incremental knowledge acquired by each agent
is combined to generate the final transfer trajectory
that satisfies the goals and the constraints imposed
by the user.

5.2.4 Initial Guess to Higher-Fidelity Solution

In this investigation, a final solution is defined as
an end-to-end transfer trajectory that adheres to the
constraints imposed within a CR3BP regime aug-
mented by the selected propulsion forces. Note that
such a solution is still merely an initial guess for a
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simulation in a higher-fidelity ephemeris model. The
information associated with the arcs assembled by the
automated pathfinding process is su�cient to initiate
the numerical corrections process described in Sec-
tion 2, namely the position, velocity, mass, thrust
direction, thrust magnitude and time estimates. The
user selects a desired computational tool for execut-
ing the convergence/optimization process. Note that
varying thrust magnitudes are interspersed within the
lower-fidelity solution, thus, it can serve as an initial
guess for a range of engine capabilities in a higher-
fidelity simulation. However, the range of thrust mag-
nitudes is bounded in the corrections updates.

6. Results

The execution of the steps in the design framework
yield initial guesses for diverse transfer scenarios and
seeds the transition of these solutions to a higher-
fidelity engine model. The chemical-engine results
are constructed for a s/c with the following character-
istics: Acceleration = 0.036 m/s2, Mass = 500 kg,
Isp = 224 seconds, Thrust = 18 N . All low-thrust
results assume the following low-thrust s/c specifi-
cations: Acceleration = 2.2e � 4 m/s2, Mass =
1000 kg, Isp = 4000 seconds. The results are or-
ganized to exhibit the following capabilities of the
framework:

1. Planar transfers

:::::
DRO

::
to

:::::
DRO

(a) Establish proof-of-concept of free-form
search

(b) Transfer between two stable orbits

(c) Customize transfers for di↵erent s/c speci-
fications in the planar realm

::
L1::::::::::

Lyapunov
::
to

:::::
DRO

(a) Demonstrate advantages of manifold be-
havior for unstable departure orbit

(b) Exploit free-form search to explore vast
trade-space; exploit trained models for re-
stricted searches

2. Spatial transfers

::::::::
Southern

:::
L2:::::::

NRHO
::
to

:::::::::
Southern

::
L2:::::

Flat
::::
Halo

(a) Demonstrate advantages for reverse-time
seeding in a higher-dimensional spatial
realm, especially for departure from a sta-
ble orbit

(b) Exploit free-form search to explore vast
trade-space; exploit trained model for re-
stricted searches

::::::::
Southern

:::
L2:::::::

NRHO
::
to

:::::
DRO

(a) Demonstrate capability to transfer between
the spatial and planar realms

(b) Demonstrate transfers between stable or-
bits in the spatial realm

(c) Manage size of accessible regions (via ma-
neuver size) to influence transfer geometry

(d) Customize transfers for di↵erent s/c speci-
fications in the spatial realm

All initial guesses that emerge via pathfinding are
converged and optimized to continuous solutions us-
ing traditional numerical corrections and optimiza-
tion techniques (Section 3). In Fig. 24, the free-form
pathfinding strategy yields a straightforward trans-
fer between two DROs in a stable regime for both a
chemical and low-thrust s/c. The TOF, in particu-
lar, correlates reasonably well with the�V and mass-
optimal solutions for the chemical and low-thrust so-
lutions, respectively, in Fig. 24. The initial guess for
the delivered mass fraction is also comparable, al-
though the optimization process improves consider-
ably upon the initial guess for the chemical s/c. In
this particular scenario, the transfer geometry and
performance traits are similar between the chemical
and low-thrust s/c. The search for connections in
an unstable regime, however, elicit a greater diver-
sity in transfer options for any s/c type, especially
due to the existence of manifold structures that are a
natural transport mechanism in a multi-body regime.
Figure 25 illustrates the direction and span of natu-
ral flows that can be expected to depart the origi-
nating Lyapunov orbit. Accordingly, the free-form
search for connections from the Lyapunov orbit to
the DRO illustrated in Fig. 26 are not restricted to
the vicinity of these orbits; many geometries that
flow towards the Earth and return to the originat-
ing/destination orbit vicinities are influenced by the
natural flows that emanate from the L1 Lyapunov or-
bit. Geometries that extend through the exterior of
the system prior to reaching the destination are also
uncovered via the free-form search. Each of these so-
lutions possess varied implications for satisfying mis-
sion constraints and also performance outcomes. The
designer gains the ability to improve or expand intu-
ition about the solution space for the given transfer
scenario. Also notable, trades between the di↵erent
options are available to determine a viable option for
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Fig. 24: Examples demonstrating the capability of free-form
search to support chemical and low-thrust engine options.
Departure DRO: JC = 2.85, Destination DRO: JC =
2.935.
(a) Chemical Initial Guess: Estimated TOF = 14 days,
Estimated �V = 113.54m/s.
(b) Chemical �V Optimal: TOF = 18.44 days, �V =
73.28m/s.
(c) Low-Thrust Initial Guess: Estimated TOF = 15 days,
Estimated

mf

m0
= 99.61%.

(d) Low-Thrust Mass Optimal: TOF = 18 days, Thrust
Duration = 5.56 days,

mf

m0
= 99.73%, �V Equivalent =

105.82m/s

Earth Moon

Fig. 25: Unstable manifolds of L1 Lyapunov Departure Orbit

Moon Earth Moon

(a) (b)

Earth Moon MoonEarth

(c) (d)

Fig. 26: Free-form search to uncover varied transfer geome-
tries between L1 Lyapunov (JC: 3.14) and DRO (JC:
3.7847) for initial approximations.
(a) Estimated TOF = 24 days, Estimated

mf

m0
= 99.52%.

(b) Estimated TOF = 45 days, Estimated
mf

m0
= 98.89%.

(c) Estimated TOF = 108 days, Estimated
mf

m0
= 97.74%.

(d) Estimated TOF = 147 days, Estimated
mf

m0
= 96.43%.

the mission. Although the advantage of the free-form
search is its potential to establish variety across so-
lutions, it can be challenging to restrict the search to
specific areas of the configuration space. Exploiting
the regressed and classified flow-models are one op-
tion to address such a limitation. For example, the
desirable connection profile may be consistent with
motion closely following the flows in the families of
the departure and destination orbits (much like the
geometry identified in Fig. 26(a)), then the L1 Lya-
punov and DRO family flow-models might be added
to deliver su�cient options. Adding further insight
to the transfer trade-space, examples of yet di↵erent
links between the orbits are illustrated in Fig. 27;
these transfer profiles are now restricted to motion
belonging to either the L1 Lyapunov or DRO fam-
ilies - the transfer arcs exhibit L1 Lyapunov-like or
DRO-like behavior. Optimized low-thrust solutions
for the initial guesses in Fig. 26(b) and Fig. 27(c) are
captured in Fig. 28. The free-form and model-based
pathfinding is extendable to the spatial realm as well.
The search dimensions are, however, expanded when
including the out-of-plane position and velocity com-
ponents during the search process, thus, leading to
potentially increased computational resource require-
ments to uncover transfer options. As such, rather
than a blind search, one option is to propagate the
manifolds of the departure and/or destination orbits
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Moon

(a)

Moon

Moon

(b) (c)

Fig. 27: Restricting search space using trained flow models to
transfer between L1 Lyapunov (JC: 3.14) and DRO (JC:
3.7847)
(a) Estimated TOF = 21 days, Estimated

mf

m0
= 99.34%

(b) Estimated TOF = 45 days, Estimated
mf

m0
= 98.31%

(c) Estimated TOF = 60 days, Estimated
mf

m0
= 97.64%.

MoonEarth

- L1 Lyapunov
- DRO
- Thrust arcs
- Coast arcs

Moon

- L1 Lyapunov
- DRO
- Thrust arcs
- Coast arcs

(a) (b)

Fig. 28: Optimized low-thrust solutions constructed from ini-
tial guesses in Figs. 26 and 27.
(a) TOF = 52.32 days, Thrust Duration = 11.67 days,
mf

m0
= 99.43%, �V Equivalent = 222.45m/s

(b) TOF = 58.29 days, Thrust Duration = 20.48 days,
mf

m0
= 99.01%, �V Equivalent = 391.16m/s

to aid with seeding potential pathways. As an ex-
ample, the departure orbit in Fig. 29 (southern L2

NRHO with a periapsis altitude of ⇡ 1763 km) is
stable and possesses no unstable manifolds. So, the
stable manifolds of the destination halo orbit (pe-
riapsis altitude of ⇡ 49, 215 km) are propagated in
reverse-time to gain intuition into the transfer prob-
lem. It is evident from Fig. 29 that both interior

Moon

Earth

Moon

Earth

Fig. 29: Stable manifolds approaching southern L2 halo orbit

and exterior flows toward the planar halo orbit exist.
However, the manifolds for this orbit all remain rela-
tively planar as well; no obvious connecting pathways
from the NRHO to the destination orbit, especially
in terms of the exterior flows exist. So, an alterna-
tive strategy employs the accessible region generation
process in reverse-time. The states within ARs gen-
erated in reverse time from the arrival orbit should
lead to this destination orbit in forward time. The
states along the destination orbit are perturbed by
the maximum �V possible for the selected engine
burn-time and for the given s/c capabilities (as dis-
cussed in Section 5.1), and are propagated in reverse
time for a duration to create an accessible region.
The state conditions within this first accessible re-
gion are then each similarly perturbed and propa-
gated in reverse time for the specified time horizon;
this process is repeated multiple times as deemed ap-
propriate for the specific problem under considera-
tion. Figure 30 illustrates the resulting seed states in
configuration space. Although these waypoints follow
a similar geometrical path to the stable manifolds
as illustrated in Fig. 29, this latter approach pro-
duces spatial waypoints between departure and desti-
nation orbits as well. The seed states, pre-configured
with reinforcements (Fig. 30) are introduced to the
reinforcement learning paradigm to construct trans-
fers from the NRHO to the planar halo. Examples
of two transfer geometries from such a search are
plotted in Fig. 31. The results in this figure illus-
trate that the stochastic nature of the reinforcement
learning paradigm ensures variety in the transfer ge-
ometries, even with the inclusion of suggested way-
points. One option to investigate interior transfers
between the orbits is restricting the search to within
the trained flow-model for the southern L2 halo fam-
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Moon

Earth

Moon
Earth

Fig. 30: Seed states resulting from accessible region genera-
tion performed in reverse time from destination orbit (L2
southern halo)

.

Moon

Earth

Moon

Earth

(a) (b)

Fig. 31: Free-form spatial transfer example geometries from
southern L2 NRHO (rPAlt = 1763.31km) to southern L2
halo (rPAlt = 49, 215.45km). Note, rP ! Periapsis.
(a) Estimated TOF = 75 days, Estimated

mf

m0
= 95.39%

(b) Estimated TOF = 129 days, Estimated
mf

m0
= 92.92%

ily. Such a transfer profile is constructed in Fig. 32.
The free-form and model-based initial guesses possess
the state, time, thrust magnitude and direction histo-
ries that are input to the optimization scheme to pro-
duce the low-thrust continuous transfers that appear
in Fig. 33. The low-thrust continuous solutions main-
tain a similar geometry and comparable performance
measures to those declared for their corresponding
initial guesses. The interior transfer in the scenarios
computed in Fig. 33(a) enables faster transport be-
tween the departure and destination, but with one
fewer lunar flyby. Consequently, the increased thrust
duration elicits higher propellant consumption than
the exterior transfer.

The reverse-time seeding technique is especially
useful in illuminating pathways under circumstances
where no natural flows exist into/out of stable or-
bits in the spatial realm, as with the southern L2

NRHO and DRO (Fig. 34). In this example, an al-
ternative strategy to flow-models is restricting the
nature of the transfers to produce smaller accessi-
ble regions and induce a more gradual exit from the
NRHO. Das-Stuart et al.17,18 share the process and
examples such that the time horizon associated with
constructing the ARs is reduced to diminish their size

Moon

Fig. 32: Trained flow-model enabled spatial transfer exam-
ple from southern L2 NRHO (rPAlt = 1763.31km) to
southern L2 halo (rPAlt = 49, 215.45km). Note, rP !
Periapsis.
Estimated TOF = 42 days, Estimated

mf

m0
= 96.42%

Moon

- L2 Southern NRHO
- L2 Southern Halo
- Thrust arcs
- Coast arcs

Moon

Earth

- L2 Southern NRHO
- L2 Southern Halo
- Thrust arcs
- Coast arcs

(a) (b)

Moon

Moon
Earth

- L2 Southern NRHO
- L2 Southern Halo
- Thrust arcs
- Coast arcs

(c)

Fig. 33: Mass optimal low-thrust transfers from L2 NRHO
to southern L2 halo - constructed from initial guess in
Figs. 31 and 32.
(a) TOF = 48.48 days, Thrust Duration = 26.86 days,
mf

m0
= 98.70%, �V Equivalent = 513.85m/s

(b) TOF = 131.32 days, Thrust Duration = 23.88 days,
mf

m0
= 98.84%, �V Equivalent = 456.56m/s

(c) Side-view of (b)
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and, thus, restrict the variety of natural arcs avail-
able. Activating the low-thrust engine over a time-
horizon of 3 days in Fig. 31 results in an equivalent
�V ⇡ 57 m/s per transfer arc from the NRHO. This
�V kick, along with the additional boost received
from the Moon during the NRHO departure produces
large ARs and exposes the s/c to arcs that lead to ex-
ternal transfers. Reducing the time horizon to 2 days
reduces the ‘kick’ to an equivalent �V ⇡ 38 m/s and
shrinks the size of the ARs su�ciently to enable inte-
rior transfers as well. Similarly, a 1 hour engine-burn
time and 1 day propagation duration for the chemical
s/c enables interior transfers as well. The appropri-
ate burn duration and the corresponding �V magni-
tude for a particular scenario is currently determined
empirically. So, the example in Fig. 34 reveals that
trained flow models are not ‘necessary’ to construct
interior transfers, even though exploiting the models
may be beneficial for extracting additional geometries
as demonstrated. Note that the estimated TOF for

- L2 Southern NRHO
- DRO
- Chemical Transfer arcs

Moon

Earth

- L2 Southern NRHO
- DRO
- Chemical Transfer arcs

(a) (b)

Moon

Moon
Earth

(c) (d)

Fig. 34: Manipulating engine-burn time and thus, maneuver
and AR size to construct initial guesses linking the spa-
tial and planar realm between two stable orbits (free-form
searches only). Departure: NRHO (rPAlt = 1763.31km)
to DRO (JC: 2.935, Period: ⇡ 13days). Note, rP ! Pe-
riapsis.
(a) Chemical Interior: Estimated TOF = 9 days, Esti-
mated �V = 711.61m/s.
(b) Chemical Exterior: Estimated TOF = 48 days, Esti-
mated �V = 2.64km/s.
(c) Low-Thrust Interior: Estimated TOF = 20 days, Es-
timated

mf

m0
= 97.93%.

(c) Low-Thrust Exterior: Estimated TOF = 126 days,
Estimated

mf

m0
= 90.16%

the exterior transfer initial guess in 34(b) is high at
2.64 km/s. This initial guess is constructed by imple-
menting maneuvers at 1 day time-intervals; in reality,
a chemical transfer would consist of fewer burns and

longer ballistic arcs. However, once the initial guess
is acquired, numerical corrections and optimization
eliminate undesirable maneuvers and render a more
realistic chemical transfer solution (Fig. 35). The

Moon

- L2 Southern NRHO
- DRO
- Transfer segment

Moon

Earth

- L2 Southern NRHO
- DRO
- Transfer segment

(a) (b)

- L2 Southern NRHO
- L2 Southern Halo
- Thrust arcs
- Coast arcs

Moon

Moon
Earth

- L2 Southern NRHO
- DRO
- Thrust arcs
- Coast arcs

(c) (d)

Fig. 35: �V Optimal chemical and mass-optimal low-thrust
solutions from free-form search initial guesses in Fig. 34.
(a) Chemical Interior �V Optimal: TOF = 10.78 days,
�V = 481.04 m/s.
(b) Chemical Exterior �V Optimal: TOF = 50 days,
�V = 626.48 m/s.
(c) Low-Thrust Interior Mass Optimal: TOF =
28.22 days, Thrust Duration = 26.64 days,

mf

m0
= 98.71%,

�V Equivalent = 509.67m/s

(d) Low-Thrust Exterior Mass Optimal: TOF =
124.16 days, Thrust Duration = 21.17 days,

mf

m0
=

98.97%, �V Equivalent = 404.54m/s

Moon
MoonEarth

- L2 Southern NRHO
- DRO
- Thrust arcs
- Coast arcs

Fig. 36: Zoomed-in view of solution in Fig. 35(d).

initial guesses prove su�cient in enabling the chem-
ical and low-thrust spacecraft to transition between
varied energy levels, inclinations and locations in con-
figuration space.

7. Concluding Remarks

Trajectory design is a careful balance that jug-
gles diverse constraints, priorities and requirements
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to enable successful missions. Additionally, operat-
ing in highly nonlinear and chaotic regimes o↵ers an
infinitely large combinatorial optimization problem -
one that is intractable to explore thoroughly via a
manual approach. So, an automated search strat-
egy is sought where design e↵orts are refocussed on
defining the constituents in support of the broader
mission goals, and machine learning strategies are in-
corporated to examine the combinatorics and o↵er
attractive solutions. The design of end-to-end tra-
jectories is facilitated by constructing a framework
composed of four essential steps - (1) simulating the
reach of the s/c to assess the regions it can access
in the dynamical regime, (2) identifying the natural
conditions ’on-the-fly’ that are available within these
accessible regions (AR), (3) implementing automated
pathfinding via reinforcement learning to sequence
the natural arcs and formulate a discontinuous yet
complete route to the destination, and (4) transition-
ing the solution to a higher-fidelity engine/dynamical
model via a numerical corrections process.

The investigation leverages the strengths of vari-
ous branches of machine learning to establish a suc-
cessful design framework. Distributed and cooper-
ative reinforcement learning agents undertake com-
putationally e�cient pathfinding strategies assisted
by (i) a free-form scheme, and (ii) a trained regres-
sion and classification model-based natural condi-
tion generation scheme. A free-form search exploits
solely the system dynamics to instantaneously gener-
ate natural conditions within an AR for the pathfind-
ing agents. Searches adopting this scheme in the
higher-dimensional spatial realm benefit from seed-
waypoints generated via reverse-time AR computa-
tions from the destination. In contrast, the pattern-
recognition and predictive capabilities of Artificial
Neural Networks (ANNs) and Support Vector Ma-
chines (SVMs) are exploited to expose links exhibit-
ing useful approximately periodic behavior, to trans-
port the s/c to the destination.

Both free-form and model-based approaches pos-
sess unique strengths. The former empowers the
pathfinding agents to explore in an unconstrained
manner and, thus broadens design options via -
traversal of both chaotic and ordered motion, reveal-
ing otherwise inconceivable transfer structures. A
broad trade-space may be exposed, and any insight
into the dynamical regime and the particular transfer
scenario is introduced. The trained models restrict
the search-space to desired geometries, leverage in-
sight and eliminate challenges associated with a dis-
cretized database. The inherent variety in solutions
established by these di↵erent techniques enable flex-

ibility in the design framework and o↵set converges
issues associated with some traditional trajectory de-
sign approaches.

The results in this analysis demonstrate benefits
of machine learning strategies to yield initial guesses
that harbor the required state and time histories to
initiate numerical corrections. Even the ground work
for advantageous thrust and coast locations is in-
formed by the freedom to construct transfer segments
with nil to a maximum allowed position and velocity
discontinuity within the ARs. Applicable to both the
planar and spatial realms, the mass-time performance
reports from the sequencing of natural arcs have in
general, proven to be reliable estimates of the per-
formance metrics following the optimization process.
The ability to generalize this design capability across
various engine platforms (low-thrust and chemical)
is realized by incorporating a spacecraft’s particular
specifications when establishing its reach via ARs,
during each step of the pathfinding process.

The essence of this investigation is exploring the
potential of automated pathfinding and machine
learning schemes to aid with trajectory design. The
findings reveal that the cadence set in motion does
not replace human input. For example, the model-
based approach is only as good as the human subject
matter expertise which influences the design choices
during training. Furthermore, revelations by the ma-
chine learning explorations bear the potential to en-
courage more sophisticated modifications/fine-tuning
e↵orts by humans to deliver better mission-enabling
solutions — the design e↵orts continue to remain an
iterative process, albeit, with enhanced and quicker
insights into the mission scenario.
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9. Appendix

9.0.1 Derivations - Artificial Neural Networks (ANNs)

This section details the ANN design choices incorporated
in this investigation, and the associated derivations.

A Activation Functions Incorporated in this Investigation

:::::
Linear

:::::::
Function (Regression model output layer)

The linear activation function is often incorporated as the out-
put layer in regression networks, where the outputs can be
unbounded:

f(z) = Az [21]

::::::::
Hyperbolic

::::::
Tangent

::::::::
Function (Hidden layers)

The ’tanh’ function scales the sigmoid function to be centered
around a zero-mean. Its mathematical formulation is:

f(z) =
1� e

�2z

1 + e�2z
. [22]

This activation function diminishes the output for insignificant
logit values.

::::::
Softmax

:::::::
Function (Classfication model output layer)

A softmax function, usually employed in the output layer,
parses the knowledge gained through the network into a prob-
ability distribution over C outcomes (classes). The sum of the
outputs of the neurons in the layer add to 1; such a rule is
useful for classification problems, as higher probabilities can
be associated with strong predictions about an input belong-
ing to a certain class.28 This approach must be exercised with
caution, as the presence of a datapoint that does not belong to
any of the expected classes can lead to false conclusions. This
function is modeled as:

f(z◆) =
e
zi

PC
c=1 e

zc
[23]

where, ◆ = 1, 2, 3, ...C

B Error Minimization

::::::
Softmax

::::::
Output

:::::
Layer

:::
and

:::::::::::
Cross-Entropy

::::
Loss

The predicted probability distribution for a neuron at the soft-
max output layer from Eqn. [23] is set equal to the predicted
output class values, Yp◆ :

Y(o)
p◆ = f(z(o)

◆ ) [24]

Cross-entropy loss (error) is often implemented for classifica-
tion problems where the information from a softmax layer is
representative of a probability distribution,30 and is defined at
the output layer (o), as:

E =
CX

◆=1

Y(o)
t◆

log(Y(o)
p◆ ), [25]

where Yt◆ are the true probabilities of belonging to a particu-
lar class. Note that logistic regression for binary classification
is a particular instance of the multi-class classification prob-
lem. The process of weight updates in each layer begins with
establishing a relationship between the error and the logit at

the output layer:31
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@zc(o)
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(
Y(o)
p◆ (1� Y(o)
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�Y(o)

p◆ Ypc ◆ 6= c

[26]

So, Eqn. [26] is re-written as:
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[27]

As the term [Y(o)
t◆

+
P

c6=◆ Y(o)
tc

] in Eqn. 27 equals 1,

@E

@z(o)
◆

= Y(o)
p◆ � Y(o)

t◆
[28]

:::::
Linear

::::::
Output

::::
Layer

::::
and

:::::
Mean

:::::
Square

:::::
Error

The output of a linear layer is characterized as:

Y(o)
p' = f(z(o)

' ) = z(o)
' [29]

The Mean Square Error (MSE) is appropriate for the contin-
uous and unbounded variable outputs associated with a linear
output layer for regression.

E =
⌥X

'=1

(Y(o)
t'

� Y(o)
p' )2

⌥
[30]

The rate of change of the error with respect to the within-layer
logit is then:
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[31]

So, Eqn. [31] is re-written as:

@E

@z(o)
'

= �(Y(o)
p' � Y(o)

t'
) [32]

where, � = 2
⌥ .

::::::::::::
Backpropagation

::
of
:::
the

:::::
Error

::
to

::::::
Hidden

:::::
Layers

Equations [28] and [32] describe the error with respect to the
logit at the last or ouput layer. This error must be propagated
back through to the input layer to trace the influence of the
weights in the hidden layers that lead to the final error, E .29
For a hidden layer l within a network with j neurons, a preced-
ing layer (l� 1) with i neurons and a superseding layer (l+1)
with k neurons, the relationship between the final error and
weights are captured via partial derivatives,

@E

@w(l)
i,j

=
@E

@z(l+1)
k

@z(l+1)
k

@yp(l)
@yp(l)

@z(l)j

@z(l)j

@w(l)
i,j

[33]
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where, each of the above quantities have been previously

defined. Note that the predicted output from a layer y(l)p , is

equivalent to the input entering the next layer x(l+1).

C Generalizability of ANNs
An appropriate network size that balances the speed of train-
ing, accuracy and generalizability of the model is most success-
ful. So, adopting techniques such as regularization26 and early
stopping techniques are e↵ective measures to o↵er insights into
over-fitting.29 The latter option (employed in this investiga-
tion) validates the model periodically with ‘unseen’ data, and
terminates the training when the validation accuracy begins to
stagnate even as the training accuracy continues to decrease.

9.0.2 Derivations - Support Vector Machines (SVMs)

This section details the SVM design choices incorporated
in this investigation, and the associated derivations.

A Computing Weights and Biases for Separating Hyperplanes.

Solving for wi and B is initiated by calculating the primal
form of the Lagrangian, where the constraints in Eqn. [11b]
and [11c] are appended with non-negative Lagrange multipli-
ers ⌫i � 0 and ⌫i � 0 and adjoined with the objective func-
tion:36

min
W,B,⇣

Lp(⌫, ⌫, x,w, ⇣) =
1

2
WT W+

C

NX

i

⇣i �
NX

i

⌫i[yif(xi)� 1 + ⇣i]�
NX

i

⌫i⇣i [34]

Determining stationary points of Lp with regards to the primal
variables W, b and ⇣ leads to the following conditions:

W =
X

i

⌫iyixi [35a]

0 =
X

i

⌫iyi [35b]

C � ⌫i � ⌫i = 0 [35c]

These relationships are substituted into Eqn. [34] to construct
the dual formulation (Eqn. [36]), useful in scenarios requiring
analysis in a higher dimensional space.

max
⌫

Ld(⌫, ⌫, x, y) =

NX

i

⌫i �
1

2

NX

i

NX

j

⌫i⌫jyiyjhxi, xji [36]

The combination of the conditions in Eqns. [11c] and [35c]
constrain the bounds on the Lagrange multipliers (⌫i), that is,

⌫i  C. [37]

So, C is also recognized as a box constraint since it bounds
the values of ⌫i. Note that the Karush-Kuhn-Tucker (KKT)
conditions supply the necessary conditions for optimality and
dictate the values for ⌫i:37

8
<

:

yif(xi) � 1 ⌫i = 0
yif(xi)  1 ⌫i = C

yif(xi) = 1 0 < ⌫i < C

[38]

Since only the non-zero ⌫i contribute towards the maxi-
mization process of the Lagrangian, the corresponding xi
assume the role of support vectors for the problem. Similarly,
the non-zero ⇣i also assume the role of support vectors for
scenarios associated with non-separable data. The value of B
is extracted from the third KKT condition in Eqn. [38], i.e.,
yif(xi) = 1 as ⇣i = 0 when 0 < ⌫i < C.

B Transformation of Feature Space to a Higher Dimension
This process involves mapping the inner products of input pairs
(introduced in Eqn. [36]), to a higher dimension by a feature
or kernel function, K(xi, xj). To be identified as a kernel func-
tion, the Mercer kernel property must be satisfied, that is, the
kernel must be positive semi-definite.29 Thus, the dual form of
the Lagrangian Ld, is convex, eliminating potential encounters
with problematic local-minima encountered with ANNs during
optimization. The infinite dimensional mapping a↵orded by
gaussian Mercer kernels is adopted in this investigation:

K(xi, xj) = e
��||xi�xj ||2 . [39]

The selection of the kernel function is problem specific, and is
informed by a priori knowledge of the underlying relationships
in the data. The dual form of the Lagrangian is modified to
include the kernel functions as:

max
⌫

Ld(⌫,X,W) =

NX

i

⌫i �
1

2

NX

i

NX

j

⌫i⌫jyiyjK(xi, xj) [40]

Note that K(xi, xj) is equivalent to the inner product of the
higher dimensional transformation of the original data by a
nonlinear function, h�(xi),�(xj)i. Since the dual formulation
is a direct function of the input training data points (xi 2 Rn),
the dual formulation in Eqn. [40] guarantees that the computa-
tional burden is not drastically increased even when the kernel
function transforms the problem into a higher dimensional fea-
ture space. The computationally e�cient Sequential Minimal
Optimization (SMO) algorithm is adopted to solve the con-
vex optimization problem - optimizing one pair of Lagrange
multipliers at a time, selected via heuristics.39 The appro-
priately tuned weights and bias via the optimized Lagrange
multipliers deliver either a positive or negative output score
(f(xi) = Si), that aids in binary classification of the data. A
desirable measure of confidence in the classification is obtained
by transforming this score to an output’s posterior probabil-
ity, based on the prior belief as determined by the selected
kernel function.28 A parametric form of the sigmoid function
is employed to extract the appropriate mapping of the scores
to approximate the posterior probability:28

P(Si) =
1

1 + exp(A Si + B)
[41]

The term P(Si) in Eqn. [41] is equivalent to the predicted
probabilities of the data-points belonging to a class of interest
as discussed in Section 4.1.1. So, A and B are computed
using any optimization algorithm that minimizes the log-losses
measured by cross-entropy error.

C Generalizability of SVMs
The geometric-complexity of the margin delivered by the box
constraint C, and the kernel hyper-parameter(s), determine
the total number of support vectors and, thus, also the mem-
ory requirements associated with the trained model. These
hyper-parameters are determined either via a grid-search or
optimization techniques that minimize the classification errors.
This investigation incorporates the readily available BayesOpt
library for computing the hyper-parameters.40 The accuracy
of the trained model may be tested using either hold-out or
cross-validation sets.28 The hold-out technique sets aside a
small fraction of the data for testing purposes. In the cross-
validation approach, the data is equally partitioned into k folds
such that each fold is exploited as a validation set for k rounds
of training.
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