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Designing trajectories in dynamically complex environments is challenging and easily becomes intractable. Recasting the
problem may reduce the design time and offer global solutions by leveraging phase space mapping patterns available as accessible
regions, and the application of search techniques from combinatorics. A computationally-efficient search process results that
produces potential trajectory concepts to meet unique design requirements over a broad range of mission types, including low-
thrust scenarios. A successful framework is summarized in terms of four components: (i) Database generation - discretization of
well-known dynamical structures to form a searchable 2D or 3D volume or map. (ii) Accessible regions - establishing reachable
regions within the searchable database for a given thruster/engine capability. (iii) Automated pathfinding - exploiting machine
learning techniques to determine the transport sequence solving for an efficient path. (iv) Convergence/optimization - once the
transport sequence is determined as a globally efficient concept, it is optimized locally by more traditional numerical strategies.

1. Introduction

Recent advancements in the capabilities for space
exploration offer opportunities to reach a wide ar-
ray of destinations, from the Moon, to the asteroid
belt, as well as to the outer planets. Such endeav-
ors demand effective mission design strategies that
trade-off diverse constraints to ensure mission suc-
cess; achieving the mission goals, satisfying opera-
tions requirements, assessing safety, and managing
cost are some aspects to be considered. Potentially
low engine acceleration levels, uncertainty in the de-
ployment status for secondary payload missions, and
re-design for contingency scenarios are also additional
challenges. Hence, the increasing complexity of mis-
sion design scenarios suggests that a rapid trajectory
design framework is valuable — one that offers the ex-
ploration of broad trade-spaces and is, at least semi-
automated. Such a framework is particularly bene-
ficial in the near term; i.e., to support an efficient
cis-lunar transportation architecture that also aids
the emergence of new mission concepts beyond the
Earth-Moon neighborhood. The knowledge gained
from many prior efforts form an integral part of the
current investigation.

The construction of a rapid design framework com-
mences with a fundamental understanding of the
natural dynamics in the Earth-Moon system that
is leveraged to enable mission scenarios. Libra-

tion point orbits have proven to be key elements in
the trajectory design for missions such as Genesis,
ARTEMIS and WMAP; Distant Retrograde Orbits
(DROs) may also enable future infrastructure capa-
bilities.1 Folta et al.2 offer an interactive catalog of
orbit families for applications in multi-body regimes;
the advantages of characterizing trajectory parame-
ters to identify potential parking and transfer options
are apparent. Additional investigations demonstrate
the ability to link various arcs belonging to such or-
bits,3 exploit their manifolds4 and assess their signa-
tures on reduced-dimension Poincaré maps5 to gener-
ate viable transfers in the Circular Restricted Three
Body Problem (CR3BP); such a first step renders a
suitable initial guess for higher fidelity analysis in an
ephemeris model.

The utility of natural arcs can serve as a basis for
transfer design, frequently lowering propellant costs
even in efficient low-thrust regimes.6 These hybrid
low-thrust/low-energy trajectories are constructed by
assessing the intersections of natural arcs with thrust-
ing arcs at a selected hyperplane crossing.7 Assump-
tions concerning a steering law, leveraging forward
and backward propagations, and/or optimal control
theory are common tools to isolate regions on the hy-
persurface that are attainable by a low-thrust engine.
To address the challenges associated with constrained
basins of convergence, and the sensitivity of indirect
optimization methods to the initial guess, collocation
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and direct optimization strategies have emerged to
solve low-thrust problems.8

The access to a wide range of natural arcs, to
be coupled with powered arcs resulting from avail-
able thrust capabilities, results in the examination of
an infinitely large trade-space to satisfy mission con-
straints. This situation quickly becomes intractable
when addressed solely via manual search methods.
Thus, some recent investigations address the prob-
lem via combinatorial optimization techniques, gen-
erally employing two different approaches. In the
first approach, traditional numerical processes are
employed to construct an initial guess database com-
prised of locally optimal solutions. Then, well known
graph-search and machine learning methods are ex-
ploited to solve a multi-objective problem by ex-
amining combinations within the database to pro-
duce a global or nearly-global optimum. Conclusions
from Radice and Olmo,9 Ceriotti and Vasile,10 Stu-
art and Howell,11 as well as Furfaro and Linares 12

demonstrate the potential of heuristic methods such
as Ant Colony Optimization (ACO), and Reinforce-
ment Learning (RL) to be effective in various dy-
namical regimes and in uncovering local optima that
may have otherwise remained unknown. Approaches
employing genetic algorithm are also proven as ben-
eficial.13 The second type of strategy recasts the
problem in terms of pathfinding — where the initial
guess itself is constructed via Artificial Intelligence
(AI) techniques and is then subjected to a numer-
ical corrections process. Tsirogiannis,14 as well as
Trumbauer and Villac15 generate impulsive transfer
options by constructing a framework of pre-computed
natural arcs and using graph search methods to eval-
uate the links. The nodes then serve as waypoints in a
complex dynamical regime. Simplifying assumptions
in a two-body model are exploited by Parrish16 to
employ heuristics in solving for consistent low-thrust
initial guesses.

The current investigation strives to establish a
framework for automated low-thrust initial guess gen-
eration within a multi-body regime, via pathfinding
techniques. The foundation is developed for a pro-
cess that alleviates the challenges associated with
thrust law construction, the sequencing of thrust and
coast arcs, and the limited solution options result-
ing from narrow basins of convergence when imple-
menting traditional numerical techniques. Approx-
imating low thrust segments via a sequence of im-
pulsive maneuvers is effective for preliminary mission
design,17 and aids in this investigation. Both deter-
ministic processes, as well as stochastic techniques

exploiting software ‘agents’, enable the desired broad
search capability. Future developments deliver a flex-
ible process to accommodate varied constraints, dy-
namical regimes, and spacecraft parameters. Such a
tool is envisioned as applicable in supporting future
onboard autonomy and, therefore, beneficial in time-
critical contingency planning scenarios.

The force models and numerical techniques that
support the initial guess generation process are in-
troduced in Section 2. Some artificial intelligence
and machine learning strategies apprear in Section 4,
and the design framework is formalized in Section 5.
Sample scenarios and preliminary results are offered
in Section 6.

2. Dynamical and Force Model

Although the dynamical sensitivity is evident, the
CR3BP offers an opportunity to approximate the
higher fidelity dynamics and exploit the natural flows
that are otherwise unavailable in simpler dynamical
regimes. Also, a target application for the design
framework is a robust cis-lunar transportation ar-
chitecture, so the methodology is applied within the
context of the Earth-Moon CR3BP. Here, the Earth
(primary, P1) and the Moon (secondary, P2) are as-
sumed to revolve in circular orbits around their com-
mon barycenter.18 The spacecraft mass is assumed
to be negligible compared to the more massive bod-
ies. Construction of the Equations of Motion (EOM)
for the spacecraft (P3) as viewed in a rotating frame
also incorporates a thrust force to model the physical
capabilities of an engine/thruster.

χ̇ =

 ṙv̇
ṁ

 =


v

f(r) + g(v)︸ ︷︷ ︸
natural

+
T
m
û︸︷︷︸

low-thrust
−T

Isp go

 [1]

The differential equations incorporate contribu-
tions from both the natural gravitational, and thrust
acceleration sources to capture the motion of the
spacecraft (s/c), and its mass-history over time. In
these equations, χ is the full state vector compris-
ing the vehicle position and velocity vectors (r and v
respectively), and vehicle mass m. The thrust mag-
nitude is represented by T, and the thrust direction
by û (where a caret identifies unit magnitude). Isp
is the engine specific impulse and, g0 is the reference
gravitational acceleration. Even without the engine-
specific thrusting terms, there is no closed-form solu-
tion to the natural EOMs. So, in the thrust-free prob-
lem, other quantities such as the period, stability and
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the Jacobi Constant (JC, an energy-like quantity) of
the natural solutions help characterize the motion of
the s/c within the confines of the CR3BP model. The
JC is defined as:

JC = 2U∗ − v2 [2]

where U∗ is a pseudo-potential term whose gradient
contributes to derivation of the EOMs.

U∗(x, y, z) =
1− µ
r13

+
µ

r23
+

1

2
(x2 + y2) [3]

So, U∗ is a function of the s/c position relative to the
barycenter (x, y, z) and the two primaries r13 and r23,
and the mass ratio of P2 to the total system mass, µ.
Note from Eqn. [2] that the JC term is only constant
in the autonomous system where propulsive forces
are absent; its time-history resulting from low-thrust
maneuvers also offers valuable insights for developing
and applying the automated framework.

To deliver the thrust force in Eqn. [1], a rela-
tively new technology, advanced ion-drive propulsion,
is gaining popularity due to the ability to improve the
payload delivery capabilities. This efficiency however,
is delivered at lower thrust levels and therefore, po-
tentially lengthy flight durations.19 Currently, oper-
ational s/c are built to function at a constant specific
impulse (CSI). But, it is assumed that the specific
impulse is continuously tuned (Variable Specific Im-
pulse, VSI), to optimize the locations of high and low
thrust burns, thereby optimizing the propellant con-
sumption.20 The VSI model is promising for future
endeavors and it is reasonable to assume such capa-
bility. Thus, in the current analysis, the initial guess
generated is transitioned to continuous low-thrust so-
lutions in both the CSI and VSI models. Transitions
to a higher fidelity model enabled by chemical engines
is also investigated.

3. Numerical Corrections and Optimization

Constructing low-thrust optimal trajectories typ-
ically involves a formulation as an optimal control
problem, and solving for the time-histories of the
thrust magnitude and the thrust force direction to
meet the desired boundary conditions using direct
or indirect approaches. In general, direct methods
are more robust, but induce a large dimensionality
and often require assumptions on the thrust profile
(e.g., constant thrust direction over each arc). Indi-
rect optimization methods mitigate such limitations,
but often introduce numerical challenges.21 Both ap-
proaches are employed in the current investigation.

3.1 Constant Specific Impulse Engine Parameters

In both the CSI and VSI regimes, the available
thrust magnitude is a function of the engine power
allocation, (P) and efficiency (Isp). The relationship
is modeled as:

T =
2P

Isp g0
[4]

In the CSI regime, constant power and Isp parame-
ters dictate a constant thrust magnitude. The basis
of the control authority that maneuvers the s/c is
an on-off engine toggle and thrust-vectoring. A con-
tinuous low-thrust trajectory is constructed from a
discontinuous initial guess by employing a multiple-
shooting scheme. Also, due to the inherent numerical
sensitivities associated with indirect methods for the
CSI trajectory design, direct methods are selected
in this preliminary analysis. An iterative Newton-
Raphson scheme is employed to compute the set of
design vector variables (X∗) that satisfy the specified
constraints, F (X∗) = 0.

, i.e.,X =


xi
ui
τi
TDi

 F =


xidesired − xiactual
τi + TDi − τi+1

ψdesired −ψactual
ui
Tui − 1

 = 0

[5]
The design vector X, is comprised of the states (xi),
thrust directions (ui), epoch times (τi), and propa-
gation durations (TDi) at select-nodes (i) that are
available from the initial guess. In an alternative for-
mulation, the thrust magnitude is also included as
a design variable rather than pre-assigning a binary
(on/off) state to the nodes and allowing the inter-
node propagation times to determine the duration
of the thrust and coast arcs. The constraint vector
F aims to meet state-continuity, epoch-continuity,
boundary condition (ψ), and thrust direction unit-
vector constraints at the specified nodes. The con-
verged solution is passed through a Nonlinear Pro-
gramming (NLP) software such as FMINCON or
SNOPT to optimize a cost function that is formulated
to offer a favorable solution to the mission objectives
and constraints.

3.2 Variable Specific Impulse Engine Parameters

For power-limited VSI engines, a constant power
level results in a variable thrust magnitude and Isp
values (Eqn. [4]). These additional variables further
expand the dimensionality of the problem, but the
modulation freedom also aids in the VSI convergence
process with poor initial guesses. So, indirect meth-
ods are well-suited for numerical computations. Pre-
vious studies22 have demonstrated that a hybrid ap-
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proach is capable of satisfying optimality conditions
by offering a convergence radius comparable to direct
methods, without compromising the benefits of lower
dimensionality. So, a hybrid method that functions
independently of the sensitive transversality condi-
tions, but incorporates the co-states to formulate the
optimal control history, is employed to converge so-
lutions in this model. The problem is posed as a
Two-Point Boundary Value Problem (2PBVP) and
solved using optimal control and primer vector the-
ory.23,24 The performance index J to be maximized
in this investigation is the delivered mass, i.e.,

maxJ = mf +νT0 ψ0+νTf ψf +

∫ tf

t0

(Ĥ−λT χ̇)dt [6]

subject to the boundary conditions ψ, Lagrange mul-
tipliers collected in the vector ν, and the path con-
straints within the integral. The position, veloc-
ity and mass co-state vector is defined as λT =
[λr,λv , λm]T . Here, Ĥ = H+(uTu−1), is a function
of the Hamiltonian, H (constant), and the thrust di-
rection unit-magnitude constraint. The Hamiltonian
in this problem is defined as:

H =

 λTrv
λTv(f(r) + g(v) + T

m û)

−λm T2

2P

 [7]

Note that the mass-flow rate defined in Eqn. [1] is re-
written in Eqn. [7] in terms of the power to aid in the

simplification of further derivations (i.e., ṁ = T2

2P ).
Deriving the necessary conditions of the cost function
J, requires solving for dJ = 0 and construction of the
Euler-Lagrange equations:

λ̇ =

(
− ∂Ĥ

∂χ

)
=


−λTv(∂f(r)∂r )

−λTr − λTv(∂g(v)∂v )
λv

T
m2

 [8]

(
∂Ĥ

∂u

)
= λv

T
m

+ 2û = 0 [9a](
∂Ĥ

∂T

)
= λv

û

m
− λm

T
P

= 0 [9b]

Inspection of Eqn. [7] and Eqn. [9a] indicates that
thrust direction parallel to the velocity co-state direc-
tion û =

λv
λv

maximizes H and, therefore, the cost
function. Similarly, the power P also operates at a
maximum, P = Pmax. Equation. [9b] is re-arranged
as T = λvPmax

λmm
, and its history is extractable in a

post-processing step. The VSI trajectory corrections

process is solved using a free-variable and constraint
formulation as described in Section 3.1. Note that
a low-thrust engine is typically most efficient over
longer flight durations. So, to prohibit the Isp val-
ues from modulating to infinity (ṁ → 0), the VSI
corrections process is a time-fixed formulation.

3.3 Chemical Engine Parameters

Construction of a converged/optimized trajectory
enabled by a chemical engine allows velocity discon-
tinuities as a design parameter. So, a process similar
to the direct approach as discussed in Section 3.1 is
implemented, with the exclusion of the thrust mag-
nitude and thrust direction terms in the design and
constraint vectors.

4. Pathfinding Strategies

The generation of an initial guess trajectory that
transfers a s/c from departure location to a specific
destination is cast as a routing problem. Exact or
heuristic algorithms are often employed to construct
solutions, the choice usually determined by the scope
of the problem, computational capabilities with re-
gard to time (speed-complexity) as well as storage
(space-complexity), and the desired fidelity of the so-
lution. In this analysis, both approaches are exam-
ined to better understand their applicability to tra-
jectory design scenarios. The algorithm is formulated
as an automated agent (software)-based search for a
path that achieves a specified goal, when subject to
a set of prescribed constraints.

4.1 Dijkstra’s Algorithm

Since the inception of graph theory by Leonhard
Euler in the 18th century,25 the specific methods and
variants have demonstrated great utility in varied dis-
ciplines such as routing, genomics, and artificial intel-
ligence. In each application, the graph represents the
set of available options (nodes N) under considera-
tion.26 The edges E or arcs, linking pairs of nodes are
shaped by the costs between them, Cost[< ni, nj >].
Non-unitary costs establish a weighted graph that is
either directed if the edge-costs are oriented, or undi-
rected otherwise. Commencing at the departure node,
the graph is expanded one arc at a time, < ni, nj >,
until the agent arrives at the target node. This traver-
sal is accomplished by: a) establishing a frontier of
neighbors that the agent can meet in one hop when
the edge costs from the current node are finite; and
b) selecting a neighbor from this frontier to incremen-
tally expand the search towards the target. Various
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motivating factors such as fewest nodes to the tar-
get, or a preference in time-space complexity, influ-
ence the choices in the search algorithm. Such choices
consequently dictate the selection of the next node in
expanding the frontier. The path, P, to the target is,
therefore, constructed via a sequence of arcs with a
total path cost, Cost(P) =

∑K
i=1 Cost[< ni, ni+1 >],

where K is the cardinality of the set of arcs in the
sequence.

The type of graphs encountered within the con-
text of mission design is usually weighted and di-
rected, due to the complex dynamics and the mass-
time trade-offs that constitute the edge-costs. So,
where the goal is multi-objective optimization, Dijk-
stra’s algorithm is employed as the exact approach
in this study; Dijkstra’s formulation constructs the
least-cost (shortest) pathway to the destination. This
algorithm employs a form of greedy search that al-
ways selects the lowest cost neighbor along a fron-
tier; and the cost from the departure node is up-
dated at a later time if an alternative, but shorter
route is later discovered. One approach to imple-
ment Dijkstra’s algorithm with a priority queue that
constantly re-stacks the nodes in ascending order of
cost is summarized in Figure. 1. Such a search strat-
egy that incorporates the least-cost expansion of each
arc, guarantees the emergence of the shortest path
to the target, or the global optimum.27 Non-unique
edge costs from a node can lead to non-unique global
optima in certain scenarios. The algorithm also guar-
antees that, if a solution exists, it will be uncovered
in a finite time interval. However, this finite compu-
tation time increases with an increasing search space.
The time is bounded by polynomial growth of order
O(n2) for naive implementations, and O(E + nlogn)
when employing a Fibonacci-heap to implement the
priority queue.14 Note that heap implementation be-
comes increasingly challenging for a complex search
space. Significantly contributing to the challenge of
an increased computational time is the uninformed
nature of the search, i.e., the algorithm is not aware
of the target/user’s goals as the search evolves. Built
on similar principles, the A* algorithm introduces
heuristics to conduct an informed search towards the
target; such an adjustment typically improves the
time-complexity, depending on the implementation.26

However, A* has not been explored in this investiga-
tion, as strict rules on the admissibility of the heuris-
tic are challenging to satisfy in a complex dynamic
environment with multi-objective optimization goals,
especially with simultaneous considerations of mass-
time trades.16

Fig. 1: An implementation of Dijkstra’s algorithm
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4.2 Heuristically Accelerated Reinforcement
Learning (HARL)

Any endeavor in the space environment is com-
plex. A flexible, long-term infrastructure will benefit
from a mission design approach that delivers transfer
solutions while accommodating uncertainties in the
environment, variable performance measures, and is
responsive to shifting goals. Reinforcement Learn-
ing (RL) algorithms originating from efforts in the
artificial intelligence domain are an effective tool in
balancing assorted ambitions, and are implemented
via an agent interacting with its environment; such
an agent learns to deliver appropriate choices that
lead to desirable solutions. The reinforcement learn-
ing approach is commonly formalized as a Markov
Decision Process (MDP)26 that is constructed from a
tuple: < S,A, P,R >; S then, is a set of states avail-
able to agent; A is a set of actions available to agent;
P is P(s,a,s′), the probability that action a in state s
leads the agent to arrive at state s′, R : S × A → R
is the reward received for an action a in state s. The
aim is to learn an optimal policy (π∗) that involves
executing an action at a given state that maximizes
the cumulative rewards received by the agent over
multiple episodes. A strategy to accomplish this task
involves a value function (Vπ) that iterates over all
the possible actions from a state to eventually arrive
at the optimal choice (V∗):

V∗(s)← max
a

∑
s′

P (s, a, s′)[R(s, a, s′) + γV∗(s′)]

[10]
Equation. [10] is essentially the Bellman Equation
employed widely in dynamic programming, and sat-
isfies the necessary conditions for optimality. The
prime symbol (′) indicates a state(s) accessible from
the frontier, as introduced in Section 4.1. In complex
regimes where the probabilities defining the system
model and the rewards are not known a priori, it is
useful to construct the problem as a model-free, state-
value pair approach. A state-value update function
is formulated in recursive form as:

(11)
F̂(s, a)← F̂(s, a) + α[R(s, a, s′)

+ γ max
a′

F̂(s′, a′)− F̂(s, a)]

and forms the repository of reinforcements from
which the agent learns the desirable behavior. The
discount factor 0 ≤ γ < 1 is a measure of the bal-
ance between immediate and future rewards; smaller
values of γ favor immediate rewards. The learning
rate of the agent is specified by α. It diminishes

over episodes to avoid fixation on only the most re-
cently gained knowledge, and enables trust on prior
knowledge that is posed as reinforcements received
over time. The optimal policy is then constructed as:

π∗(s) = argmax
a

∑
s′

F̂(s, a) [12]

The convergence to such an optimal policy using the
RL approach is guaranteed by re-visiting state-action
pairs infinitely many times, and the process may be
prolonged in scenarios subject to a large state-space.

The time-complexity of some RL algorithms can
be as challenging as exact approaches, e.g. Dijkstra’s
algorithm. So, it is beneficial to introduce a heuristic
function that accelerates the learning process by bi-
asing the selection of an action a, given a state s, with
a reward R. Such an algorithm is termed a Heuris-
tically Accelerated Reinforcement Learning (HARL)
algorithm, and the time-complexity depends on the
accuracy of the heuristics. The ability of the heuris-
tic function to influence the action-choice is based on
the ability to exceed the variations in F(s, a).28 Sce-
narios with large state-spaces and multiple objectives
also motivate a co-ordinated effort from a multi-agent
distributed HARL approach, particularly one that
exploits parallel processing. In such a distributed
network, the agents work cooperatively by updating
a centralized reinforcement repository based on the
knowledge (cumulatively discounted rewards) gained
during a specific episode. Within the context of mis-
sion design, the agent continues the search until a
stopping condition is satisfied, i.e. a terminal condi-
tion and/or a violation of constraints. An overview
of the learning process (within the context of mis-
sion design) is illustrated in Figure 2. Clearly, the
learning process within each episode is comprised of
two search scenarios — exploration and exploitation.
Exploration enables a training phase where the agent
learns about likely consequences of actions in the en-
vironment; the exploitation phase enables the agent
to engage in informed decisions by capitalizing on
previously gained knowledge. The policy at a partic-
ular state as influenced by the state-action pair and
heuristic is:28

π(s) =

{
E(F(s, a) ./ ξH(s, a)β), if q ≥ p
arandom, otherwise

[13]

where (H : S × A → R) is the heuristic function,
./ is a math operator as determined by the RL algo-
rithm, ξ and β are weighting parameters that dictate
the influence of the heuristic, and arandom is the ac-
tion chosen randomly from all those available in state
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Fig. 2: An implementation of HARL algorithm

s. The construction of the exploitation function E is
specific to a particular application; some variants in-
clude a greedy strategy that incorporates max(E),
a minimax approach that minimizes the losses in a
maximum loss scenario, and a softmax process that
stochastically selects an action.29 In this equation, p,
(0 ≤ p ≤ 1), is the trade-off parameter between ex-
ploration and exploitation, and q is a random value
from a uniform distribution in [0,1]. Greater values
of p encourage exploration and lower values bias the
process toward exploitation. Extensive exploration
in earlier episodes is beneficial, then a gradual shift
to eploitation. A convenient function to control the
steady-state value of the trade-off probability, pss by
the kth episode (Ep) is constructed as:11

p = pss + (1− pss)e(−
k−1

ln(Ep)
) [14]

The blending of heuristics with reinforcement learn-
ing is a powerful utility in solving many NP-hard and
NP-complete pathfinding problems, e.g., the Travel-
ing Salesman Problem (TSP).

5. Development of the Design Framework

A primary objective of this investigation is the de-
velopment of a framework to demonstrate the auto-

mated pathfinding process within the context of mis-
sion design. The first step in the framework develop-
ment is identifying the type of solution for the rele-
vant design scenario, including the associated level
of fidelity and level of optimality. The transition
of initial guesses (IG) from lower-fidelity dynamical
models such as the CR3BP enhances rapid design
and is effective. The first phase in the framework
development, therefore, involves a database of exist-
ing options, e.g., periodic and non-periodic trajectory
solutions in three-body system. The next phase es-
tablishes the reach of the spacecraft within the given
database, as influenced by its thrust-to-mass ratio,
propellant efficiency and other performance charac-
teristics. The available trajectory options and the
ability of the spacecraft to transition through them
dictates the subsequent phase — the sequencing of in-
termediate pathways to enable a satisfactory path be-
tween the departure and destination conditions. The
final phase involves convergence and optimization of
the initial guesses via numerical techniques to ensure
that the mission constraints are not violated, and the
requirements are fulfilled. The details associated with
each phase follow.

5.1 Compilation of the Database

Exploitation of the natural flow in a dynamical sys-
tem potentially reduces propellant consumption and
enables otherwise unexplored mission scenarios. Such
an option is especially attractive for secondary pay-
loads that can possess acceleration levels at least an
order of magnitude lower than the natural acceler-
ation levels in the system of interest. For example,
consider typical cubesat accelerations, on the order of
≈ 8.6e−5m/s2, to the Moon’s acceleration contribu-
tions that increase to larger values when approaching
the lunar vicinity (Figure 3). Note that the contour
plot is not constructed all the way to P2 only to aid
with visual clarity.

The CR3BP offers a multitude of natural solutions
— periodic and quasi-periodic orbits in the vicinity
of the primaries and libration points, and manifold
tubes that reflect the flow throughout the region. The
signatures of these structures are captured either by
lower-dimensional Poincaré maps at selected surfaces
of section, or by discretization to facilitate arc extrac-
tion from the discrete initial conditions. This investi-
gation employs the latter option. The discretization
of the orbit families to develop a suitable database
involves careful consideration of the inter-orbit and
intra-orbit spacing; i.e. the spacing between the or-
bits and the states that are sampled along the or-
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Earth Moon

Fig. 3: Contour plot - acceleration contribution from the
Moon in the Earth-Moon system

bits/trajectories respectively. Although a finer grid
offers a more accessible search domain, the memory
and storage limitations associated with the available
computational resources also play a key role in de-
termining the size of the grid computed to represent
each orbit family. The discretization therefore di-
rectly impacts the number of intermediate conditions
available to the s/c along a frontier and, thus, also
impacts the end-to-end guess for a transfer.

5.2 Influencing the Nature of the Solution

The gravitational forces in a system clearly influ-
ence the flow throughout configuration space. Mis-
sion design is sometimes envisioned as harnessing
the appropriate combination of orbit family geome-
tries, velocities and energy levels to satisfy architec-
ture constraints such as altitude relative to primary
body, line-of-sight for communications, and eclipsing
conditions, and balancing such constraints with mis-
sion objectives. Solving the problem and delivering
an acceptable design can be described as an attempt
at combinatorial optimization, a topic that has been
studied extensively in other fields as well; the Trav-
eling Salesman Problem (TSP) is one such example.
In such an application, the cities form the database of
possible options available to an agent, and the travel
cost between each city in the database is a key con-
tributor leading to the decisions associated with the
construction of an optimal path through all the cities
before returning to the departure location. Analo-
gous to the TSP, in a mission design context, the
different orbit families form the database of available

options, and their location, expanse, stability and en-
ergy contribute to the costs associated with travel
among them. Thus, it is advantageous to establish a
metric of connectivity between the orbit families such
that essential families are available in the searchable
database for a particular mission scenario.

Connectivity between a pair of families can be as-
sessed in many ways; in this analysis it is measured
as the amount of overlap in the surface areas defined
for their corresponding position and velocity. The
surface area of a family is computed by decomposing
the family into triangles using Delaunay triangula-
tion and, then, summing the areas formed by the tri-
angular faces. Vertices are defined to be within close
proximity only if they are able to be circumscribed
within a specified radius of the parameter of interest.
For purposes of demonstration, a velocity bound of
60m/s is selected as one such radius in the figures
that follow. Figure 4 illustrates that a transfer from
the L1 Lyapunov family to the L3 Lyapunov family
may be challenging for diminished thrust levels due
to the sparse overlap in position and none in velocity
(i.e., no points emerge that allow an arc from either
family to approach the other family within the de-
fined 60m/s velocity bound of each other). Thus,

Earth Moon

(a) Position overlap (b) Velocity overlap

Fig. 4: Position and velocity overlap in the L1 Lyapunov and
L3 Lyapunov families

for low-thrust engines, such a transfer is better facil-
itated by incorporating an intermediate family such
as a resonant family, in the database as well — one
that offers the potential to use intermediate transfer
arcs to bridge the gap between the L1 and L3 Lya-
punov families in both position and velocity space
(Figure 5). An assessment of the surface area of over-
lap in both the position and velocity domains enables
the construction of a connectivity matrix (Table 1).
The first number in each cell is the percentage of
area overlap in position and the second number is in-
dicative of the overlap in both position and velocity
space. These quantities serve as a rough guide for
making informed decisions about which orbit fami-
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Earth Moon

(a) Position overlap (b) Velocity overlap

Fig. 5: Position and velocity overlap in the L3 Lyapunov and
Resonant 4:3 families

Table 1: An example family connectivity matrix.
Color code: % Position overlap, % Position and
velocity overlap

Lyap L1 Res 4 : 3 SP L4 Lyap L3

Lyap L1 - 63%, 20% 27%, 3% 29%, 0%
Res 4 : 3 - 56%, 49% 58%, 30%
SP L4 - 83%, 66%
Lyap L3 -

lies are beneficial to incorporate into the searchable
database. Note that these areas grow/shrink based
upon the user-defined bounds on acceptable velocity
overlap. For example, the connectivity between the
L1 Lyapunov and L4 Short-Period families is sparse,
but the Resonant 4:3 family has a decent connectiv-
ity metric to both these families. So, as a minimum,
at least this resonant family would be beneficial to
include during the search for a transfer between the
members of the L1 Lyapunov and L4 Short-Period
families. In brief, the connectivity matrix is a mea-
sure of ‘ease of access’ between different orbit families
in a given dynamical regime and for a specified thrust
capability.

5.3 Computation of Accessible Regions

The orbit families incorporated in a search
routine constrain the type of arcs that are ad-
missible in the construction of an initial guess.
However, it is the engine/thruster capability and
the propagation/horizon-time through configuration
space which determine the natural arcs within the se-
lected database that are reachable by a particular s/c.
The computation of an Accessible Region (AR) orig-
inates with a perturbation of the spacecraft’s current
velocity within a circle/sphere (for the planar/spatial
problem respectively) with a prescribed radius, fol-
lowed by a propagation of the perturbed and unper-
turbed states for a fixed time-horizon. The resulting
behavior downstream of this propagation is a stretch-

ing of the perturbed states from the unperturbed nat-
ural arc due to the influence of the existing gravita-
tional forces in the system. A measure of the devia-
tion of the perturbed states from the end of the nat-
ural arc is exploited to formulate a circular/spherical
accessible region in a planar/spatial setting respec-
tively. These simplified geometric shapes are imple-
mented over the realistic irregular-shaped ARs that
result from a propagation, to enable finer control over
the quantity of natural arcs available to the s/c. Em-
pirical testing has supported the decision to employ
such an approximation. For both the chemical and
low-thrust studies, perturbations in the s/c velocity
are induced via chemical impulses, the magnitude of
which is determined by the engine characteristics, the
engine operation time and propagation/horizon-time.

∆V = Isp g0 ln(
m0

mf
) [15a]

where,mf = m0 − (ṁ×∆≈) [15b]

It is possible to fix the value of the impulse (∆V ) to
effect the resulting engine-operation time (∆≈), but
the reverse is implemented in this investigation as
a constant operation time is a more intuitive quan-
tity to define. Inspection of Eqn. [1] and Eqn. [15]
illustrates that higher specific impulse values result
in smaller ∆V perturbations for a fixed operation
time, and aids in delineating between the behavior of
propellant efficient low-thrust and inefficient chem-
ical regimes. Although the horizon-time does not
play a role in the determination of the ∆V , it is yet
another quantity that is influences the footprint of
the AR. Figure 6 illustrates that bigger ∆Vs for a
fixed horizon-time avail of a greater AR and there-
fore, more natural arcs to choose from. Longer prop-
agation times for a fixed ∆V have a similar effect.

The generation of these ARs may be developed in-
dependently of mass updates by computing the ∆V
associated with the initial mass fraction m0

mf
and hold-

ing this value constant for subsequent AR computa-
tions. This alternative offers the flexibility for an op-
timization routine to consider only the ∆V contribu-
tions from an initial guess, such as is common in the
design for chemical trajectories. This choice however
results in conservative estimates for the ARs, because
in reality, they would grow larger with increased ac-
celeration levels as the s/c burns more propellant and
becomes lighter over time. In this preliminary study,
the pursuit of a modular architecture to handle var-
ied engine characteristics has led to the approxima-
tion of low-thrust flow with chemical impulses for the
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Fig. 6: Influence of ∆Vs on the footprint of accessible regions

IG generation phase. Consequently, the EOMs as-
sociated with the thrust magnitude, directions and
mass are not required to be propagated for the IG
generation and can support computational savings.
Improving the level of fidelity of the low-thrust AR
generation scheme using low-thrust perturbations di-
rectly is under consideration for future contributions.

5.4 Implementation of Automated Pathfinding

Pathfinding seeks to sequence appropriate condi-
tions to maneuver the s/c from departure to destina-
tion. In this study, the available conditions are the
natural arcs incorporated within the database and
made available within each computed accessible re-
gion; they constitute the frontier of solutions intro-
duced in Section 4. Both the exact (Dijkstra’s algo-
rithm) and heuristic (HARL) methods select a condi-
tion from within each frontier to continue the search
based on varying metrics as described in this section.
In each case however, the overarching goal is posed as
an optimization problem that aims to prioritize the
payload mass or transfer duration in the persistent
mass-time tradeoff challenge:

min J = Wttf +Wpmp [16a]

min J = Wttf +Wp∆V [16b]

where, the propellant mass mp or ∆V are always
weighted against the transfer duration, tf such that
the weighting on TOF, Wt is always 1, and Wp is a
design variable. The transfer duration is the aggre-
gate sum of the horizon times associated with each
natural arc assembled within the transfer sequence,
and the propellant consumption/∆Vs are computed
as a result of the velocity discontinuities between each
of these arcs. The schematic of an AR as presented
in Figure 6(a) is used to illustrate that exercising

the maximum ∆V at a given node locates a s/c on
the circumference of its associated AR, whereas a
coast arc places it in the center of this region. So,
the ∆V required at a given node to reach another
node circumscribed within an AR lies in the interval
[0,∆Vmax]. The associated mass updates are com-
puted using Eqn. [15]. The implementations specific
to the two pathfinding methods considered are out-
lined as follows.

Procedure for Implementing Dijkstra’s Algorithm

In this investigation, Dijkstra’s algorithm is im-
plemented as a greedy search method which always
selects the node from a frontier with the lowest cost
from departure. The node-to-node costs are pre-
computed (parallelizable process) and stored in a cost
adjacency matrix as depicted in Figure 7. The matrix

Max	∆"
radius

n1

n2

n3 n4 n5

- Departure node
- Arrival node
- Available nodes
- Accessible region

n1 n2 n3 n4 n5 …

n1

n2

n3 …

n4 …

n5 …

… …

Cost	matrix	(An	example)

Fr
om

To

- N/A
- Cost
- White: No connection 

(∞	cost)

(a) Accessible nodes (b) Cost adjacency matrix

Fig. 7: A schematic of a sample AR from a node (n1) and
example cost adjacency matrix.

is purposed as a directed graph that informs the agent
of unique costs to traverse between the nodes, includ-
ing a cost of ∞ when there exist no connections be-
tween them. These costs feed the the priority queue
outlined in Section 4.1. The lowest-cost route to the
destination is discovered in a serial fashion to allow
the cost to a node from departure to be revised when
a less expensive connection to it is established. Us-
ing Eqn. [16a] to measure the inter-node costs would
require them to be computed on-line to establish the
ARs based on a varying mass history. The mix of par-
allel and serial components to the search, in addition
to the storage of an extra variable (mass-history) for
each node queried can contribute to increased time-
space complexity and a more challenging implemen-
tation of the algorithm. So, for both the low-thrust
and chemical transfer scenarios, the inter-node costs
are estimated using Eqn. [16b] where the ∆V cost is
weighted against transfer time to satisfy the user’s
mass-time priority directive. The resulting end-to-
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end transfer sequence is a global optimum for the
lower-fidelity and s/c assumptions stated earlier.

Procedures for Implementing HARL Algorithm

A HARL algorithm does not guarantee optimal-
ity due to the inclusion of heuristics, but conduct-
ing multiple search episodes can enable convergence
to a nearly-optimal or satisficing solution to address
the mass-time priority objective. The entirely par-
allelizable capabilities within HARL offers a flexible
architecture where the inter-node costs are computed
on-line as the agent progresses through the database
towards the destination. As a result, either equation
in Eqn. [16] may be adopted based on the needs of
the user. Referring to the process outlined in Fig-
ure 2, the agent initiates the search by randomly ex-
ploring the state-space and gradually performs more
exploitation over subsequent episodes as devised by
Eqn. [14]. The exploitation of a particular node from
an AR is guided by a heuristic constructed as:

H =
mWm

f

dWd
[17a]

H =
1

∆VWv × dWd
[17b]

where, d = ||x− xT || [17c]

where, x is the full state vector associated with a
particular node, and xT is that of the target condi-
tion(s). The heuristic, H is crafted to account for two
aspects during the decision making process for select-
ing a node from a frontier: (a) the discontinuities in
velocity or mass loss between selected arc segments
(∆V, mf ), and (b) a measure of goodness of the se-
lected node in terms of its proximity to the target con-
dition(s), d. The weights are design variables, where
Wv and Wm grant the user control over the desired
s/c performance (∆V and propellant consumption),
and Wd influences the manner in which the trans-
fer trajectory tends towards the destination. These
qualities also render the heuristic applicable as a mea-
sure of reward for a select number of agents ranked
by their overall performance (Eqn. 16) for successful
completion of the transfer. Specifically, the reward is
computed as the accrued sum of the heuristic values
(R =

∑
H) along a successful transfer path, and is as-

signed to each contributing node. The sheer volume
of the state-space in this investigation has prompted
the tracking of a node’s relevance to the transfer by
recording its cumulative rewards over the episodes
within a global repository. This implementation is
a variation on the traditional approach in reinforce-
ment learning algorithms where a table of the link

quality between the nodes is maintained. As a result,
the implication of an identical link quality to a par-
ticular node from any other is allayed by enforcing
ARs that constrain the accessibility between nodes.
This adjustment also influences the discount factor γ
to be set equal to zero such that only the immediate
rewards are solely valued. This decision is also ra-
tionalized by the fact that the node-to-node cost is
variable as a function of the s/c mass history. Fur-
thermore, the quality of a node is considered only as
a guide in the overall search strategy, as stochasticity
is introduced in the selection of a favorable node from
within an AR with probability P:

P =
Fi Hi∑
Fi Hi

[18]

This probability P emphasizes two important con-
siderations which bias the selection of a node i: (a)
consistency of the relevance of the node to the trans-
fer via its accrued rewards over prior episodes (Fi),
and (b) its current attractiveness as represented by
the heuristic Hi. The aforementioned measures are
enforced within a distributed, cooperative environ-
ment where the incremental knowledge imbibed by
each agent combines to furnish the final transfer tra-
jectory that satisfies the goals and constraints im-
posed by the user.

Initial Guess to Higher Fidelity Solution

In this investigation, a final solution is defined as
an end-to-end transfer trajectory which adheres to
the constraints imposed within a CR3BP regime aug-
mented by the chosen engine forces. Note that such a
solution is still merely an initial guess for simulation
in an even higher fidelity ephemeris model. The in-
formation associated with the arcs assembled by the
automated pathfinding process is sufficient to initiate
the numerical corrections process described in Sec-
tion 2, namely the position, velocity, mass, thrust
direction, thrust magnitude and time estimates. The
user possesses the freedom to choose a desired compu-
tational tool to execute the convergence/optimization
process. It is important to acknowledge that varying
thrust magnitudes are interspersed within the lower-
fidelity solution, and so it can serve as in initial guess
for a range of engine capabilities in a higher fidelity
simulation. However, caution must be exercised when
setting the thrust levels during the numerical correc-
tions process because this acceptable range of thrust
magnitudes is finite.

IAC–17–C1.7.3 Page 11 of 19



68th International Astronautical Congress, Adelaide, Australia, 25-29 September 2017.
Copyright c© 2017 by the International Astronautical Federation (IAF). All rights reserved.

6. Results

The execution of the steps outlined in the design
framework engender initial guesses for diverse trans-
fer scenarios and are illustrated in this section. The
process appropriated for transitioning these solutions
to a higher fidelity engine model is also highlighted.
The examples have been specifically chosen to demon-
strate the flexibility and potential of the automated
search strategies in satisfying varied mission objec-
tives.

A first measure is the validation of the design pro-
cess by establishing a proof-of-concept; i.e. ascertain-
ing whether the proposed framework is indeed capa-
ble of delivering an initial guess. Figure 8(a,b) illus-
trate the transfer arcs resulting from soliciting trans-
portation from an L1 Lyapunov orbit to a DRO using
Dijkstra’s algorithm. According to the methodology
described in Section 5, these arcs are constructed by
the following steps: identification of the departure
and arrival conditions, collation of a database of dis-
cretized L1 Lyapunov and DRO conditions, determi-
nation of a user-defined engine-on and horizon time
to support the computation of ARs per the s/c speci-
fications, and initiation of a search sequence with the
exact or heuristic pathfinding algorithm of interest.
Finally, the initial guess is transitioned to a higher fi-
delity engine model to construct a converged and/or
optimized end-to-end transfer path.

LyapL1 Family

DRO Family

Earth Moon

LyapL1 family

DRO family

Earth Moon

(a) Transfer arcs (b) Colored by family

Fig. 8: Demonstrating feasibility with Dijkstra’s algorithm.
Initial guess for transferring s/c between an L1 Lyapunov
orbit (JC = 3.147) to a DRO (JC = 2.785). s/c accelera-
tion = 9.7 × 10−4m/s2. Horizon time = 0.5 days.

The transfer in Figure 8(a) spirals out from the
departure condition, which is a predictable geome-
try given that only the L1 Lyapunov and DRO fam-
ily structures are incorporated within the searchable
database. Figure 8(b) identifies the types of interme-
diate arcs caught during the transfer - the s/c slides
through various members of the L1 Lyapunov family
prior to drifting into the DRO family for the termi-
nal orbit entry phase. As discussed in Section 4, Di-

jkstra’s method is effective in finding an end-to-end
transfer if it exists, but does so at the cost of high
time and space complexity. The computational time
for the solutions in Figures 8 is ≈ 6hrs and so, the
HARL algorithm is sought to construct most of the
remaining examples investigated in this study. The
transfer behavior in Figure 9 is similar to that ob-
served in Figure 8 and serves to validate the outcome
of implementing the HARL algorithm. This solution
was obtained in ≈ 6.5 minutes.
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Fig. 9: Demonstrating feasibility with HARL algorithm. Ini-
tial guess for transferring s/c between an L1 Lyapunov or-
bit (JC = 3.147) to a DRO (JC = 2.785). s/c acceleration
= 2.2 × 10−4m/s2. Horizon time = 2.5 days.

This transfer is performed using a s/c with accel-
eration levels comparable to that of DS1. Smaller
acceleration levels induce smaller ARs for an equal
time-horizon. So, this example exhibits the design
option to increase the time-horizon to effect more siz-
able ARs and avail of a greater quantity of natural
arcs to choose from within a frontier. The flexibil-
ity to control the time-horizon is also advantageous
if confronted with a sparse database. However, the
ability to choose conditions from a bigger AR also al-
lows larger discontinuities between the arcs. If ∆V s
are employed to approximate low thrust arcs, care
must be exercised to control the propagation time so
as to not exceed the horizon of validity for the low-
thrust model; establishing appropriate values for this
design parameter is a matter of tuning. Figure 9(b)
illustrates the ability of the automated search to con-
struct transfer geometries whilst also taking advan-
tage of beneficial energy transition strategies such as
exploiting the Oberth effect to enable an efficient en-
ergy change near the Moon. The other large energy
change is observed during the transition between the
two families of interest. The stopping condition for
the algorithm is defined to be the first time any ele-
ment of the target orbit falls within an AR and be-
comes a candidate for selection by an agent. So, the
transfers are free to enter the target orbit at any lo-
cation as long as the user-specified constraints and
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objectives are satisfied.
The mass-time trade is an important considera-

tion in the design of a trajectory. So, as discussed in
Section 5, the weights are adjusted in Eqn. [16] to de-
liver transfers with varied performance. In Figure 10,
both trajectories catch different members along the
families in the database to address the imposed objec-
tive function. The trajectory with greater emphasis
placed on conserving propellant mass is constructed
with more segments, thereby taking longer but also
offers reduced propellant usage. In both cases, the
algorithm deems the x-axis crossing a beneficial loca-
tion to transfer to the DRO family. Again, a flyby of
the Moon rapidly increases the energy to be able to
slide through larger members of the Lyapunov fam-
ily and reach the target orbit, rather than spiraling
through additional revolutions to gradually increase
the energy to that of the target orbit. The similar
geometries in both transfers is an attribute of the
limited variability of arcs included in the database;
introducing different families could excite varied be-
havior when different weights are defined in the ob-
jective function. Performance measures such as TOF
and Delivered Mass Fraction (DMF) are reported in
the figures that follow.
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Fig. 10: Demonstrating control over mass-time priority for
trajectory design. Initial guess for transferring s/c be-
tween an L1 Lyapunov orbit (JC = 3.147) to a DRO
(JC = 2.785) using Dijkstra’s algorithm. s/c accelera-
tion = 9.7 × 10−4m/s2. Horizon time = 0.5 days.Time-
sensitive scenario: Estimated TOF ≈ 44.5 days, DMF
≈ 96.4%. Mass-sensitive scenario: Estimated TOF ≈
52 days, DMF ≈ 98.8%

Recall from Section 5.2 that there exist varying de-
grees of similarity in characteristics between different
families. The L1 Lyapunov and L4 short-period fam-
ilies have extremely low connectivity in combined po-
sition and velocity space (Table 1). So, it is beneficial
to include intermediate families that serve to bridge
the gap in the geometry and energy levels required to
transition between these otherwise poorly connected
family pairs. Not surprisingly, in Figure 11 , the auto-
mated framework successfully determines that there

is value in catching the Resonant 4:3 arcs to transfer
between the Lyapunov family departure and short-
period family arrival. Note that unlike in the exam-
ple discussed in Figure 9(b), the search strategy does
not always necessarily maneuver with a monotonic in-
crease or decrease in Jacobi constant values to transi-
tion between departure and arrival conditions at dif-
ferent energy levels (See Figure 11). In this example,
the search terminates when the arrival conditions fall
within the AR of the final arc.
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Fig. 11: Demonstrating the need for intermediate-connection
families. Initial guess for transferring s/c between an L1

Lyapunov orbit (JC = 2.90) to a L4 short-period orbit
(JC = 2.75) using HARL algorithm. s/c acceleration =
2.2× 10−4m/s2. Horizon time = 3 days. Estimated TOF
≈ 24 days, DMF ≈ 99.3%

Traditional mission design strategies often involve
constructing forward and reverse time propagations
from a selected condition or hyperplane which aids
in convergence, or helps meet specific constraints.
Figure 12 illustrates that if desired, the automated
search strategy can also be implemented in this man-
ner. In this case, only the departure and destination
families are included in the database. So, the transfer
assumes a varied path and insertion location to that
observed in the example in Figure 11. Such a strategy
can also be adopted to mitigate the challenges asso-
ciated with designing transfers between families with
poor connectivity as defined in Section 5.2. Estab-
lishing a sound cis-lunar transport infrastructure in
the near future may require conveyance between or-
bit ports in varied locations within the Earth-Moon
system. For operational purposes, whether it be to
mitigate congestion or visit/avoid certain regions in
configuration space, manage the duration of travel, or
simply explore the available trade-space, it is benefi-
cial to possess the capability to maintain control over
the qualitative and quantitative nature of the routes
traversed through the system. Figures 13 demon-
strate that by including/excluding certain families
from the searchable database, the user is able to
force an interior or exterior-type transfer based on
the needs of the mission. Time-sensitivity is weighted
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Fig. 12: Demonstrating an alternative implementation for
automated pathfinding. Initial guess for transferring s/c
between an L1 Lyapunov orbit (JC = 2.90) to a L4 short-
period orbit (JC = 2.75) using HARL algorithm, and
forward-reverse time propagations. Arcs are colored by
family. s/c acceleration = 2.2 × 10−4m/s2. Estimated
TOF ≈ 33 days, DMF ≈ 98.6% Forward propagation
horizon time = 3 days. Reverse propagation horizon time
= 2 days.

more heavily in both results (Eqn. 16). Note that
choosing the interior transfer clearly offers improved
time-savings for a similar mass budget.
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Fig. 13: Demonstrating control over transfer geometry and
performance. Initial guess for transferring s/c between
an L1 Lyapunov orbit (JC = 2.90) to a L4 short-period
orbit (JC = 1.80) using HARL algorithm. Arcs are col-
ored by family. s/c acceleration = 2.2 × 10−4m/s2. Hori-
zon time = 3 days. Interior transfer: Estimated TOF
≈ 51 days, DMF ≈ 98.6%; Exterior transfer: Estimated
TOF ≈ 75 days, DMF ≈ 98.1%

From the examples discussed thus far, it is evident
that the automated pathfinding framework functions
in diverse scenarios. So, it is also interesting to inves-
tigate whether examples similar to prior or proposed
real-world mission scenarios is replicable. The trans-
fer observed in Figure 14(a) is similar to the Libration
Point Orbit (LPO) to LPO transfer scenario devised
across the line of the Moon for the Artemis mission.
The discontinuities are fairly large, but is expected
due to the energy boosts received from the Moon
in this sensitive region. This transfer also demon-
strates that the framework is not restricted to finding
pathways only between departure and arrival condi-

tions at different energy levels. The example in Fig-
ure 14(b) crafts a transfer from an arbitrary condition
in the Earth’s vicinity to a DRO with characteristics
similar to that sought for the upcoming EM-1 mis-
sion. Such a capability is very valuable, especially
when faced with launch delays, uncertainties in de-
ployment states (e.g. for secondary payloads), or for
executing contingency options.
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Fig. 14: Demonstrating ability to execute transfers similar to
real-world mission examples. Initial guess for transferring
s/c between (a) an L1 Lyapunov orbit (JC = 3.12) to
a L2 Lyapunov orbit (JC = 3.12), and (b) Earth alti-
tude of ≈ 35, 000km to DRO (JC = 2.94) using HARL
algorithm. Arcs are colored by family. s/c acceleration
= 2.2 × 10−4m/s2. LPO-LPO transfer: Horizon time =
2 days., Estimated TOF≈ 10 days, DMF≈ 99.8%, Earth-
DRO transfer: Horizon time = 3 days., Estimated TOF
≈ 18 days, DMF ≈ 99.6%

The capabilities discovered in the low-thrust
regime are extended to the chemical realm as well.
The transfer scenario presented in Figures 9 and 11
are generated for a 500kg s/c with an Isp =
224 seconds and Thrust = 18N . Such an effort is
not intended for a direct 1:1 comparison between low-
thrust and chemical engine performance. Rather, the
same transfer scenarios are chosen merely to illustrate
the ability to successfully extend the automated IG
generation process across varied engine platforms. It
is also an opportunity to reflect on the varied geome-
tries resulting from allowing for larger discontinuities
due to the greater thrust capabilities (and therefore
greater ARs) accomplished with a chemical engine.

6.1 Transition to higher fidelity engine model

The initial guesses formulated for the various sce-
narios thus far are subjected to a numerical conver-
gence and optimization process to obtain a higher
fidelity solution and meet any additional constraints.
The natural arcs therefore deform under the influence
of the true behavior of the engine parameters intro-
duced in an updated dynamical model. Recall that
one objective of this study is to assess the general-
ity of the framework across varied engine platforms
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Fig. 15: Demonstrating extension of automated pathfinding
capability to varied engine types. (a) Initial guess for
transferring s/c between an L1 Lyapunov orbit (JC =
3.147) to a DRO (JC = 2.785). (b) Initial guess for trans-
ferring s/c between an L1 Lyapunov orbit (JC = 2.90) to
a L4 short-period orbit (JC = 2.75) using HARL algo-
rithm. s/c acceleration = 0.036m/s2. Horizon time =
3 days.

(VSI, CSI, chemical) and optimization routines (di-
rect and indirect). This avenue of investigation is
commenced by extracting some useful items of infor-
mation from the lower-fidelity pathways constructed
thusfar. Figure 16(a) superimposes the velocity and
∆V directions undertaken by an agent during the
search process to chain together a transfer sequence.
Figure 16(b) presents the history associated with the
magnitude of this thrust profile along the trajectory.
It is computed by interpolating between the ∆V val-
ues recorded at the beginning of the discrete segment
times. The highest peaks in this figure remain close
to 38m/s, which is the ∆V0 value calculated using
Eqn. [15] for the specifications of an engine (0.22N
Thrust, 4000s Isp) employed to generate the first
transfer segment for a s/c weighing 1000kg. The
∆V bounds for the subsequent segments also remain
close to this value due to efficient low-thrust engine
propellant consumption, and therefore, relatively un-
changed s/c characteristics through the transfer. So,
the variability in the ∆V magnitudes in Fig. 16(b)
demonstrate that the stochastic element employed in
the RL framework enables initial conditions to be
chosen from varying radii within a given AR bound,
as required.

Together, the position, velocity, time-history and
thrust magnitude and direction information consti-
tute all the fragments of information required to ini-
tiate a numerical targeting process for the higher fi-
delity regimes. As discussed in Section 3.2, the VSI
numerical targeting process is quite robust. So, the
velocity pointing- or thrust-pointing directions serve
as an adequate guess for the co-states (λvi) in es-
tablishing control authority for maneuvering the en-
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Fig. 16: Information extracted from lower-fidelity transfer
scenario in Figure 8 to support transition to low-thrust
model.

gine. The variable Isp and thrust magnitudes for this
engine model may elicit a converged solution which
exhibits varied behavior from the initial guess formu-
lated using a constant thrust and Isp value. During
the convergence process, allowing the departure and
arrival locations to vary on their respective orbits
also allows the geometry to deviate from the origi-
nal guess. Figure 17(a) illustrates the path resulting
from converging the initial guess in Figure 8 using a
VSI engine and enforcing position and velocity con-
tinuity throughout. The associated thrust profile is
illustrated in Figure 17(b). The portions of the tra-
jectory with exceedingly low thrust magnitudes are
induced from high Isp values ([4]) and are analogous
to coasting regions in a CSI model.
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Fig. 17: Converged VSI solution of lower-fidelity transfer sce-
nario in Figure 8. TOF = 45 days, DMF = 99.14%

Transition of the initial guess to the CSI model is
enabled via two approaches. Both the lower-fidelity
and VSI solutions offer thrust magnitude and di-
rection histories which can be exploited to seed the
thrust and coast segments required to initiate the CSI
targeting process. For example, the thrust segments
can be distributed by bounding their occurrence to
exist within a certain percentage of the maximum
amplitude of the thrust profiles (Figure 16(b) and
17(b)). That is, the s/c coasts below the user-defined
bound and thrusts above it. During the convergence
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process, a point-and-hold strategy for the thrust-
pointing directions support the direct targeting pro-
cess sought in this study for the CSI model. The
imposed path constraints, user-defined thrust cut-off
bounds (Figure 16(b) and Figure 17(b)), duration of
each constant thrust-pointing segment, and the flexi-
bility allowed for the departure and arrival locations,
are all factors that can be exploited to manipulate the
qualitative and quantitative nature of the converged
transfer path. Figure 18 illustrates such a manipu-
lation which results in pathways that are forced to
resemble either the lower-fidelity initial guess (Fig-
ure 18(a1)) or the VSI solution (Figure 18(a2)). Note
that the initial guess formulated with an acceleration
magnitude of a = 9.7 × 10−4m/s2 (Figure 8) is con-
verged with a more realistic acceleration magnitude
of a = 2.2 × 10−4m/s2 in Figure 18. The multiple
low ∆V /thrust magnitude regions in this initial guess
(Figure 16(b)) result in multiple coasting arcs for the
original s/c. The same arcs facilitate the net thrust-
ing time required by a s/c with weaker acceleration
levels to repair the discontinuities prevalent during a
particular segment. Therefore, there exists a lower
bound to the s/c acceleration levels for which a par-
ticular lower-fidelity solution can serve as a feasible
initial guess.
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Fig. 18: Converged CSI transfer solution for varied thrust
profiles and acceleration levels. (a1) TOF = 49days,
DMF = 98.5%. (a2) TOF = 45days, DMF = 98.9%.
(b) TOF = 84days, DMF = 97.6%

The natural arc sequences (e.g. Figures 11, 13 and
14) prove to be adequate initial guesses to support
the development of optimized CSI low-thrust results
for distinct transfer scenarios (Figures 19). They are
mass-optimal trajectories, where the transfer dura-
tion and departure/arrival conditions are offered as
free-variables to the non-linear optimization process.
An alternative is to constrain and control these design
variables to influence the thrust durations and mass
performance; i.e. the outcome of the optimization
process is a function of the problem set-up consisting
of the designated design variables and constraints.
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Fig. 19: Optimized CSI solutions for various transfer scenar-
ios. (a) LyapL1 to SPL4 (JCDep = 2.90,JCArr = 2.75);
(b) LyapL1 to SPL4 (JCDep = 2.90,JCArr = 1.80); (c)
LyapL1 to SPL4 (JCDep = 2.90,JCArr = 1.80); (d)
LyapL1 to LyapL2 (JCDep = 3.12,JCArr = 3.12); (e)
Earth to DRO (JCDep = 2.96,JCArr = 2.94)
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Figure 20 shines light on the characteristics of
the ∆V optimized trajectories constructed from the
chemical IGs presented in Figures 15. Recall that
even though the discontinuities seem large in the IG,
the ARs are computed using knowledge of the engine
capabilities. The ability to successfully converge and
produce optimized results are therefore a reflection
on the competence of the adopted methodology.
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Fig. 20: Optimized Chemical solutions of lower-fidelity trans-
fer scenarios in Figures 15

A comparison of the estimated and optimized per-
formance metrics is presented in Table 2. The mass
estimates are certainly more precise, although the es-
timates in TOF are still in the general vicinity of
the optimized results. This observed discrepancy
in the transfer duration results from constructing a
mass-optimal final solution in contrast to the multi-
objective IG generation process. The optimization
process therefore incorporates variable TOF and vari-
able locations on the departure/arrival orbits, intro-
ducing additional coast arcs as required, to maximize
the delivered mass. These results also support an im-
portant motivation for this study - exploiting the nat-
ural dynamics (coast arcs) proves to benefit propel-
lant savings and therefore, cost as well. So, if there is
a need to build additional coasting capability directly
into the IG generation process, the user is also able to
alter the coefficients in Eqn [16] to place greater em-
phasis on propellant conservation (e.g. Figure 10). A
noteworthy point is that a similar DMF in the com-
parisons in Table 2 suggests that the thrusting time
alone is comparable in both the IG and optimized
results. These take-aways authenticate the ability of
the lower-fidelity approach to offer end-to-end trans-
fer solutions. The user is also able to control the
qualitative and quantitative nature of these solutions
with confidence.

Table 2: A comparison of the performance metrics
from estimated and optimized approaches

Scenario TOF˙opt
(days)

TOFest

(days)
DMFopt

(%)
DMFest

(%)

(a) 30 24 99.2 99.3
(b) 47 51 98.6 98.6
(c) 74 75 98.2 98.1
(d) 14 10 99.8 99.8
(e) 29 18 99.5 99.6

7. Conclusions

Trajectory design is a careful balancing act that
juggles diverse constraints, priorities and require-
ments to enable successful missions. So, forthcom-
ing large-scale efforts to expand the boundaries of
space exploration by initiating an efficient cis-lunar
transportation infrastructure necessitates a rigorous
mission-design framework to offer solutions for var-
ied spacecraft classes and objectives. Maneuvering in
close proximity of the Earth and the Moon renders
the CR3BP model appropriate for capturing the com-
plex dynamical interactions in this gravitational sys-
tem, and facilitating pathways for preliminary mis-
sion design. However, unlike in the two-body prob-
lem, the CR3BP entails a large state-space for which
approximations are generally not available. This sit-
uation gives rise to an infinitely large combinatorial
optimization problem - one that is intractable to ex-
plore thoroughly via a manual approach. So, an au-
tomated search strategy is sought where human ef-
forts are refocussed on defining the constituents of
the broader mission goals, and software agents are
tasked with undertaking the laborous task of filter-
ing various trajectory scenarios to then present only
attractive options. The design of end-to-end trajec-
tories is facilitated by constructing a framework com-
posed of four essential steps - (1) compilation of nat-
ural flows in the CR3BP serving as a database of
potential transfer pathways, (2) simulating the reach
of the s/c to assess the accessible regions within the
database, (3) implementing automated pathfinding
algorithms to sequence the natural arcs and formulate
a discontinuous yet complete route to the destination,
and (4) transitioning the solution to a higher fidelity
engine/dynamical model via a numerical corrections
process. The choice of the automated pathfinding
phase is influenced by the desired aims and the com-
putational resources available to the user; both an
exact and heuristic approach are examined in this in-
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vestigation.

The results presented in this analysis demonstrate
the feasibility and diverse capabilities of the auto-
mated framework. With relevance to a cis-lunar ar-
chitecture, the user is able to design transfers be-
tween various locations within the Earth-Moon sys-
tem. The geometry of the solution and performance
traits related to mass-time priority are also influence-
able by constraining the types of arcs included in the
database, and manipulating the design parameters.
The search strategy exhibits the ability to make in-
telligent choices based on user preferences, such as ex-
ploiting the Oberth effect when applicable to preserve
propellant consumption. Differing implementations
also render the methodology flexible to the incorpo-
ration of varied constraints during the design process;
e.g. targeting specific arrival conditions or maintain-
ing a minimum altitude from a primary. Further-
more, the mass-time reports from the sequencing of
natural arcs have proven to be reliable estimates of
the performance metrics following the optimization
process.

The available state and time histories from the se-
quenced natural arcs position them to be suitable
initial guesses for transition to a higher fidelity en-
gine model. Even the ground work for advantageous
thrust and coast locations is informed by the free-
dom to construct transfer segments with nil to a
maximum allowed position and velocity discontinu-
ity within the ARs. The ability to generalize this
design capability across various engine platforms is
realized by the ability to incorporate the reach of the
spacecraft during the automated search process. The
capacity to explore a large trade-space and test a va-
riety of combinatorial options extracts the design pro-
cess from the common restrictions of a narrow con-
vergence radii associated with traditional trajectory
design approaches.

The essence of the automated trajectory design
framework is to offer a solution to the challenges as-
sociated with a large trade-space for mission design.
The devised methodology is also applicable for con-
tingency planning, and recovering from situations in-
volving programmatic delays and unexpected events
such as performance degradation during the opera-
tions phase. The cadence set in motion via the auto-
mated approach does not replace human input. In-
stead, it is intended to offer a deeper understanding
of the design environment and therefore, improve hu-
man intuition - a critical component in the decision
making process for assembling a successful mission.
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