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LOW-THRUST TRANSFER DESIGN BASED ON COLLOCATION
TECHNIQUES: APPLICATIONS IN THE RESTRICTED

THREE-BODY PROBLEM

Robert Pritchett*, Kathleen Howell†, and Daniel Grebow‡

Wide-ranging transfer capabilities are necessary to support the development of
cislunar space. But, low-thrust transfers between stable periodic orbits are chal-
lenging in this regime. Transfer design between such orbits cannot leverage the
unstable manifold structures typically employed. Thus, a methodology for con-
structing these transfers, based on collocation, is demonstrated. Initial guesses
comprised of coast arcs along periodic orbits as well as intermediate trajectory
arcs from other periodic orbits are converged into feasible transfers and then re-
fined using continuation and optimization strategies. This process applies to vari-
ous spacecraft configurations and results are validated in a higher-fidelity model.
Practical examples demonstrate collocation as a robust approach for computing
low-thrust transfers.

INTRODUCTION

An enduring human presence in cislunar space is viewed by NASA and a variety of private or-
ganizations as an essential step in the development of a robust space economy and the evolution of
manned missions to Mars. Presently, NASA intends to place a space station, the Deep Space Gate-
way (DSG), in a near-lunar orbit to facilitate the delivery of spacecraft to Mars as well as the lunar
surface.1 Moreover, private industry, e.g., United Launch Alliance (ULA), envisions the develop-
ment of a self-sustaining economy in cislunar space enabled by a network of transports and propel-
lant depots.2 These concepts for cislunar facilities require the availability of stable or near-stable
orbits in the Earth-Moon (EM) system, orbits that can be maintained for extended intervals with
minimal propellant expenditures. Additionally, low-thrust transfers between these orbits are neces-
sary to enable efficient transport of both crewed and cargo spacecraft; for example, NASA proposes
transfers of the DSG between cis-lunar orbits of varying geometries using low-thrust propulsion.
Low-thrust transfers are also required for a variety of recently considered robotic mission concepts
such as the NASA Asteroid Robotic Redirect Mission (ARRM)3 or lunar cubesat missions.4 Fur-
thermore, the Earth-Moon system offers a testbed for developing low-thrust techniques to be applied
to support low-thrust trajectories in robotic missions to more challenging dynamical regimes such as
the Jovian or Saturnian systems. Distant retrograde orbits (DRO) and Near-Rectilinear Halo Orbits
(NRHO) in the EM system are examples of stable or nearly stable lunar orbits available for both
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manned and robotic mission applications. The abundance of applications for low-thrust transfers
in the Earth-Moon system motivates this investigation of design techniques for these transfers that
leverage collocation algorithms.

Several authors have investigated strategies for designing impulsive and low-thrust transfers to
reach stable and nearly stable periodic orbits in the EM system; however, few have explored general
strategies for transfers between such orbits. Investigations of impulsive transfers from the Earth to
DROs in the EM system include those by Minghu et al.,5 Capdevila, Guzzetti, and Howell,6 as well
as Welch, Parker, and Buxton.7 Capdevila et al. extend this work to develop a network of impulsive
transfers between stable periodic orbits in the EM system, including DROs and NRHOs.8 NRHOs
are a subset of the halo family of orbits with stability parameters such that they are classified as
stable or nearly stable orbits. These orbits possess lower perilune altitudes and shorter periods
than most members of the halo orbit family. Due to these characteristics, Whitley et al. examine
impulsive transfers from Earth to NRHOs for human exploration missions.9 Low-thrust transfers
from Earth to DROs are computed by Parker et al.10 as well as Herman11 who also develops transfers
between DROs. Parrish et al.12 compute transfers from L2 halo orbits to DROs, however, the halo
orbits employed are beyond the range currently classified as NRHOs. Stable periodic orbits near
the Moon offer increasing utility as the development of cislunar space continues, however, transfer
design between stable or nearly stable orbits poses unique challenges because the natural dynamical
motion often leveraged to guide transfer design formulation is less prominent near stable orbits.
Therefore, additional techniques to construct transfers that possess reasonable propellant costs and
times of flight are a priority.

This investigation focuses on developing a scheme for computing optimal low-thrust transfers be-
tween several types of periodic orbits in the EM system. The direct transcription algorithm as well
as the method for initial guess formulation are the foundation for transfer construction in this inves-
tigation. Strategies for employing continuation or optimization given a feasible result in the circular
restricted three-body problem (CR3BP) are detailed, as well as a scheme for transitioning results to
an ephemeris model. Results emerging for a variety of transfer scenarios include a demonstration
of leveraging some type of natural dynamical structure in a direct transcription scheme to design
transfers. In total, the applications demonstrate that the methodology is practical for generating
low-thrust transfers between periodic orbits in the EM system when little information is available
for developing an initial guess a priori. Transfers between stable periodic orbits are emphasized
because these orbits offer the least information for transfer design.

BACKGROUND AND FORMULATION

Circular Restricted Three-Body Problem and Low-Thrust Engine Model

The circular restricted three-body problem (CR3BP) is employed for the initial investigation of
low-thrust solutions. The gravitational interaction of the primary bodies in the CR3BP yields low-
energy trajectories, i.e., paths that require little propellant because they leverage gravity to the fullest
extent; such trajectories are advantageous for low-thrust mission design. Moreover, the CR3BP
avoids the complexities inherent in a full ephemeris model, such as time dependence and additional
gravitational perturbations, that add complexity to the design process. The CR3BP is defined by
three spherically symmetric bodies, two massive primaries, m1 and m2, whose mass ratio is rep-
resented by, µ = m2/(m1 + m2), and a third particle whose mass is considered negligible. The
primaries are assumed to be in circular orbits about their barycenter and the CR3BP is formulated in
a rotating frame. The line from the larger to the smaller body is employed to define the x axis of the
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rotating frame. The z axis of the rotating frame is parallel to the orbital angular momentum of the
primaries, while the remaining axis is defined by the cross product of the x and z axes. The position
and velocity of the third body relative to the system barycenter is typically expressed in a state vec-
tor of six Cartesian coordinates, p = [x, y, z, ẋ, ẏ, ż], where bold denotes a vector. These six states
are employed in the equations of motion for the third body expressed in terms of the rotating frame,

ẍ− 2nẏ − n2x = −(1− µ)(x+mu)

d3
− µ(x− 1 + µ)

r3
(1)

ÿ + 2nẋ− n2y = −(1− µ)y

d3
− µy

r3
(2)

z̈ = −(1− µ)z

d3
− µz

r3
(3)

where d and r are scalar distances to the third body, in rotating coordinates, from m1 and m2,
respectively, and n is the angular velocity of the primary system. To aid numerical computation,
states in the CR3BP are typically nondimensionalized using characteristic quantities relevant in the
CR3BP system. Thus, the characteristic length, l∗, is equal to the distance between the primaries,
while the characteristic time, t∗, is evaluated such that the nondimensional angular velocity of the
rotating frame is equal to one. One integral of the motion for the CR3BP exists and is denoted the
Jacobi constant, J . This quantity offers useful information about the energy associated with the
motion of the third body at a given point, and is defined, J = 2U − v2, where U is the potential of
the third body and v =

√
ẋ2 + ẏ2 + ż2. In this investigation, the Earth and Moon are employed as

the primaries in the CR3BP while the third body represents a spacecraft.

A model for the characteristics of the low-thrust spacecraft must also be defined. In this study,
the model for the low-thrust spacecraft assumes an initial mass of m0 = 500 kg, a maximum
thrust of Tmax = 100 mN , and a specific impulse of Isp = 2000 sec. These parameters are
comparable to the Deep-Space 1 and Dawn spacecraft and are achievable with current low-thrust
engine technology. The initial mass of the spacecraft defines the characteristic mass, m∗, that is
used to nondimensionalize all mass quantities. Following the definition of a suitable dynamical
model numerical methods for the computation of low-thrust trajectories within this model must be
selected. A variety of numerical techniques are required to compute, optimize, and continue the
low-thrust trajectories.

Collocation Framework and Mesh Refinement

Ultimately, low-thrust mission design is a type of continuous optimal control problem, that is, at
each instant along a trajectory, a thrust magnitude and direction must be determined that optimize
some final parameter, typically propellant mass or time of flight. Numerical methods for solving
optimal control problems are incredibly powerful, however, to leverage these techniques, a contin-
uous optimal control problem must be discretized and numerous strategies for this procedure are
available. Collocation schemes offer one technique for discretizing the continuous optimal control
problem and, when applied for this purpose, the process is denoted direct transcription.13 A di-
rect transcription approach is employed in this analysis due to its robustness, i.e., such a technique
produces solutions even given a poor initial guesses.

Collocation is the core algorithm underlying this strategy for constructing low-thrust transfers
between periodic orbits, with a particular focus on transfers between stable orbits. Collocation
is a methodology for numerically integrating differential equations and is frequently employed to
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transcribe continuous optimal control problems into nonlinear programming (NLP) problems to
be solved with direct optimization techniques.14, 15 Direct optimization algorithms leveraging col-
location are a proven technique for generating low-thrust solutions when little intuition exists to
construct the initial guess. This is because the wide basin of convergence offered by collocation
strategies enables successful delivery of solutions even with a poor guess. One sample application
is the lunar pole-sitting orbits produced by Ozimek, Grebow, and Howell16 where the authors in-
troduce a “stack” of nodes in the desired region of the phase space as an initial guess to compute
low-thrust pole-sitting orbits. This strategy is aided by the fact that path constraints are straight-
forward to incorporate into collocation schemes, thus, allowing the final pole-sitting orbits to be
bounded in phase space. Similarly, Herman11 as well as Parrish et al.,12 demonstrate that a stack
of one or more ballistic coast arcs along the departure and arrival orbits supplies a sufficient ini-
tial guess for convergence of a collocation algorithm to a numerically continuous transfer solution.
Overall, the robustness and adaptability of direct transcription offers a powerful strategy for com-
puting low-thrust solutions between stable periodic orbits.

Collocation algorithms are structured to accurately represent the integration of a set of differential
equations by computing polynomials that approximate the numerical propagation of the equations
of motion. To ensure the polynomials supply a reasonable approximation, states at specific times
along the path constructed via the polynomials are collocated with states computed from the dif-
ferential equations at the same times, i.e., the states produced from each approach must be equal
within a desired tolerance. A variety of approaches for implementing a collocation strategy are
available; these are distinguished by the degree and node spacing of the polynomials. The node
placement strategy impacts the accuracy of the result, thus, in this analysis, a scheme that balances
precision with ease of implementation is selected. A Legendre-Gauss (LG) node spacing strategy is
employed where the collocation points are determined from the roots of a Legendre polynomial.17

Additionally, a variable degree polynomial scheme is modeled after those leveraged by Williams18

as well as Grebow and Pavlak17 and described by Pritchett,19 however, 7th degree polynomials are
employed unless otherwise noted. The accuracy of a collocation result is improved via the pro-
cess of mesh refinement that adds and removes nodes along a path. More nodes and, therefore,
more polynomials are placed in regions where a solution is highly nonlinear; these additions enable
a polynomial representation to offer a more accurate numerical solution. In this investigation, a
mesh refinement approach, developed by Grebow and Pavlak20 and denoted Control with Explicit
Propagation (CEP), is utilized. This strategy supplies an accurate result with the added benefit of
verifying the solution with a third-party propagator in the process. These collocation and mesh
refinement techniques ensure accurate numerical integration of the system differential equations,
however, additional problem constraints are still required to enable convergence to a feasible low-
thrust solution.

All of the collocation techniques, along with additional constraints, are implemented in a software
package that utilizes Collocation with Optimization for Low-Thrust trajectory design and is, thus,
denoted COLT. In this software, the collocation framework is implemented via a design variable and
constraint formulation that permits the straightforward addition of a variety of problem constraints,
e.g. continuity or endpoint constraints. The position vector, xn,p, velocity vector, ẋn,p, mass, mn,p,
and four-element control vector un comprise the states at the nodes that are employed to construct
the collocation polynomials. The complete set of states at all the nodes are the design variables for
the low-thrust trajectory design problem. The four control states include the three components of
the thrust unit vector, uT̂ , as well as the magnitude of the thrust vector, u|T |. All of these states are
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concatenated into a single design variable vector, that is,

X = [u1, x1,1, ẋ1,1, m1,1, x1,2, ẋ1,2, m1,2, . . . ,un, xn,p, ẋn,p, mn,p]
T (4)

where n is the number of segments into which the trajectory is decomposed, and p is the number of
nodes used to construct the polynomial over each segment, e.g. p = 7 for a 7th degree polynomial.
Note that the four control states are constant along each segment of the trajectory. The design
variables are used to evaluate the problem constraints and, when the values of all constraints are
driven below a desired tolerance, the collocation problem is solved. The defects, fdefect, are the
primary constraints required in a collocation scheme and ensure that the polynomials match the
problem dynamics. Additionally, a Legendre-Gauss node spacing strategy necessitates constraints
that enforce continuity between adjacent trajectory segments, fcontinuity, and these are formulated
as equalities.

In addition to the continuity and defect constraints associated with a typical collocation frame-
work, the scheme employed in this investigation enforces several other equality and inequality con-
straints collected in the vectors, Feq, andFineq, respectively. The complete set of constraints ensures
that all low-thrust transfers are feasible. First, the initial states along the departure orbit as well as
the final states on the arrival orbit are fixed, f0 and ff , with the exception of the final mass com-
ponent. Additionally, the three components of the unit vector reflecting the thrust direction are
constrained to yield a unit magnitude, fT̂ , and the total magnitude of the thrust vector is constrained
to be between zero and the specified maximum thrust value, f|T |. When necessary, minimum al-
titude constraints, falt, relative to the primary and secondary bodies, are enforced that prevent the
final path from possessing a node that is less than a user-defined distance from the center of each
body. Altitude constraints are necessary, not only because they ensure a trajectory does not pass
through a given body, but because such constraints also alleviate the numerical difficulties that oc-
cur due to less predictable nonlinear behavior when a path passes very near a massive body. All of
these constraints are concatenated into the vectors of equality and inequality constraints.

Feq =


fdefect
fcontinuity

f0
ff
fT̂

 Fineq =

[
f|T |
falt

]
(5)

For a process that does not involve an optimizer, the inequality constraints are enforced as equality
constraints using slack variables. However, when an optimizer is employed, slack variables are han-
dled within the optimizer, thus, altitude constraints are input as inequality constraints. Furthermore,
when a transfer is optimized, upper/lower bounds on the design variables are imposed to constrain
the thrust magnitude and to limit each mass variable to remain bounded between the initial space-
craft mass and zero. Together these constraints and bounds ensure that COLT generates a practical
low-thrust trajectory.

Once the design variable and the constraint vectors are constructed, these vectors along with their
gradient, DF (Xi), are employed to compute an update to the design variables. When no optimizer
is employed, the minimum-norm equation supplies the update to the design variables, that is,

Xi+1 = Xi −DF (Xi)
T [DF (Xi) ·DF (Xi)

T ]−1F (Xi) (6)
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where i indicates the update iteration number. However, for an optimal result, the update is deter-
mined with a formula unique to the selected optimization algorithm. This expression also incorpo-
rates the value and the gradient corresponding to the objective function. In this investigation, the
objective function is always equal to the negative of the final mass value,mf , along the path, and the
optimizer works to minimizes this value. The direct transcription formulation that is implemented
in COLT is capable of computing optimal low-thrust trajectories given an initial vector of design
variables. However, the construction of this design variable vector that serves as the initial guess is
a non-trivial step, and is a primary focus of this investigation.

Initial Guess Construction

All differential corrections approaches employed in transfer design require an initial guess; fur-
thermore, for a problem with many more variables than constraints, the structure of the initial ap-
proximation can significantly influence the nature of the result. Currently, one of the key challenges
in designing transfers between stable and nearly stable orbits is the general lack of intuition concern-
ing the structure of an initial guess. Compounding the difficulty in the CR3BP is the fact that stable
periodic orbits do not possess the invariant manifold structures that often guide the development
of an initial guess in a multi-body regime. The solution space available for a transfer is typically
comprised of one or more feasible solutions, each with a unique basin of convergence. When the
input to a corrections algorithm lies within the desired basin, the corrections process yields a so-
lution with similar characteristics. However, with the existence of many local solutions, the initial
guess for the transfer might be significantly altered, resulting in a trajectory without the preferred
characteristics. Given the infinite number of potential initial guesses available and the sensitivity
of the final solution to the initial guess, a systematic approach for constructing initial guesses and
exploring different basins of convergence is critical.

Since little intuition concerning the design space exists, it is advantageous to employ a simple
method for initial guess construction that allows rapid exploration of many possible options. A
“trajectory stacking” approach, similar to the fundamental technique in Herman,11 Parrish et al.,12

Pavlak,21 and Vaquero22 is leveraged to formulate an initial guess. In this application, a number
of ballistic revolutions are stacked along the departure and arrival orbits such that the states along
these revolutions are concatenated into a single design vector that is passed as input to the colloca-
tion algorithm. This approach is straightforward and results in an initial guess that is dynamically
feasible apart from the large discontinuity between the departure and arrival orbits. A simple exam-
ple demonstrates the construction of a transfer between predetermined libration point orbits. The
sample departure and arrival orbits are plotted in Figure 1(a) for a transfer from a L2 halo orbit with
a Jacobi constant value, J = 3.0275, and perilune radius rp = 34, 688.62 km to an L1 halo orbit
with, J = 3.0275, and perilune radius rp = 27, 102.02 km. To construct an initial guess, two revo-
lutions along each halo orbit are stacked resulting in a total flight time equal to 48.2 days. The initial
guess is passed to COLT to converge to a feasible transfer as plotted in Figure 1(b). This transfer
is computed quickly from an initial guess that contains almost no information concerning the char-
acteristics of the low-thrust transfer between the two halo orbits, demonstrating the effectiveness of
this simple initial guess generation method.

The trajectory stacking approach for generating an initial guess is easily modified to explore dif-
ferent basins of convergence for feasible transfers between periodic orbits. Additional trajectory
arcs are straightforward to incorporate between the stacked revolutions, to “guide” the initial guess
to a particular solution. In this approach, denoted the “orbit chaining method”, states along inter-
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(a) Initial Guess (b) Feasible Transfer

Figure 1: Feasible L2 to L1 halo orbit low-thrust transfer in an Earth-Moon CR3BP model for a
spacecraft with an initial mass of 500 kg and engine characteristics such that Tmax = 100 mN and
Isp = 2000 sec. Time of flight is 47.5 days.

mediate trajectory arcs are added to serve as links between the states along the departure and arrival
orbits. Such additional trajectory arcs can incorporate a natural dynamical structure, e.g., a periodic
or resonant orbit. The choice of intermediate trajectory arcs influences the characteristics of the con-
verged solution, allowing arcs to guide the solution to different basins of convergence. Moreover,
optimal low-thrust transfers frequently appear to leverage natural dynamical motion, thus, it is pos-
sible that ballistic intermediate trajectory arcs can assist an optimizer in converging to a desired type
of local optimal solution. Overall, the robustness and adaptability of a collocation scheme, com-
bined with the flexibility of the trajectory stacking and orbit chaining techniques, offers a powerful
strategy for computing low-thrust solutions between stable periodic orbits.

Optimization

Typically, low-thrust mission design ultimately seeks, not just a feasible transfer, but an optimal
path. Optimizing a spacecraft trajectory for minimum time or maximum final propellant mass can
reduce mission cost and increase scientific return. In direct transcription, an optimal low-thrust
trajectory is constructed by pairing a collocation scheme with an optimization algorithm. In this
scenario, the collocation scheme supplies the framework for the constraints that ensure a trajec-
tory is feasible, while the optimization algorithm enforces the conditions that ensure an optimal
final solution. Numerous optimization algorithms are available and each differs primarily in the
particular optimization conditions that are enforced and their implementation. In this investigation,
the optimization algorithm SNOPT (Sparse Nonlinear OPTimizer) is employed to construct the
optimal solutions.23, 24 Such an optimizer implements a sequential quadratic programming (SQP)
optimization approach and is well-suited for the type of large-scale NLP problems produced by di-
rect transcription. The parameters introduced for a particular optimizing strategy must be selected
appropriately to deliver a well-scaled problem, and to avoid lengthy convergence times and/or a lack
of convergence.

Several techniques are employed to aid in the convergence of the SNOPT algorithm and the
delivery of a local optimal solution. First, each element in the vector of design variables, X , that
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is passed to SNOPT, is assigned upper, Xup, and lower, Xlow, bounds to restrict the scope of the
optimization problem. As discussed previously, the design variable bounds for thrust magnitude
and mass remain consistent with those in the problem formulation. Additionally, since no single
component of the thrust direction unit vector can possess a value greater than one, these states are
bounded to be between zero and one. The bounds for the remaining position and velocity variables
are a function of their values in the initial guess, that is, a maximum position, νpos , or velocity,
νvel, variation from the initial guess is specified,

Xup =



u1|T |up

u1T̂up

x1,1up

ẋ1,1up

m1,1up
...


=



Tmax

1
x1,10 + νpos
ẋ1,10 + νvel

m0

...


and Xlow =



u1|T |low
u1T̂low

x1,1low

ẋ1,1low

m1,1low
...


=



1e−10
−1

x1,10 − νpos
ẋ1,10 − νvel

0
...


(7)

where x1,10 and ẋ1,10 are the initial values for the position and velocity states at the first node
along the first segment. Note that the minimum bound on u|T | is not set exactly to zero to prevent
numerical difficulties that may occur when the thrust magnitude equals exactly zero. Reasonable
values for νpos and νvel are selected based on user experience with an optimization problem. Next,
the bounds defined for the optimization problem may also aid in further scaling the design variables
to ensure all variables are similar in their order of magnitude and, thus, improve the performance of
the optimizer, that is,

sX = max (|Xup|, |Xlow|) ⇒ Xs = X/sX (8)

where sX is the vector of scaling factors for the design variables and Xs is the vector of scaled
design variables after the scaling factor is applied. All the design variables that are input to the
optimization algorithm are scaled, however, these variables are not scaled when employed within
the constraint or objective functions that are employed by SNOPT. The final technique to aid the
convergence of the optimizer is a scaling of the constraints. Although constraint values can exhibit
very different orders of magnitude, the constraint tolerance for SNOPT is defined by a single quan-
tity. To ensure that the desired level of accuracy is achieved in an optimized solution, scaling factors
for each type of constraint are produced using the following expression,

sF =
errtol
ftol

(9)

where sF is the constraint scaling factor, errtol is the desired level of error in the constraint, and
ftol is the overall feasibility tolerance of the optimization algorithm. For example, if a position
constraint must be satisfied to within a 1 meter level of accuracy, then errtol = 0.001 km. Of
course, scaling the design variables and the constraints implies that the gradients constructed for the
constraints and the objective function must also be scaled. The appropriate scaling factor for each
element of the gradient matrix is a ratio of the design variable and the constraint scaling factors
relevant to that element. Altogether, bounding the design variables and scaling the constraints as
well as the design variables, supports convergence and accurate results in SNOPT.

The feasible transfer from an L2 halo to an L1 halo orbit as viewed in Figure 1(b) is input to
SNOPT for optimization and the resulting trajectory is plotted in Figure 2(a). The low-thrust transfer
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(a) Optimal Transfer (b) Optimal Thrust Profile

Figure 2: Optimal L2 to L1 halo orbit low-thrust transfer in an Earth-Moon CR3BP model for a
spacecraft with an initial mass of 500 kg and an engine with Tmax = 100 mN and Isp = 2000 sec.
Time of flight is 47.5 days.

in Figure 1(b) includes a change in mass equal to ∆m = 9.85 kg while the optimal transfer in Figure
2(a) emerges with ∆m = 8.02 kg, therefore, optimizing the trajectory resulted in a mass savings of
1.83 kg as generated in the lower-fidelity CR3BP model. Examination of the thrust profile for an
optimal low-thrust solution offers insight on the optimality of the solution. An optimal thrust profile
generally exhibits gradual transitions in the thrust pointing direction, as apparent in Figure 2(b),
in contrast to the arbitrary and substantial modification in thrust pointing often seen in a feasible
solution.

Once a single feasible or optimal low-thrust transfer is produced, it can be employed to generate
an entire family of related transfers through a continuation process. One such straightforward tech-
nique is natural parameter continuation. This procedure involves incrementally modifying a single
parameter in a low-thrust solution and reconverging the solution between each adjustment. The
potential continuation parameters for this implementation include maximum thrust, time of flight,
and the Jacobi constant value for the departure or arrival orbit. The direct transcription formulation
cannot directly optimize any of these parameters, therefore, continuation is employed to construct
solutions with more desirable values for these parameters. Together, optimization and continuation
techniques are used to explore regions in the solution space and identify the trajectory that best
meets a set of desired characteristics.

Transition to Ephemeris Model

The CR3BP offers a convenient model for developing low-thrust transfers, however, these trans-
fers must be validated in an ephemeris model. Selected low-thrust transfers that are originally pro-
duced in the CR3BP are reconverged and plotted in an ephemeris model to demonstrate the strategy
for future applications. The mission design and navigation software MONTE (Mission Analysis
Operation and Navigation Toolkit Environment), developed at the Jet Propulsion Laboratory, is em-
ployed to accomplish this task.25 The MONTE software is a publicly available Python library with
a wide array of astrodynamics tools and, among many other capabilities, it facilitates computations
in a full ephemeris model. The MONTE sublibrary MColl is a framework to compute low-thrust
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trajectories within the MONTE environment using direct transcription, and this tool is leveraged to
converge low-thrust trajectories in an ephemeris model.26 The MColl algorithm sets up the direct
transcription problem with an approach similar to COLT; the primary differences include the fact
that MColl uses Legendre Gauss Lobatto (LGL) node spacing to construct the polynomials and the
open source optimizer IPOPT (Interior Point OPTimizer) to compute optimal trajectories.27 Due to
the basic similarities, it is straightforward to generate trajectories in a CR3BP model with COLT
and import them into MColl to be converged in a full ephemeris model.

To transition solutions from COLT to MColl, a trajectory is first imported and assembled as a tra-
jectory object in MONTE. If the imported transfer reflects a complex geometry or control history,
it may also be reconverged in a MONTE-based CR3BP model. Following this step, but prior to
a corrections process in an ephemeris model, the trajectory is transitioned from the rotating frame
in the CR3BP to a pulsating-rotating frame defined by the ephemerides. In an ephemeris model,
to accommodate the fact that the distance between the Earth and the Moon changes continuously,
the characteristic quantities are no longer assumed to be constant in the pulsating-rotating frame.
To account for this correspondence between the characteristic length and the epoch, the nondimen-
sional states along the trajectory as computed in the CR3BP, are dimensionalized using the constant
characteristic quantities from the CR3BP; then, these states are nondimensionalized using the in-
stantaneous values corresponding to the characteristic quantities in the pulsating-rotating frame at
the epoch time corresponding to the given state. This procedure is applied to import the optimal L2

halo to L1 halo transfer into an ephemeris model that includes the Earth and Moon. Furthermore,
if the direct transcription problem requires that the initial or final points along a trajectory be fixed
to a periodic orbit, then the desired periodic orbits are converged in a full ephemeris model and
states on the ephemeris orbits are accessed to constrain the transfer. For example, the L2 and L1

halo orbits in the CR3BP are converged in the same ephemeris model employed for the transfer, and
the departure and insertion points along the ephemeris orbits are used to fix the beginning and end
of the transfer when it is converged in the full ephemeris model. The epochs associated with the
departure point, low-thrust transfer, and insertion point must always be assigned in the necessary
sequence. For consistency, the ephemeris model used for the design of the low-thrust transfer is
nominally assumed to originate at noon on January, 1st 2000, assumes an EME2000 inertial frame,
and includes the Earth and Moon.

This specific combination of initial epoch, frame, and model are employed for the L2 halo to L1

halo orbit transfer, and all subsequent transfers, in a full ephemeris model to simplify comparisons.
The L2 halo to L1 halo orbit transfer is converged in an ephemeris model and is plotted in a rotating
frame, as well as the EME2000 frame in Figures 3(a) and 3(b), respectively. Clearly, the ephemeris
transfer exhibits a similar geometry but is not identical to the result from the CR3BP and requires
approximately 13 kg more propellant. The total propellant usage might be reduced with further op-
timization. Overall, the result demonstrates that constructing initial guesses for low-thrust transfers
in the CR3BP and, eventually, transitioning the solutions to the ephemeris models is effective.

SAMPLE APPLICATIONS

Trajectory Stacking Technique

The methodology to compute optimal low-thrust transfers by stacking orbit revolutions to con-
struct an initial guess is first demonstrated with the computation of low-thrust transfers between two
pairs of stable or nearly stable periodic orbits. The first pair of stable periodic orbits is a distant
retrograde orbit (DRO) and an L4 short period orbit (SPO). Conveniently, both of these orbits lie
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(a) Rotating Frame X-Y Plane (b) Rotating Frame X-Z Plane

Figure 3: L2 to L1 halo orbit low-thrust transfer in a full ephemeris model for a spacecraft with an
initial mass of 500 kg and an engine with Tmax = 100 mN and Isp = 2000 sec. Time of flight is
47.5 days.

entirely in the x-y plane, thus, simplifying the transfer dynamics. The departure DRO and arrival
L4 SPO are selected to possess nearly the same value of the Jacobi constant, i.e., J = 2.2230 and
J = 2.2230, respectively; this similarity further reduces the dynamical challenge of the transfer.
The initial guess is constructed with the trajectory stacking approach by concatenating three revo-
lutions of the DRO orbit and two revolutions of the L4 SPO orbit, resulting in a total time of flight
(TOF) equal to 134.8 days. The initial thrust magnitude is zero while the thrust pointing unit vector
is assumed to have equal components and unit magnitude. With this initial guess, the collocation al-
gorithm converges to the low-thrust transfer plotted in Figure 4(a) which results in a final spacecraft
mass, mf = 478 kg. The intervals of thrusting and coasting along this transfer successfully guide
the spacecraft to the insertion state, however, they appear to be arbitrary in terms of placement. A
transfer from the DRO to the SPO that achieves minimum propellant consumption includes thrust
and coast arcs located to best leverage the natural dynamics in the EM system. To achieve this
result, the feasible solution is passed to the optimization algorithm SNOPT that converges to the
solution that achieves the maximum final spacecraft mass for the given transfer time. The optimal
transfer produced by SNOPT is displayed in Figure 4(b). This transfer leverages more coast seg-
ments as well as thrust segments that employ only the maximum thrust level to achieve a transfer
with a delivered mass, mf = 482 kg. Thus, the optimal transfer consumes approximately 4 kg
less propellant than the original feasible result. The locally optimal transfer retains largely the same
geometry as the original feasible transfer, however, it is possible that other optimal transfers that
may be less costly with drastically different geometries and similar times of flight exist between
these two orbits. Computing such transfers requires different initial guesses and perhaps alternative
optimization strategies.

The next pair of stable or nearly stable periodic orbits that serve as a sample transfer include
a near-rectilinear halo orbit (NHRO) and a distant retrograde orbit (DRO). Transferring between
these two orbits requires a significant plane change that increases the complexity. Moreover, the
departure NRHO and arrival DRO possess significantly different values of the energy-like Jacobi
constant, J = 3.0347 and J = 2.9328, respectively, and this feature further increases the dynamical
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(a) Feasible Transfer (b) Optimal Transfer

Figure 4: DRO to L4 SPO low-thrust transfer in the EM system for a spacecraft with an initial mass
of 500 kg and an engine with Tmax = 100 mN and Isp = 2000 sec. Time of flight is 134.8 days.

challenge. The initial guess is constructed with the trajectory stacking approach by concatenating
three revolutions of the NRHO orbit and two revolutions of the DRO orbit, and this results in a
total time of flight (TOF) of 46.7 days. Given such an initial guess, the collocation algorithm
converged to the low-thrust transfer plotted in Figure 5(a) which results in a final spacecraft mass,
mf = 483 kg. Once again, the intervals of thrusting and coasting appear random with brief coasting
segments between long thrust segments. The locally optimal low-thrust trajectory computed with
SNOPT includes longer coast arcs, and therefore delivers a final mass of mf = 486 kg, which is
approximately 3 kg greater than the initial feasible trajectory. Consistent with the previous example,
the bounds placed on the optimization problem yield a locally optimal transfer that retains a similar
geometry to the original feasible transfer, however, this result may not occur if an alternate initial
guess or dynamical model is employed.

The optimal low-thrust trajectories computed in the CR3BP are transitioned to an ephemeris
model to assess their feasibility for mission applications. The low-thrust DRO to L4 SPO transfer
is computed in the same ephemeris model used previously and the resulting feasible trajectory is
plotted in the Earth-Moon rotating frame in Figure 6(a). Note that the resulting trajectory possesses
a similar geometry to the CR3BP result, however, the inner loops employed to transition to the SPO
are shifted in the ephemeris result. Additionally, the ephemeris trajectory requires approximately
18 kg more propellant to achieve, however this is primarily because the ephemeris result is not
optimized when converged in the full ephemeris model. The DRO to L4 SPO transfer converged
in the ephemeris model is not optimized because the prototype version of MColl is not equipped
with the minimum altitude constraints necessary to achieve convergence of an optimal solution. A
comparable result is obtained when the NRHO to DRO transfer is converged in the same ephemeris
model as is evident in Figure 6(b). In this example, the NRHO to DRO transfer is optimized when
converged in the full ephemeris model, and this results in a transfer with a final mass of mf =
488 kg, that is 2 kg greater than the CR3BP result.

The sample trajectories, demonstrate that a straightforward strategy is available to construct low-
thrust transfers between stable or nearly stable periodic orbits for mission applications. Additionally,
the characteristics of both of the transfers offered in Figures 4 through 6 suggest that leveraging
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(a) Feasible Transfer (b) Optimal Transfer

Figure 5: L2 NRHO to DRO low-thrust transfer in the EM system for a spacecraft with an initial
mass of 500 kg and an engine with Tmax = 100 mN and Isp = 2000 sec. Time of flight is
46.7 days.

intermediate trajectory arcs in an initial guess may aid in guiding a transfer to an optimal solution.
A notable observation is the fact that various regions along these low-thrust transfer paths resemble
other structures in the CR3BP. For example, the large inner loops in Figure 4(b) resemble a resonant
orbit or a manifold structure. Initial guess strategies that exploit such similarities may be useful.

(a) DRO to L4 SPO Transfer (b) NRHO to DRO

Figure 6: DRO to L4 SPO low-thrust transfer and a L2 NRHO to DRO transfer in a full ephemeris
model for a spacecraft with an initial mass of 500 kg and an engine with Tmax = 100 mN and
Isp = 2000 sec. Times of flight are approximately 134.8 days and 46.7 days, respectively.

Orbit Chaining Technique

The trajectory stacking technique for initial guess construction is sufficient to yield feasible low-
thrust transfers, however, the resulting trajectories are arbitrary and small changes in the problem
framework produce vastly different solutions. Thus, to approach transfer design more deliberately,
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consider that a significant characteristic that can be ascribed to a transfer is its “itinerary”. An
approach for the numerical construction of orbits with prescribed itineraries that exploits dynamical
chains is developed by Koon et al.,28 and applied with natural arcs in the three-body problem. The
same basic approach is employed here to add trajectory arcs to the initial guess and successfully
guide the solution towards desired characteristics. Specific trajectory arcs that leverage the natural
dynamics in the CR3BP to reduce the gap between the departure and arrival periodic orbits are
selected for inclusion in the initial guess. This approach is similar to leveraging invariant manifolds
and natural arcs, to guide transfer design between unstable periodic orbits. Alternatively, low-thrust
arcs may bridge the gaps between suitable natural arcs. Without manifolds, families of resonant
orbits are one type of orbit that offer structures that span the multi-body system and yield near-
connections between a variety of stable periodic orbits. The Adaptive Trajectory Design (ATD) tool
is utilized here to generate and explore different families of resonant orbits.29

The low-thrust transfers generated with the trajectory stacking technique are reexamined to demon-
strate the utility of including an intermediate trajectory arc in the initial guess. The 3:2 family of
resonant orbits exhibit geometries that pass near the large DRO, J = 2.2230, as well as L4 SPO,
J = 2.2230, thus, an orbit from this family is selected for inclusion in the initial guess and appears
in Figure 7(a). The intermediate trajectory is selected, not only for its geometry, but because its
Jacobi constant value, J = 2.2115, is also similar to those of the departure and arrival orbits. A

(a) Initial Guess DRO → L4 SPO (b) Initial Guess NRHO → DRO

Figure 7: (a) Initial guess for a low-thrust transfer from a lunar DRO to a L4 short period orbit that
includes a segment of an orbit from the two-dimensional 3:2 resonant orbit family. (b) Initial guess
for a low-thrust transfer from a near-rectilinear halo orbit to a lunar DRO that includes a segment of
an orbit from the two-dimensional 2:3 resonant orbit family.

ballistic transfer from the DRO to the L4 SPO must retain this Jacobi constant value. Because the
3:2 resonant orbit is periodic, adding the full orbit in the initial guess yields little benefit, therefore,
the trajectory is trimmed to a section that begins and ends where the resonant path passes closest
to the departure and insertion locations, on the DRO and L4 SPO, respectively. The initial guess,
then consists of this intermediate arc as well as one revolution about the departure and arrival or-
bits resulting in a total time of flight of 121.3 days. Optimizing in COLT yields the trajectory in
Figure 8. Plotted in the rotating coordinate frame in Figure 8(a), the final transfer is very similar in
geometry to the initial guess and this resemblance suggests inclusion of the intermediate arc aided
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(a) Rotating Frame (b) Inertial Frame

Figure 8: A low-thrust transfer from a lunar DRO to a L4 SPO with a total time of flight of 121.3
days plotted in the rotating and inertial coordinate frames. This transfer requires ∆m = 3 kg.

COLT in computing first, a feasible, and, then, an optimal solution. The thrust arcs along the low-
thrust transfer primarily occur during close approaches to the Earth which is most evident when
the transfer is plotted in the inertial coordinate frame. The inertial view plot, seen in Figure 8(b),
illustrates that the large DRO and L4 SPO are essentially precessing elliptical orbits relative to the
Earth. To complete the transfer, the low-thrust spacecraft utilizes intervals of thrusting at periapse to
effect the maximal change in the argument of periapsis. When an intermediate trajectory arc is not
employed in the initial guess and an optimal transfer with a similar time of flight is computed, the
resulting trajectory is comparable in geometry to the transfer in Figure 4(b). In the former case, the
transfer requires a change in mass equal to ∆m = 14 kg, however, with the intermediate trajectory
arc incorporated in the initial guess this transfer requires only ∆m = 3 kg. This difference indi-
cates that the appropriate leveraging of natural dynamical structures guides an optimizer towards a
more optimal low-thrust transfer. However, the difference in performance could also be attributed
in part to the number of revolutions in the initial guess, also an indicator of different local optimal
solutions.

The transfer from the NRHO, J = 3.0347, to the DRO, J = 2.9328, from Figure 5 requires a
significant plane change, however, a planar 2:3 resonant orbit still appears to be the best candidate
from among the families of resonant orbits to add value in developing a near-connection between
these two orbits. A 2:3 resonant orbit is selected with a Jacobi constant value, J = 2.9606, between
those of the NRHO and DRO orbits. The segment along the 2:3 resonant orbit highlighted in Figure
7(b) is incorporated into an initial guess that also includes one revolution along the NRHO and
DRO, respectively, resulting in a total time of flight of 96.8 days. The initial guess is passed to
COLT which converges to the optimal solution in Figure 9. The view of the transfer in the x-y plane
as plotted in Figure 9(a) displays a path that appears similar to the initial guess. However, a view of
the transfer that includes the out-of-plane components of the trajectory reveals that the optimization
process introduced significant out-of-plane components along the path, as apparent in Figure 9(b).
Some shift toward out-of-plane behavior is expected because the departure and arrival orbits are not
coplanar, nevertheless, other natural dynamical structures may be better suited for inclusion in the
initial guess of this transfer especially ones with some out-of-plane component. The change in mass
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(a) X-Y Plane View (b) Y -Z Plane View

Figure 9: Two views of a low-thrust transfer from a L2 southern NRHO to a lunar DRO with a total
time of flight of 96.8 days. This transfer requires ∆m = 12.85 kg.

of the optimized transfer in Figure 9(a) is ∆m = 12.85 kg. This ∆m is only 1 kg less than the
optimal transfer shown in Figure 4(a) which did not include an intermediate trajectory arc in the
initial guess. This small difference in propellant consumption is another indicator that including the
selected resonant orbit as an intermediate trajectory arc may not always yield a better initial guess.
Both of the transfers generated using the orbit chaining technique are converged in an ephemeris
model. The resulting trajectories are plotted in Figure 10 and appear to maintain similar geometries
to the CR3BP results. The NRHO to DRO transfer in Figure 10(b) exhibits greater distortion from
the CR3BP result, however, the ephemeris transfer maintains the loop structure of the path computed
using the lower-fidelity model.

Table 1: Summary of low-thrust transfers examined for a spacecraft with m0 = 500 kg, Tmax =
100 mN , and Isp = 2000 sec. The values with ∗ are results computed without optimization in
the ephemeris model. The reason for this choice is detailed in the Trajectory Stacking Technique
section.

Transfer Type CR3BP Model Ephemeris Model
TOF (days) mf (kg) mf (kg)

L2 Halo→ L1 Halo 47.5 491.98 491.73
DRO→ L4 SPO 134.8 482.03 ∗463.83
DRO→ 3:2 Resonant→ L4 SPO 121.3 497.04 ∗472.75
NRHO→ DRO 46.7 486.14 488.33
NRHO→ 2:3 Resonant→ DRO 96.8 487.15 495.00

Applying Continuation to Direct Transcription Results

A natural parameter continuation process is employed to compute a family of low-thrust transfers
related by a single parameter, such as maximum thrust or time of flight. When a family of transfer
options is obtained, a mission designer can select the transfer that possesses the most desirable
characteristics. This technique is first employed here to compute a transfer for a spacecraft with
characteristics similar to those proposed for NASA’s Deep Space Gateway (DSG) concept. The
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(a) DRO to L4 SPO with 3:2 Resonant (b) NRHO to DRO with 2:3 Resonant

Figure 10: DRO to L4 SPO low-thrust transfer and a L2 NRHO to DRO transfer in a full ephemeris
model for a spacecraft with an initial mass of 500 kg and an engine with Tmax = 100 mN and
Isp = 2000 sec. Times of flight are approximately 121.3 days and 96.8 days, respectively.

DSG is currently planned as a space station equipped with solar electric propulsion, nominally
located in a lunar NRHO. Thrust to weight (T/W ) ratios for this facility that are currently under
consideration range from 1 × 10−6 to 6 × 10−6. For this investigation, a space station with an
initial mass equal to 30 mT and Isp = 3000 sec is employed, therefore, the permissible range for
maximum thrust is Tmax = 0.294-1.766 N . A transfer from a NRHO to a DRO for a spacecraft
with these characteristics is the goal, however, the trajectory stacking technique alone is not capable
of computing such a transfer because of the small T/W ratio.

Alternatively, a low-thrust transfer with a Tmax value outside of the desired range is computed
and COLT is employed in a continuation scheme to gradually reduce Tmax to an acceptable value.
Initially, an optimal low-thrust NRHO to DRO transfer for a 30 mT spacecraft with Tmax = 2.5 N
is constructed. A long time of flight is required to achieve this transfer, and this is accomplished
either by stacking many revolutions along the initial and final periodic orbits, or by including an
intermediate trajectory arc in the initial guess. In this case, a segment from a 2:3 resonant orbit
is included in the initial guess because the resulting transfer remains more planar and, therefore,
requires less propellant. Next, Tmax is reduced in 100 mN increments and, at each step, a feasi-
ble low-thrust transfer is computed using the result from the previous step as an initial guess; this
process continues until reaching a minimum step size. The final feasible low-thrust transfer con-
structed corresponds to Tmax = 1.37 N . The transfer constructed with Tmax = 1.7 N is selected
for optimization and the result is plotted in Figure 11(a). This optimal transfer is also transitioned to
an ephemeris model to validate its utility for future mission applications; as plotted in Figure 11(b).
This solution demonstrates that low-thrust transfers between lunar orbits with vastly different in-
clinations are possible for large spacecraft and proves the utility of direct transcription techniques
paired with continuation.

The results of a continuation process are also employed to examine a range of possible optimal
transfers. In Figures 12(a) and 12(b), a family of optimal low-thrust transfers appears for a range of
Tmax and time of flight values, respectively. Figure 12(a) shows that Tmax is positively correlated
with final spacecraft mass when Isp and time of flight are held constant. Likewise, in Figure 12(b)
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(a) Optimal Transfer in CR3BP (b) Feasible Transfer in Full Ephemeris Model

Figure 11: Low-thrust transfers for a space station craft with Tmax = 1.7 N from a L2 southern
NRHO to a lunar DRO in the CR3BP and full ephemeris models with a total time of flight of 136.2
days. The CR3BP transfer requires ∆m = 310 kg.

the mass trade-off with time of flight reflects the result that increasing the transfer time of flight
leads to less propellant consumption. These results demonstrate that continuation techniques might
support exploration of the trade space.

(a) Final Mass vs. Tmax (b) Final Mass vs. TOF

Figure 12: Final mass of optimized low-thrust transfers as a function of two different continuation
parameters. All transfers are from a L2 southern NRHO to a lunar DRO and use a spacecraft with
an initial mass of m0 = 30, 000 kg and Isp = 3000 sec.

CONCLUDING REMARKS

This investigation demonstrates the application of collocation techniques to support low-thrust
mission design in the CR3BP. A trajectory stacking technique produces initial guesses with large
initial position and velocity discontinuities, however, the robust convergence properties of direct
transcription algorithms enable this approach to generate optimal low-thrust trajectories even with a
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poor initial guess. The simple trajectory stacking method is particularly well-suited for computing
transfers between stable and near-stable periodic orbits because these orbits do not possess invariant
manifold structures to guide the formulation of an initial guess. A single low-thrust transfer may also
serve as the basis to generate a family of transfers related by a single parameter such as maximum
thrust. Any such transfer may be transitioned to a higher-fidelity model where a path with similar
characteristics is often available.

Chaining intermediate trajectory arcs between stacked revolutions of the departure and arrival
periodic orbits is also a useful strategy for reducing the error in an initial guess and guiding a direct
transcription algorithm toward a particular optimal solution. In this investigation, families of reso-
nant orbits supply advantageous trajectory arcs because their geometries intersect the periodic orbits
of interest. Likely other transfer scenarios require different types of natural dynamical structures,
e.g., periodic orbits, three-dimensional resonant orbits, or invariant manifolds. Fortunately, the or-
bit chaining strategy is versatile and can incorporate segments from each of these trajectory types.
However, while many options for intermediate trajectory arcs are available, not all arcs benefit an
initial guess, and sometimes no arc is required. Nevertheless, an orbit chaining approach paired
with a continuation scheme can generate low-thrust transfers that would be challenging to design
without these strategies. Further development of these methods will facilitate trajectory design in
dynamical regimes where little intuition is available for the construction of an initial guess.
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[27] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm
for large-scale nonlinear programming,” Mathematical Programming, Vol. 106, Mar 2006, pp. 25–57.

[28] W. S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross, “Heteroclinic connections between periodic orbits
and resonance transitions in celestial mechanics,” Chaos: An Interdisciplinary Journal of Nonlinear
Science, Vol. 10, No. 2, 2000, pp. 427–469.

[29] A. F. Haapala, M. Vaquero, T. A. Pavlak, K. C. Howell, and D. C. Folta, “Trajectory selection strategy
for tours in the earth-moon system,” Advances in the Astronautical Sciences, Vol. 150, Hilton Head,
South Carolina, 2014, pp. 1150–1170.

20


	Introduction
	Background and Formulation
	Circular Restricted Three-Body Problem and Low-Thrust Engine Model
	Collocation Framework and Mesh Refinement
	Initial Guess Construction
	Optimization
	Transition to Ephemeris Model

	Sample Applications
	Trajectory Stacking Technique
	Orbit Chaining Technique
	Applying Continuation to Direct Transcription Results

	Concluding Remarks
	Acknowledgment

