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Abstract 

The motion of a spacecraft in the proximity of a small body is significantly perturbed primarily due to the 

irregular shape of the small body and solar radiation pressure. In such a strongly perturbed environment, the coupling 

effect of the orbital and attitude motions has a large effect that cannot be neglected. However, natural orbit-attitude 

coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. 

The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-

tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and 

attitude state with respect to the Sun without requiring active control. The proposed method can reduce the use of an 

orbit and attitude control system, which reduces the weight of a spacecraft and prolongs the life time of the mission. 

This study provides evidence that Sun-synchronous orbits with Sun-tracking attitude motion are feasible for small-

body missions and exhibit unique dynamic characteristics. 

Keywords: Small body, Solar radiation pressure, Gravity irregularity, Sun-synchronous orbit, Sun-tracking motion, 

Orbit-attitude coupled motion 

1. Introduction 

Rendezvous missions to small bodies, such as 

asteroids and comets, have been of interest in recent 

years. In such missions, the motion of a spacecraft 

around a small body is strongly perturbed primarily due 

to the irregular gravity field and solar radiation pressure 

(SRP). These perturbations significantly influence both 

the orbital and attitude motions of the spacecraft; thus, 

the dynamical environment around a small body 

completely differs from those around planets and moons. 

To understand this unique environment, many previous 

studies have analyzed orbital and attitude dynamics 

around small bodies.  

With regard to orbital motion around a small body, 

gravity irregularity due to the oblateness of the body 

and the SRP perturbation are the two predominant 

perturbing forces, which can lead to significant changes 

in orbital elements [1]. One of the classical approaches 

to this problem is implementing Sun-synchronous 

frozen orbits, for which the orbital geometries are 

constant with respect to the Sun, as depicted in Fig. 1 

(left). Previous studies have revealed that Sun-

synchronous orbits can be achieved when either or both 

the oblateness effect and SRP perturbation are dominant 

[2 – 5]. Therefore, Sun-synchronous orbits are useful 

options for small-body missions. 

On the other hand, with regard to attitude motion 

around a small body, most published studies focused on 

the effect of higher-order gravity gradient (GG) torque 

acting on a spacecraft as a result of gravity irregularity. 

The attitude dynamics of a spacecraft subject to this 

effect have been formulated and analyzed [6, 7], and the 

attitude motion has been found to be affected by the 

shape of the small body [8]. In addition to GG torque, 

the torque due to SRP can also disturb the attitude of a 

spacecraft, depending on the system [9]. For these 

reasons, the attitude motion of a spacecraft around a 

small body is strongly perturbed, resulting in complex 

dynamics. 

In the studies described above, the orbital motion 

and the attitude motion of a spacecraft have been 

analyzed independently, by assuming constant attitude 

states or stationary circular orbits. However, these 

motions are not independent in reality, such that there is 

a dynamic interaction between them. For example, the 

gravitational force and the SRP force are dependent on 

the attitude of a spacecraft when the spacecraft is 

modelled as a rigid body [10]. On the other hand, GG 

torque is dependent on the position of a spacecraft with 
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respect to a gravitational mass. With regard to multi-

body dynamics, past studies have analyzed the effects of 

GG torque and SRP torque on libration point orbits in 

the interplanetary region [11, 12]. Within the same 

regime, further investigation has identified periodic 

solutions of such orbit-attitude coupled motion [13]. 

Recent studies have revealed that such orbit-attitude 

coupling effect also significantly impacts the motion of 

a spacecraft around a small body [14 – 16]. It has 

therefore been concluded that modelling the motion of a 

spacecraft around a small body as orbit-attitude coupled 

dynamics is necessary for precise analyses. However, 

natural coupled dynamics that are stationary in both 

orbital and attitude motions have yet to be identified. 

Moreover, past studies regarding attitude motion around 

small bodies have evaluated the attitude of a spacecraft 

with respect to a small body [6, 8, 15], although attitude 

motion with respect to the Sun can also significantly 

affect real missions. 

Therefore, the present study investigates natural 

orbit-attitude coupled motion that involves both a Sun-

synchronous orbit and a Sun-tracking attitude motion, as 

depicted in Fig. 1. Sun-tracking attitude motion is the 

natural motion, by which the specific axis of a 

spacecraft continuously tracks the direction of the Sun, 

as implemented in the Hayabusa and Hayabusa 2 

mission in the interplanetary region [17, 18]. The 

proposed orbit-attitude coupled motion around a small 

body enables a spacecraft to maintain its orbital 

geometry and attitude state with respect to the Sun 

without requiring any active control. Thus, the proposed 

method is advantageous for solar power generation, 

thermal design, and optical observation. Moreover, it 

can reduce the use of orbit and attitude control systems, 

such as thrusters and reaction wheels, thereby reducing 

the weight of a spacecraft, prolonging the life time of 

the mission, and reducing the operational workload. 

The present study was designed to develop general 

theories behind achieving Sun-synchronous orbits with 

Sun-tracking attitude motions around small bodies and 

to verify the feasibility of such motions. Toward this 

end, this paper is composed of three parts, as shown in 

Fig. 2. First, the orbital motion is modelled as Lagrange 

planetary equations, and the solutions of Sun-

synchronous orbits are solved. Second, the attitude 

motion is modelled as linearized Euler equations, 

considering the Sun-synchronous orbits obtained in the 

first step, and conditions required to achieve Sun-

tracking motion are derived. Finally, the orbital and 

attitude motions are propagated by numerical 

integration, based on coupled orbit-attitude equations of 

motion. Ultimately, it is demonstrated that a Sun-

synchronous orbit with Sun-tracking attitude motion can 

be achieved via an orbit-attitude coupled system around 

a small body. 

 

2. Dynamic model 

2.1 Spacecraft and small body model 

The physical parameters for a spacecraft used in this 

paper are given in Table 1. Although these parameters 

are based on the Hayabusa 2 spacecraft [18, 19], which 

was launched by JAXA in 2014, it is assumed that the 

spacecraft has an axisymmetrical shape for simplicity. 

Throughout this paper, the 𝑧 axis of the spacecraft body-

fixed frame is regarded as the axis that should be 

directed toward the direction of the Sun, that is, the 

normal direction of solar array panels, for example. 𝐶𝑠, 

𝐶𝑑 , and 𝐶𝑎  are optical constants of the spacecraft 

surface that correspond to the modes of specular 

reflection, diffuse reflection, and absorption, 

respectively, which satisfy 𝐶𝑠 + 𝐶𝑑 + 𝐶𝑎 = 1.  

 

        
Fig. 1. Sun-synchronous orbit (left) and Sun-tracking 

attitude motion (right) 

 

 
 

Fig. 2. Research process 

 

Table 1. Spacecraft parameters 

Item Symbol Value 

Mass 𝑚 600 kg 

Area 𝐴 13 m2 

Moments of Inertia 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 360, 360, 480 kg ⋅ m2 

CS-CM distance* 𝐿 0.2 m 

Optical constants 𝐶𝑠, 𝐶𝑑, 𝐶𝑎 0.1, 0.1, 0.8 

CS: Center of SRP; CM: Center of mass 

 

Table 2. Small body parameters 

Item Symbol Value 

Distance from the Sun 𝑑 1 AU 

Mean diameter  1 km 

Axis ratio 𝑅𝑎: 𝑅𝑏: 𝑅𝑐 1.4: 1.2: 1 
Density  2.6 g/cm3 

Rotation period 𝑇𝑟𝑜𝑡  7 hr 
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The physical parameters for a small body are given 

in Table 2. The body is assumed to be moving in a 

circular orbit, with a radius of 1 AU, around the Sun. 

The body is modelled as a homogeneous triaxial 

ellipsoid, with a mean diameter of 1 km, rotating 

uniformly about the shortest axis. This rotation axis is 

assumed to be perpendicular to the ecliptic plane. The 

rotation axis can take any direction in general; however, 

near Earth asteroids and main belt asteroids with small 

diameters (≲ 30 km) show a lack of rotation axes close 

to the ecliptic plane [5, 20]. Therefore, this assumption 

regarding the rotation axis is reasonable for initial 

analyses. The bulk density of the body is assumed to be 

the same as the common value of a C-type asteroid [21]. 

 

2.2. Coordinate system 

2.2.1 Definitions of coordinate systems 

To describe the orbital and attitude motions of a 

spacecraft, six different coordinate systems are used, as 

shown in Fig. 3.  

 Inertial coordinate: (𝑥𝐼 , 𝑦𝐼 , 𝑧𝐼) 

The origin is at the center of the Sun. All axes are 

fixed in the inertial space. 

 Hill coordinate: (𝑥𝐻 , 𝑦𝐻 , 𝑧𝐻) 

The origin is at the center of a small body. The 𝑥 

axis points in the anti-Sun direction, the 𝑧  axis is 

aligned with the angular velocity vector of the orbit of 

the small body around the Sun, and the 𝑦 axis completes 

a right-handed Cartesian coordinate system.  

 Small-body-fixed coordinate: (𝑥𝑆𝐵, 𝑦𝑆𝐵 , 𝑧𝑆𝐵) 

The 𝑥 , 𝑦 , and 𝑧  axes are fixed on the longest, 

intermediate, and shortest axis, respectively, of the 

small body. The 𝑧 axis is identical to 𝑧𝐻 because of the 

assumption given in the previous subsection.  

 Sun-pointing coordinate: (𝑥𝑆𝑃 , 𝑦𝑆𝑃 , 𝑧𝑆𝑃) 

The origin is at the center of the spacecraft. The 𝑧 

axis points in the Sun direction, the 𝑥  axis is 

perpendicular to the plane formed by 𝑥𝐻  and 𝑦𝐻 , and 

the 𝑦  axis completes a right-handed Cartesian 

coordinate system. 

 Spin-free coordinate: (𝑥𝑆𝐹 , 𝑦𝑆𝐹 , 𝑧𝑆𝐹) 

The origin is at the center of the spacecraft. The 𝑧 

axis is fixed on the spacecraft, the 𝑥  axis is 

perpendicular to the plane formed by 𝑥𝑆𝑃 and 𝑦𝑆𝑃, and 

the 𝑦  axis completes a right-handed Cartesian 

coordinate system. 

 Spacecraft-fixed coordinate: (𝑥𝑆𝐶 , 𝑦𝑆𝐶 , 𝑧𝑆𝐶) 

The origin is at the center of the spacecraft. All axes 

are fixed on the spacecraft and are aligned along the 

principal directions. The 𝑧 axis is identical to 𝑧𝑆𝐹. 

From these definitions, the attitude of the spacecraft 

can be expressed by Euler angles (𝜙, 𝜃, 𝜓), considering 

a 2-1-3 rotation sequence from the Sun-pointing 

coordinate to the spacecraft-fixed coordinate. Because 

the distance between the small body and the spacecraft 

is sufficiently smaller than that between the Sun and the 

small body, 𝜃  and 𝜙  can be regarded as in-plane and 

out-of-plane Sun angles with respect to the ecliptic 

plane. 

 

2.1.2 Transformations between coordinate systems 

Let 𝒖 
𝜉  denote a 3-dimensional vector in an 

arbitrary 𝜉 -coordinate system, and let 𝑪𝜉 
𝜂  denote the 

rotational transformation matrix from an 𝜉-coordinate to 

an 𝜂-coordinate system. Then, the rotational coordinate 

transformation for the vector is expressed as 𝒖 
𝜂 =

𝑪𝜉 
𝜂 𝒖 

𝜉 . The rotational coordinate transformation 

matrices between some of the coordinate systems are 

given in the following part. Here, the rotational 

transformation matrices about the 𝑥, 𝑦, and 𝑧 axes by an 

angle 𝜗 are denoted as 𝑹𝑥(𝜗), 𝑹𝑦(𝜗), and 𝑹𝑧(𝜗). 

When the rotation angle of a small body with respect 

to the Hill coordinate is denoted by 𝜃𝑟𝑜𝑡, as shown in 

Fig. 3, the rotational transformation from the Hill 

coordinate to the small-body-fixed coordinate is given 

by the equation below. 

 𝑪𝐻 
𝑆𝐵 = 𝑹𝑧(𝜃𝑟𝑜𝑡) (1)   

Let 𝜃1 and 𝜃2 be defined as 

 𝜃1 = tan−1
𝑦

𝑑 + 𝑥
,   𝜃2 = tan−1

𝑧

𝑑 + 𝑥
  (2)   

where (𝑥, 𝑦, 𝑧) denotes the position of the spacecraft in 

terms of the Hill coordinate. Because 𝑥, 𝑦, 𝑧 ≪ 𝑑 holds 

in the proximity of a small body, the rotational 

transformation from the Hill coordinate to the Sun-

pointing coordinate is given by the following equation: 

 
 

 
 

Fig. 3. Coordinate systems 
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 𝑪𝐻 
𝑆𝑃 = 𝑹𝑥(−𝜃2)𝑹𝑦(−𝜃1)𝑹𝑥 (−

𝜋

2
) 𝑹𝑧 (

𝜋

2
)

≃ 𝑹𝑥 (−
𝜋

2
) 𝑹𝑧 (

𝜋

2
)

 (3)   

Considering a 2-1-3 rotation sequence with a 

rotation angle set of (𝜙, 𝜃, 0) , the rotational 

transformation from the Sun-pointing coordinate to the 

spin-free coordinate is expressed as follows: 

 𝑪𝑆𝑃 
𝑆𝐹 = 𝑹𝑥(𝜙)𝑹𝑦(𝜃) (4)   

Considering a 2-1-3 rotation sequence with a 

rotation angle set of (𝜙, 𝜃, 𝜓) , the rotational 

transformation from the Sun-pointing coordinate to the 

spacecraft-fixed coordinate is expressed as follows: 

 𝑪𝑆𝑃 
𝑆𝐶 = 𝑹𝑧(𝜓)𝑹𝑥(𝜙)𝑹𝑦(𝜃) = 𝑹𝑧(𝜓) 𝑪𝑆𝑃 

𝑆𝐹  (5)   

 

2.3 Gravity model 

The gravity of a small body is calculated based on 

an ellipsoid model. The gravitational coefficients 𝐶𝑚𝑛 

of its spherical harmonics expansion up to the fourth 

order are defined by Eq. (56) in the Appendix. Using 

these coefficients, the gravitational potential of a mass 

element due to the zeroth-, second-, and fourth-order 

gravity terms can be expressed as follows [7, 24]: 

𝑈𝐺,𝐶00
=

𝜇

|𝑹|

𝑈𝐺,𝐶2𝑘
= 𝜇𝐶20𝑅𝑎

2 (
3

2

(𝜸 ⋅ 𝑹)2

|𝑹|5
−

1

2

1

|𝑹|3
)

+𝜇𝐶22𝑅𝑎
2 ⋅ 3

(𝜶 ⋅ 𝑹)2 − (𝜷 ⋅ 𝑹)2

|𝑹|5

𝑈𝐺,𝐶4𝑘
= 𝜇𝐶40𝑅𝑎

4 (
35

8

(𝜸 ⋅ 𝑹)4

|𝑹|9
−

15

4

(𝜸 ⋅ 𝑹)2

|𝑹|7
+

3

8

1

|𝑹|5
)

+𝜇𝐶42𝑅𝑎
4 (

105

2

{(𝜶 ⋅ 𝑹)2 − (𝜷 ⋅ 𝑹)2}(𝜸 ⋅ 𝑹)2

|𝑹|9

                    −
15

2

(𝜶 ⋅ 𝑹)2−(𝜷 ⋅ 𝑹)2

|𝑹|7
)

+𝜇𝐶44𝑅𝑎
4 (105

(𝜶 ⋅ 𝑹)4 + (𝜷 ⋅ 𝑹)4

|𝑹|9

                    −630
(𝜶 ⋅ 𝑹)2(𝜷 ⋅ 𝑹)2

|𝑹|9
)

 

 

  (6)   

Here, 𝜶, 𝜷, and 𝜸 denote unit vectors along the longest, 

intermediate, and shortest axes of the small body, 

respectively, and 𝑹 denotes the relative position vector 

of a mass element with respect to the center of mass of 

the small body, as shown in Fig. 4. 𝑹 can be expressed 

as follows: 

 𝑹 = 𝒓 + 𝝆 (7)   

where 𝒓 is the relative position vector of the center of 

mass of the spacecraft relative to that of the small body, 

and 𝝆  is the relative position vector of the element 

relative to the center of mass of the spacecraft. 

Considering the derivative of the gravitational 

potentials with respect to 𝑹, the gravitational force and 

the GG torque can be expressed by Eqs. (8) and (9). 

𝑭𝐺 = ∫
𝜕𝑈𝐺,𝐶00

𝜕𝑹
𝑑𝑚 + 𝑚

𝜕𝑈𝐺,𝐶2𝑘

𝜕𝑹
|

𝑹=𝒓

+ 𝑚
𝜕𝑈𝐺,𝐶4𝑘

𝜕𝑹
|

𝑹=𝒓

≡ 𝑭𝐺,𝐶00
+ 𝑭𝐺,𝑐𝑜𝑢𝑝 + 𝑭𝐺,𝐶2𝑘

+ 𝑭𝐺,𝐶4𝑘

 (8)   

 

𝑻𝐺𝐺 = ∫ 𝝆 ×
𝜕𝑈𝐺,𝐶00

𝜕𝑹
𝑑𝑚 + ∫ 𝝆 ×

𝜕𝑈𝐺,𝐶2𝑚

𝜕𝑹
𝑑𝑚

≡ 𝑻𝐺𝐺,𝐶00
+ 𝑻𝐺𝐺,𝐶2𝑘

  (9)   

These equations assume that the gravitational potential 

up to the fourth order contributes to the force acting on 

the spacecraft, while the potential up to the second order 

contributes to the torque. In Eq. (8), the spacecraft is 

treated as a point mass for the calculation of the 

gravitational force due to the second- and fourth-order 

terms. By contrast, the shape of the spacecraft is taken 

into account for the force due to the zeroth-order term, 

which means that the attitude of the spacecraft exerts 

influence on the orbital motion, thereby causing the 

gravitational coupling effect [14, 16]. The explicit 

formulations of the terms described in Eqs. (8) and (9) 

are provided by Eqs. (60) and (61) in the Appendix. 

 

2.4 SRP model 

In this study, the SRP acting on a spacecraft is 

calculated based on a flat plate model. This plate is 

perpendicular to the 𝑧𝑆𝐶  axis. Then, the SRP force 

acting on the spacecraft is given as follows [22]: 

𝑭𝑆𝑅𝑃 = −𝑃𝐴(𝒏 ⋅ 𝒔)

  × {(2(𝒏 ⋅ 𝒔)𝐶𝑠 + 𝐵𝑓𝐶𝑑)𝒏 + (𝐶𝑑 + 𝐶𝑎)𝒔}
  (10)   

 
 

Fig. 4. Position of a spacecraft relative to a small body 
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where 𝒏 is a unit vector normal to the surface of the 

spacecraft; 𝒔  is a unit vector pointing from the 

spacecraft to the Sun; 𝐵𝑓 = 2/3  is the Lambertian 

coefficient; and 𝑃 = 𝑃0/𝑑2  is the SRP acting on the 

surface of the spacecraft, where 𝑃0 ≃ 1 × 1017 kg ⋅
m/s2  is the solar flux constant [23]. As a result, the 

SRP torque can be expressed by the equation below.  

 𝑻𝑆𝑅𝑃 = 𝑳𝑆𝑅𝑃 × 𝑭𝑆𝑅𝑃 (11)   

where 𝑳𝑆𝑅𝑃 is the position vector of the center of the 

SRP relative to the center of mass, which is defined as  

𝑳𝑆𝑅𝑃 
𝑆𝐶 = [0, 0, 𝐿𝑧]T . Note that the vector 𝒏  is given 

such that 𝒏 ⋅ 𝒔 ≥ 0 is satisfied. 

Eq. (10) depends on the attitude of the spacecraft, 

which causes the coupling of the orbital and attitude 

motion of the spacecraft. This coupling effect due to the 

SRP is usually much larger than the gravitational 

coupling effect described in the previous subsection. 

 

3. Orbital motion 

In this section, Sun-synchronous orbit solutions are 

solved by an analytical approach using Lagrange 

planetary equations. Although not the major 

contribution of this study, the derivation of the solution 

is described for clarity of discussion in subsequent 

sections. 

 

3.1. Lagrange planetary equation 

The largest gravity irregularity effect is due to the 

𝐶20(= −𝐽2)  term, in general, which constitutes the 

oblateness effect. The orbital motion of a spacecraft 

subject to SRP perturbation and the oblateness effect is 

expressed by the following averaged Lagrange planetary 

equations [5]: 

�̇� = 0

�̇� = −𝐾𝑆𝑅𝑃√1 − 𝑒2(sin 𝜔 cos Ω + cos 𝜔 sin Ω cos 𝑖)

𝑖̇ = −𝐾𝑆𝑅𝑃

𝑒

√1 − 𝑒2
cos 𝜔 sin Ω sin 𝑖

Ω̇ = −𝐾𝑆𝑅𝑃

𝑒

√1 − 𝑒2
sin 𝜔 sin Ω +

𝐾𝐽2

(1 − 𝑒2)2
cos 𝑖 − 𝑁

�̇� = −
𝐾𝑆𝑅𝑃

𝑒√1 − 𝑒2
{(1 − 𝑒2) cos 𝜔 cos Ω − sin 𝜔 sin Ω cos 𝑖}

                                                           +
𝐾𝐽2

(1 − 𝑒2)2
(

5

2
sin2 𝑖 − 2)

 

 

  (12)   

where (𝑎, 𝑒, 𝑖, Ω, 𝜔) denotes the set of orbital elements 

defined in the Hill coordinate; N denotes the mean 

motion of a small body; and 𝐾𝐽2
 and 𝐾𝑆𝑅𝑃 are functions 

of the semi-major axis a, as follows: 

𝐾𝐽2
=

3

2
⋅

√𝜇𝐶20𝑅𝑎
2

𝑎
7
2

,  𝐾𝑆𝑅𝑃 =
3

2

|𝑭𝑆𝑅𝑃|𝒏=𝒔

𝑚
√

𝑎

𝜇
 (13)   

This section assumes that the attitude of the spacecraft 

is always directed toward the Sun. 

 

3.2. Sun-synchronous orbit solutions 

Sun-synchronous frozen orbits can be achieved 

when all of the derivatives of orbital elements described 

in Eq. (12) are equal to zero. Several types of orbits are 

known to satisfy this condition. The present study 

investigates one of these orbits, called a near-polar 

terminator orbit, because this type of orbit can avoid 

solar eclipse and has relatively small eccentricity [5]. 

The orbital elements of near-polar terminator orbits can 

be solved as follows: 

 𝑎 = free, 𝑒 = 𝑓1(𝑎), 𝑖 = 𝑓2(𝑎), 

Ω = ±
𝜋

2
 , 𝜔 = ∓

𝜋

2
 

(14)   

Here, 𝑓1(𝑎)  and 𝑓2(𝑎)  are implicit functions of the 

semi-major axis obtained by solving the following 

equations numerically: 

𝐾𝑆𝑅𝑃

𝑒

√1 − 𝑒2
+

𝐾𝐽2

(1 − 𝑒2)2
cos 𝑖 = 𝑁 

𝐾𝑆𝑅𝑃

𝑒√1 − 𝑒2
cos 𝑖 −

𝐾𝐽2

(1 − 𝑒2)2
(

5

2
sin2 𝑖 − 2) = 0 

(15)   

 

Table 3. Parameters of the Sun-synchronous orbit 

Item Symbol Value 

Semi-major axis 𝑎 2.2 km 

Eccentricity 𝑒 0.1686 

Inclination 𝑖 94.10 deg 

Longitude of the ascending node Ω -90 deg 

Argument of periapsis 𝜔 90 deg 

Period 𝜏 19.09 hr 

 

          
 

Fig. 5. Example of a Sun-synchronous orbit 
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An example of a Sun-synchronous orbit is provided in 

Fig. 5, and the parameters of the orbit are provided in 

Table 3. The semi-major axis is given as 2 km, and the 

eccentricity and inclination are solved from Eq. (15). 

This result demonstrates that the solution of a Sun-

synchronous orbit actually exists, even when both the 

SRP perturbation and the oblateness effect are 

considered. Note that Fig. 5 simply shows an ideal 

elliptic orbit that is not the result of orbit propagation. 

 

4. Attitude motion 

4.1. Linearized Euler equation 

Attitude motion of a spacecraft observed in an 

arbitrary 𝜉 -coordinate is expressed by the Euler 

equations below. 

 𝑑𝑯

𝑑𝑡
|
𝜉

= −𝝎𝜉/𝐼 × 𝑯 + 𝑻 (16)   

Here, 𝑑/𝑑𝑡|𝜉  represents the time derivative in the 𝜉 -

coordinate system, and 𝝎𝜉/𝜂  denotes the angular 

velocity vector of an 𝜉-coordinate system relative to an 

𝜂 -coordinate system. In addition, the angular 

momentum vector 𝑯 is defined as follows: 

 𝑯 = 𝑰𝝎𝑆𝐶/𝐼 + 𝒉 (17)   

where 𝒉 is an internal angular momentum vector of the 

spacecraft provided by internal actuators, such as 

reaction wheels. It is assumed that 𝒉  has only the 𝑧 

component in terms of the spacecraft-fixed coordinate, 

which yields the equation below. 

 𝒉 
𝑆𝐶 = 𝒉 

𝑆𝐹 = [0, 0, ℎ𝑧]T (18)   

Throughout this paper, ℎ𝑧  is specified as a constant 

variable, which means that the spacecraft has constant 

bias angular momentum with no feedback control. The 

moment of inertia tensor 𝑰 is a constant variable when it 

is expressed in the spacecraft-fixed coordinate. It is also 

constant when it is expressed in the spin-free coordinate, 

if the spacecraft’s shape is axisymmetrical. Accordingly, 

the moment of inertia tensor can be expressed as 

follows: 

 

𝑰 
𝑆𝐶 = [

𝐼𝑥 0 0
0 𝐼𝑦 0

0 0 𝐼𝑧

],      𝑰 
𝑆𝐹 = [

𝐼𝑟 0 0
0 𝐼𝑟 0
0 0 𝐼𝑧

] (19)   

where 𝐼𝑟 ≡ 𝐼𝑥 = 𝐼𝑦. As a result, when it is expressed in 

the spacecraft-fixed or spin-free coordinate, Eq. (16) 

can be rewritten as the following equation: 

 
𝑰

𝑑𝝎𝑆𝐶/𝐼

𝑑𝑡
|

𝜉

= −𝝎𝜉/𝐼 × (𝑰𝝎𝑆𝐶/𝐼 + 𝒉) + 𝑻 (20)   

To achieve Sun-tracking attitude motion, it is 

essential to understand the dynamics regarding the in-

plane Sun angle 𝜃  and the out-of-plane Sun angle 𝜙 . 

Thus, the attitude motion observed in the spin-free 

coordinate is analyzed in this section. The equation of 

attitude motion expressed in the spin-free coordinate is 

given by the equation below (ref. Appendix A). 

[

𝐼𝑟�̈�

𝐼𝑟�̈�

𝐼𝑧Ω̇𝑧

] = [
−(𝐼𝑧Ω𝑧 + ℎ𝑧)(�̇� − 𝑁)

(𝐼𝑧Ω𝑧 + ℎ𝑧)�̇�
0

] + 𝑻𝐺𝐺 
𝑆𝐹 + 𝑻𝑆𝑅𝑃 

𝑆𝐹  

 

  (21)   

where 𝝎𝑆𝐶/𝑆𝐹 
𝑆𝐹 = [0, 0, Ω𝑧]T. 

When GG torque due to the higher-order gravity 

term is assumed negligible, 𝑻𝐺𝐺  can be expressed as 

follows, based on Eqs. (9) and (61): 

 
𝑻𝐺𝐺 = −

3𝜇

|𝒓|5
𝒓 × 𝑰𝒓  (22)   

Position vector 𝒓 
𝑆𝐹  can be expressed with the orbital 

elements as follows: 

 
𝒓 

𝐻 = 𝑹𝑧(−Ω)𝑹𝑥(−𝑖)𝑹𝑧(−𝜔 − 𝑓) [
𝑟
0
0

]  (23)   

 

 𝒓 
𝑆𝐹 = 𝑪𝑆𝑃 

𝑆𝐹 𝑪𝐻 
𝑆𝑃 𝒓 

𝐻  (24)   

where 𝑟  is also a function of orbital elements, which 

satisfies the equation below. 

 
𝑟 =

𝑎(1 − 𝑒2)

1 + 𝑒 cos 𝑓
 (25)   

Because 𝒓 
𝑆𝐹  is a function of the true anomaly 𝑓, 𝑻𝐺𝐺 

𝑆𝐹  

is a time-dependent variable. However, the GG torque 

can be averaged over one period of the orbit around a 

small body as given by the equation below. 

 
�̅�𝐺𝐺 

𝑆𝐹 =
1

𝜏
∫ 𝑻𝐺𝐺 

𝑆𝐹 𝑑𝑡
𝜏

0

=
(1 − 𝑒2)

3
2

2𝜋
∫

𝑻𝐺𝐺 
𝑆𝐹 (𝑓)

(1 + 𝑒 cos 𝑓)2
𝑑𝑓

2𝜋

0

 (26)   

where 𝜏  denotes the orbital period. When the orbital 

element parameters in Eq. (26) satisfy Eq. (14), which is 

the Sun-synchronous frozen orbit condition, those 

orbital parameters are constant, and �̅�𝐺𝐺 
𝑆𝐹  is a time-

independent function. From Eqs. (22)–(26), this 

averaged GG torque has the following explicit form: 
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�̅�𝐺𝐺 

𝑆𝐹 =
3𝜇(𝐼𝑧 − 𝐼𝑟)

4𝑎3(1 − 𝑒2)
3
2

[
𝑐1𝜙 + 𝑐2𝜃 + 𝑐4

𝑐2𝜙 + 𝑐3𝜃 + 𝑐5

0

] (27)   

where 

 𝑐1 = 2(− sin2 𝑖 sin2 Ω + cos2 𝑖)
𝑐2 = − sin 2𝑖 cos Ω

𝑐3 = 2 sin2 𝑖 cos 2Ω
𝑐4 = − sin 2𝑖 sin Ω

𝑐5 = sin2 𝑖 sin 2Ω

 (28)   

It is important to reiterate that 𝜙 and 𝜃 are assumed to 

be small, such that Eq. (27) is linearized with respect to 

𝜙 and 𝜃. Using this small angle approximation, the SRP 

torque can be expressed in the spin-free coordinate by 

the equation below, based on Eqs. (10)–(11). 

 
𝑻𝑆𝑅𝑃 

𝑆𝐹 = 𝑃𝐴𝐿(1 − 𝐶𝑠) [
𝜙
𝜃
0

] (29)   

Considering 𝑧  components of Eqs. (21), (27), and 

(29), Ω𝑧  is a constant parameter. Given that the 

spacecraft is a three-axis stabilized non-spinning 

spacecraft, Ω𝑧 = 0  always holds. Then, the following 

two-dimensional differential equation is derived: 

𝐼𝑟 [
�̈�

�̈�
] = ℎ𝑧 [

−�̇� + 𝑁
�̇�

] + [
�̅�𝐺𝐺,𝑥 

𝑆𝐹

�̅�𝐺𝐺,𝑦 
𝑆𝐹 ] + [

𝑇𝑆𝑅𝑃,𝑥 
𝑆𝐹

𝑇𝑆𝑅𝑃,𝑦 
𝑆𝐹 ]  (30)   

Based on this averaged linearized Euler equation, 

dynamical characteristics of Sun-tracking attitude 

motion can be well understood by several analytical 

analyses, as shown in later subsections. 

 

4.2. Torque field 

The attitude motion of a spacecraft is composed of 

low frequency motion called precession and high 

frequency motion called nutation. In general, the time 

dependence of precession is much smaller than nutation. 

Therefore, when the nutation motion is ignored so that 

only the precession motion is considered, the rates of 

change in 𝜙  and 𝜃  can be approximated as constant, 

yielding �̈� ≃ �̈� ≃ 0 [18]. This assumption can also be 

made for the situation where the spacecraft is always in 

pure rotation [9]. Then, Eq. (30) simplifies to the 

following first-order differential equation: 

ℎ𝑧 [
�̇�
�̇�

] = [
ℎ𝑧𝑁

0
] + [

�̅�𝐺𝐺,𝑥 
𝑆𝐹

− �̅�𝐺𝐺,𝑦 
𝑆𝐹 ] + [

𝑇𝑆𝑅𝑃,𝑥 
𝑆𝐹

− 𝑇𝑆𝑅𝑃,𝑦 
𝑆𝐹 ]  (31)   

The first term of the right-hand side represents the 

inertial torque due to the rotational motion of the 

coordinate itself. The second and third terms correspond 

to the GG torque and the SRP torque, which are 

functions of 𝜙  and 𝜃 given by Eqs. (27) and (29), 

respectively. Therefore, Eq. (31) expresses the velocity 

field in the 𝜙-𝜃 plane as the summation of the inertial 

torque, GG torque, and SRP torque. 

Fig. 6 shows the torque fields of these torques and 

the resultant torque field expressed in the 𝜙-𝜃 plane, in 

which the origin corresponds to the direction of the Sun. 

Inertia torque simply depends on the bias angular 

momentum ℎ𝑧  (not on 𝜙  nor 𝜃), as shown in Fig. 6a. 

Fig. 6b shows the averaged GG torque applied on a 

spacecraft moving in the Sun-synchronous orbit 

provided in Fig. 5. The SRP torque has a concentric 

torque field, the center of which is located at the origin, 

as shown in Fig. 6c. As a result, the resultant torque 

field, which is illustrated in Fig. 6d, can be obtained as 

the superposition of the three torque fields. In this figure, 

the bias momentum is given as ℎ𝑧 = 2 Nms . Here, 

magenta points in these figures represent equilibrium 

points, where the torque is identical to zero. 

As previously mentioned, Eq. (31) describes the 

precession motion of a spacecraft. Therefore, Fig. 6d 

implies that the spacecraft can always be pointed in the 

Sun direction by precessing around the equilibrium 

direction located close to the Sun, which means Sun-

tracking attitude motion can be achieved in this system. 

 

4.3. Stability conditions of Sun-tracking attitude motion 

The second-order differential equations in Eq. (30) 

can be rewritten as the following first-order differential 

equations: 

    
(a) Inertial torque                    (b) GG torque 

 

    
           (c) SRP torque                 (d) Resultant torque 

 

Fig. 6. Torque fields 
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𝑑

𝑑𝑡
[

𝜙
𝜃
�̇�

�̇�

] = [

0 0 1 0
0 0 0 1
𝐶1 𝐶2 0 −ℎ𝑧/𝐼𝑟

𝐶2 𝐶3 ℎ𝑧/𝐼𝑟 0

] [

𝜙
𝜃
�̇�

�̇�

] + [

0
0

𝐶4 + ℎ𝑧𝑁/𝐼𝑟

𝐶5

] 

 

  (32)   

where 

 
𝑝 =

𝑃𝐴𝐿(1 − 𝐶𝑠)

𝐼𝑟

, 𝑞 =
3𝜇(𝐼𝑧 − 𝐼𝑟)

4𝑎3(1 − 𝑒2)
3
2 𝐼𝑟

 , 

𝐶1 = 𝑝 + 𝑞𝑐1, 𝐶2 = 𝑞𝑐2, 
𝐶3 = 𝑝 + 𝑞𝑐3, 𝐶4 = 𝑞𝑐4, 𝐶5 = 𝑞𝑐5 

(33)   

Substitution of �̈� = �̈� = �̇� = �̇� = 0 into Eq. (32) yields 

the following equilibrium solution: 

 
𝜙𝑒𝑞 =

𝐶2𝐶5 − 𝐶3(𝐶4 + ℎ𝑧𝑁/𝐼𝑟)

𝐶1𝐶3 − 𝐶2
2

𝜃𝑒𝑞 =
−𝐶1𝐶5 + 𝐶2(𝐶4 + ℎ𝑧𝑁/𝐼𝑟)

𝐶1𝐶3 − 𝐶2
2

 (34)   

This equilibrium point (𝜙𝑒𝑞 , 𝜃𝑒𝑞)  is shown as the 

magenta point in Fig. 6d. As shown in Eq. (34), the 

position of an equilibrium point depends on the physical 

parameters of the spacecraft and the small body, the 

orbital elements, and the magnitude of bias angular 

momentum. 

The stability of the motion around an equilibrium 

point, which can also be regarded as the stability of the 

Sun-tracking attitude motion, is analyzed based on the 

following characteristic equation: 

 𝜆4 + 𝛼𝜆2 + 𝛽 = 0 (35)   

Here, 𝜆 represents the eigenvalues of the 4 × 4 matrix 

in Eq. (32), and 𝛼 and 𝛽 are defined as follows: 

 
𝛼 = (

ℎ𝑧

𝐼𝑟

)
2

− (𝐶1 + 𝐶3)

𝛽 = 𝐶1𝐶3 − 𝐶2
2

 (36)   

Given the form of Eq. (35), the Sun-tracking motion 

exhibits stability only when the eigenvalues have two 

conjugate pairs of pure-imaginary values, as expressed 

by the following condition: 

 𝛼2 − 4𝛽 > 0   and   𝛼 > 0   and   𝛽 > 0  (37)   

The necessary and sufficient conditions of Eq. (37) can 

be expressed by the two inequalities below. 

 𝐶1𝐶3 − 𝐶2
2 > 0  (38)   

 

 

ℎ𝑧 > 𝐼𝑟√𝐶1 + 𝐶3 + 2√𝐶1𝐶3 − 𝐶2
2 (39)   

Eq. (38) is a condition regarding the formulations of the 

GG torque and the SRP torque. This inequality indicates 

that an equilibrium point must be stable to ensure the 

stability of the Sun-tracking attitude motion. In other 

words, the flow of a torque field must not be divergent. 

Fig. 7 shows examples of a stable equilibrium point, 

which satisfies 𝐶1𝐶3 − 𝐶2
2 > 0 , and an unstable 

equilibrium point, which satisfies 𝐶1𝐶3 − 𝐶2
2 < 0 . As 

illustrated in these figures, the stable case corresponds 

to a center point and the unstable case corresponds to a 

saddle point. Note that Fig. 7 depicts an example of 

torque field assuming an arbitrary orbit, but not a Sun-

synchronous orbit. Eq. (39) is a constraint on bias 

angular momentum, which expresses that the magnitude 

of momentum must be sufficiently large to achieve 

stable Sun-tracking attitude motion. Given the system 

and the Sun-synchronous orbit specified using the 

parameters provided in Table 1 – Table 3, the solution 

to Eq. (39) is ℎ𝑧 > 0.115 Nms . It appears that this 

constraint is realistic, given the example of the 

Hayabusa 2 spacecraft, which is operated with a 

nominal angular momentum of ℎ𝑧 = 3.09 Nms [18]. 

When an equilibrium point is stable and a spacecraft 

possesses sufficient bias angular momentum, the Sun-

tracking motion is stable, and the eigenvalues can be 

expressed as follows: 

 𝜆 = ±𝑖𝜔𝑝, ±𝑖𝜔𝑛 (40)   

Here, 𝜔𝑝 is the frequency of precession motion, and 𝜔𝑛 

is the frequency of nutation motion, which are 

calculated as follows: 

𝜔𝑝 = √𝛼 − √𝛼2 − 4𝛽

2
,   𝜔𝑛 = √𝛼 + √𝛼2 − 4𝛽

2
  (41)   

 

5. Coupled orbit-attitude motion 

5.1. Hill’s equation and Euler equation  

Orbital motion is analyzed by introducing the 

Lagrange planetary equation in Section 2, and attitude 

motion is analyzed by introducing the linearized Euler 

    
(a) Stable case                   (b) Unstable case 

 

Fig. 7. Stability of an equilibrium point 
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equation in Section 3. Although these models allow 

analytical analyses to understand the dynamics behind 

the orbit-attitude coupled system, they are formulated 

with approximations that involve linearization and 

averaging. Therefore, in this section, a non-linear orbit-

attitude coupled equation of motion is derived for more 

precise analyses to verify the validity of the analytical 

solutions obtained in the previous sections. 

The orbital motion of a spacecraft in the proximity 

of a small body moving in a circular orbit around the 

Sun can be modelled using Hill’s equation below [23, 

26]. 

𝑚�̈� + 2𝑚𝝎𝐻/𝐼 × �̇� + 𝑚𝝎𝐻/𝐼 × (𝝎𝐻/𝐼 × 𝒓)

= 𝑚|𝝎𝐻/𝐼|2(3(𝒅 ⋅ 𝒓)𝒅 − 𝒓) + 𝑭𝐺 + 𝑭𝑆𝑅𝑃

  (42)   

where 𝒅 is a unit vector pointing from the Sun to the 

small body. This equation is expressed in the Hill 

coordinate as follows: 

 
𝑚 [

�̈�
�̈�
�̈�

] = 𝑚 [
2𝑁�̇� + 3𝑁2𝑥

−2𝑁�̇�
−𝑁2𝑧

] + 𝑭𝐺 
𝐻 + 𝑭𝑆𝑅𝑃 

𝐻  (43)   

The gravitational force 𝑭𝐺 
𝐻  and the SRP force 𝑭𝑆𝑅𝑃 

𝐻  

are calculated from Eqs. (8), (10), and (60), which 

incorporate the effect of the spacecraft’s attitude. 

On the other hand, the attitude motion of the 

spacecraft is modelled by Eq. (20), and the motion 

observed in the spacecraft-fixed coordinate can be 

expressed by the equation below. 

[

𝐼𝑥�̇�𝑥

𝐼𝑦�̇�𝑦

𝐼𝑧�̇�𝑧

] = [

(𝐼𝑦 − 𝐼𝑧)𝜔𝑦𝜔𝑧 − ℎ𝑧𝜔𝑦

(𝐼𝑧 − 𝐼𝑥)𝜔𝑥𝜔𝑧 + ℎ𝑧𝜔𝑥

(𝐼𝑥 − 𝐼𝑦)𝜔𝑥𝜔𝑦

] + 𝑻𝐺𝐺 
𝑆𝐶 + 𝑻𝑆𝑅𝑃 

𝑆𝐶  

 

  (44)   

where 𝝎𝑆𝐶/𝐼 
𝑆𝐶 = [𝜔𝑥, 𝜔𝑦 , 𝜔𝑧]

T
. The GG torque 𝑻𝐺𝐺 

𝑆𝐶  

and the SRP torque 𝑻𝑆𝑅𝑃 
𝑆𝐶  are calculated from Eqs. (9), 

(11), and (61). Because the GG torque depends on the 

position of the spacecraft relative to the small body, Eqs. 

(43) and (44) form coupled orbit-attitude equations of 

motion. 

Considering a 2-1-3 rotation sequence from the Sun-

pointing coordinate to the spacecraft-fixed coordinate 

with an Euler angle set of (𝜙, 𝜃, 𝜓) , the relationship 

between angular velocities and Euler angles can be 

expressed as follows (ref. Appendix B): 

 

[

�̇�

�̇�
�̇�

] = [

𝜔𝑥 cos 𝜓 − 𝜔𝑦 sin 𝜓

(𝜔𝑥 sin 𝜓 + 𝜔𝑦 cos 𝜓) sec 𝜙 + 𝑁

(𝜔𝑥 sin 𝜓 + 𝜔𝑦 cos 𝜓) tan 𝜙 + 𝜔𝑧

] (45)   

Then, Eqs. (43)–(45) and the relationship between 

position and velocity provide a total of twelve equations, 

such that the following twelve variables can be obtained 

using numerical propagation: 

 (𝑥, 𝑦, 𝑧, �̇�, �̇�, �̇�, 𝜙, 𝜃, 𝜓, 𝜔𝑥, 𝜔𝑦 , 𝜔𝑧) (46)   

 

5.2. Propagation of orbit-attitude coupled motion 

The simulated results obtained for orbit-attitude 

coupled motion are provided in Fig. 8 – Fig. 10. These 

results show the coupled motions of a spacecraft 

orbiting in the Sun-synchronous orbit shown in Fig. 5, 

which satisfies the stability condition given by Eq. (38). 

The simulations are performed for different bias angular 

momentum values, which are ℎ𝑧 =  2, 0.25, and 0.04 

Nms. The former two cases satisfy the stability 

condition given by Eq. (39), while the last case does not 

satisfy this condition. These motions are propagated for 

100 days. 

Fig. 8 demonstrates that a Sun-synchronous orbit 

with Sun-tracking attitude motion can actually be 

achieved if a spacecraft has sufficient bias angular 

momentum. Fig. 8a illustrates the orbital motion in the 

Hill coordinate. It can be observed from this figure that 

the orbital shape and geometry remain constant, and 

thus, this orbit is Sun-synchronous. Fig. 8b contains a 

visual representation of the attitude trajectory in the 𝜙-

 𝜃  plane, in which the origin corresponds to the Sun 

direction. This figure indicates that the spacecraft is 

always directed toward the Sun, with a slight oscillation 

of several degrees around the equilibrium point. The 

blue arrows in Fig. 8b represent the torque field 

calculated from Eq. (31). This result demonstrates that 

the precession motion of the spacecraft varies along the 

flow of the torque field. As observed from the enlarged 

view in the red box, the nutation motion also appears as 

a trajectory with many loops, and it is winded mainly 

because of the variation in GG torque. Fig. 8c gives the 

history of the spin phase 𝜓, and, as depicted, the phase 

varies less than 5 deg over 100 days. 

These observations indicate that the proposed 

method to implement both a Sun-synchronous orbit and 

Sun-tracking motion is feasible even when the 

dynamical system around a small body is strongly 

perturbed and coupled. Moreover, the result 

demonstrates that the analytical solutions obtained in 

Section 2 and 3 are valid approximations describing the 

dynamics of the complex system. It is also important to 

reiterate that the bias angular momentum is kept 

constant in this simulation, and no feedback control is 

applied. Thus, implementation of the proposed method 

is expected to be simple. 

Fig. 9 shows a case in which bias angular 

momentum is smaller than the previous case. Although 

the stability condition given by Eq. (38) is still satisfied, 

the attitude motion is less stable, as shown in Fig. 9b. 

Incidentally, the positions of equilibrium points differ 
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between Fig. 8b and Fig. 9b, because these positions 

depend on the magnitude of bias angular momentum. 

When the magnitude of angular momentum further 

decreases and the stability condition given by Eq. (38) is 

violated, orbit-attitude coupled motion becomes 

unstable. Fig. 10b illustrates that Sun angles 𝜙 and 𝜃 are 

no longer close to zero. This unstable attitude motion 

causes large variations in the SRP force applied to the 

spacecraft, resulting in the divergence of orbital motion, 

as shown in Fig. 10a. This observation implies that, in 

order to achieve a Sun-synchronous orbit with Sun-

tracking attitude motion, it is essential to fulfill certain 

initial conditions regarding both the orbital and the 

attitude motion. 

 

5.3. Frequency analysis of orbit-attitude coupled motion 

A Sun-synchronous frozen orbit is not a periodic 

orbit, in the strict sense, but is rather quasi-periodic. 

This is because the orbit is subject to periodic 

perturbations, which are not considered in the averaged 

Lagrange planetary equation [2]. Moreover, when 

coupling effects are considered, the periodicity of 

orbital motion is affected by the frequency of attitude 

motion, and vice versa. Consequently, both the orbital 

and the attitude motion consist of multiple frequency 

components, making it difficult to characterize those 

motions using only the time-domain history. 

Therefore, to identify the characteristics of orbit-

attitude coupled motion, frequency analysis is 

performed using discrete Fourier transform (DFT). In 

previous research, DFT has been used to deduce 

fundamental characteristics (for example, the stability) 

of quasi-periodic orbits [26, 27]. This analysis method is 

an effective numerical approach with low computational 

cost. By applying the same approach to the present 

study, the frequency components of coupled motion can 

be extracted from the propagated discrete data. 

Let 𝑢 denote an arbitrary state variable regarding the 

orbit-attitude coupled motion. Then, this variable can be 

          
 

(a) Orbital motion 

 

 
 

(b) Attitude motion: Sun angle 

 

 
 

(c) Attitude motion: spin phase 

 

Fig. 8. Orbit-attitude coupled motion, ℎ𝑧 = 2 Nms 

 

          
 

(a) Orbital motion 

 

 
 

(b) Attitude motion: Sun angle 

 

 
 

(c) Attitude motion: spin phase 

 

Fig. 9. Orbit-attitude coupled motion, ℎ𝑧 = 0.25 Nms 
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decomposed into multiple frequency components as 

follows: 

𝑢𝑗 = ∑ 𝐴𝑘𝑒𝑖𝜔𝑘𝑡𝑗

𝑁𝐷𝐹𝑇−1

𝑘=0

      (𝑗 = 0, 1, … , 𝑁𝐷𝐹𝑇 − 1) (47)   

where 

 
𝜔𝑘 =

2𝜋

𝑇𝐷𝐹𝑇

𝑘, 𝑡𝑗 =
𝑇𝐷𝐹𝑇

𝑁𝐷𝐹𝑇

𝑗 (48)   

Here, 𝑁𝐷𝐹𝑇  denotes the number of sample points, and 

𝑇𝐷𝐹𝑇  denotes the total time span. Then, the amplitude 

𝐴𝑘  of the corresponding frequency 𝜔𝑘  is obtained by 

the following DFT calculation: 

𝐴𝑘 =
1

𝑁𝐷𝐹𝑇

∑ 𝑢𝑗𝑒−𝑖𝜔𝑘𝑡𝑗       

𝑁𝐷𝐹𝑇−1

𝑗=0

(𝑘 = 0, 1, … , 𝑁𝐷𝐹𝑇 − 1) 

 

  (49)   

An example result of DFT analysis is shown in Fig. 

11. Fig. 11a provides the time history of the in-plane 

Sun angle 𝜙 when ℎ𝑧 = 0.25 Nms, which corresponds 

to the simulation shown in Fig. 9. It can be observed 

from this figure that the attitude angle varies with 

multiple frequencies. When DFT is applied to this time-

domain history, Fig. 11b is obtained as the frequency 

spectrum. This figure illustrates frequencies 𝜔𝑘  of the 

attitude motion, and their magnitudes |𝐴𝑘| . In this 

computation, 𝑁𝐷𝐹𝑇 = 220 and 𝑇𝐷𝐹𝑇 = 100 day. Among 

the multiple peaks appearing in Fig. 11b, the three  

major peaks correspond to the following: the frequency 

of precession motion 𝜔𝑝, which is given by Eq. (41); the 

          
 

(a) Orbital motion 

 

 
 

(b) Attitude motion (0 ≤ 𝑡 ≤ 4 days) 

 

Fig. 10. Orbit-attitude coupled motion, ℎ𝑧 = 0.04 Nms 

 

 
 

(a) Time domain history (0 ≤ 𝑡 ≤ 10 days) 

 

 
(b) Frequency spectrum 

 

Fig. 11. Frequency analysis of orbit-attitude coupled 

motion 
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frequency of nutation motion 𝜔𝑛, which is given by Eq. 

(41); double the mean motion 𝑛 , which is calculated 

numerically by detecting the spacecraft crossing the 𝑥- 𝑧 

plane. Other peaks in the figure are expressed as 

combinations of 𝜔𝑝 , 𝜔𝑛 , 𝑛 , and 𝜔𝑟𝑜𝑡 . Here, 𝜔𝑟𝑜𝑡 =

2𝜋/𝑇𝑟𝑜𝑡  is the rotational spin rate of the small-body. 

This result implies that the propagated motion contains 

both orbit-related and attitude-related frequency 

components, due to the coupling effect. The result also 

indicates that, although the strongly perturbed orbit-

attitude coupled dynamics exhibit complex behavior, 

the motion can be characterized by analytical theory. 

 

5.4. Dynamic environment around a small body 

The simulation results presented in the previous 

subsections imply that the orbit-attitude coupling effect 

influences the motion of a spacecraft around a small 

body. This subsection provides a more detailed analysis 

and reveals which forces or torques acting on a 

spacecraft are dominant. 

Fig. 12 provides the magnitudes of forces and 

torques applied to the spacecraft during a single orbital 

period. This figure corresponds to the simulation 

illustrated in Fig. 8, which is a stable case. Here, 𝐶𝑚𝑛 

represents the gravitational force/torque due to the 

corresponding spherical harmonics coefficient. Fig. 12a 

shows that the zeroth-order gravitational force is the 

largest. The SRP force and the second-order 

gravitational forces, both of which substantially perturb 

the orbital motion, have almost the same order of 

magnitude. As observed from the figure, the fourth-

order gravitational forces, the solar tidal force, and the 

gravitational coupling effect are much smaller. On the 

other hand, Fig. 12b shows that the SRP torque and the 

GG torque due to the zeroth-order gravitational term are 

dominant. The second-order GG torque has a magnitude 

that is approximately 1-10% of those of the major 

torques, while the GG torque due to the solar gravity is 

negligible. 

Fig. 13 shows forces and torques histories of the 

simulation illustrated in Fig. 10, which is an unstable 

case. Comparing Fig. 12a and Fig. 13a, it is apparent 

that the variation in SRP force is much larger in the 

unstable case. This variation is caused by unstable 

attitude motion, as shown in Fig. 10b, and causes 

unstable orbital motion, as shown in Fig. 10a. 

 

 
 

(a) Force history (STF: solar tidal force, GCE: 

gravitational coupling effect) 

 

 
 

(b) Torque history 

 

Fig. 12. The forces and torques acting on the spacecraft 

during one orbital period, ℎ𝑧 = 2 Nms 

 

 
 

(a) Force history (STF: Solar tidal force, GCE: 

gravitational coupling effect) 

 

 
 

(b) Torque history 

 

Fig. 13. The forces and torques acting on the spacecraft 

during one orbital period, ℎ𝑧 = 0.04 Nms 
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These results show that the motion of a spacecraft 

around a small body is perturbed by both SRP and 

gravitational effects. Moreover, via these perturbations, 

the orbital and attitude motion are coupled and 

significantly influence each other. The important point 

is that even in such a complex system, stationary orbit-

attitude coupled motion can be achieved without active 

control if the initial conditions of orbital and attitude 

motion are designed properly. 

 

6. Conclusions 
The motion of a spacecraft in the proximity of a 

small body is significantly perturbed by the solar 

radiation pressure (SRP) and the gravity irregularity. In 

such a strongly perturbed environment, the coupling 

effect of the orbital and attitude motion exerts a large 

influence and can cause divergence of these motions. To 

solve this problem, the present study investigated the 

implementation of Sun-synchronous orbits with Sun-

tracking attitude motion. 

First, the orbital and attitude motion were analyzed 

separately, and the conditions to achieve Sun-

synchronous orbits and Sun-tracking attitude motion 

were investigated. Although the coupled system is 

complex, analytical solutions of the proposed motion 

were successfully obtained by applying averaging and 

linearization. Next, the orbit-attitude coupled motion 

was propagated based on more precise non-linear 

equations of motion. This step demonstrated that if the 

initial conditions of orbital and attitude motions are 

given properly, both a Sun-synchronous orbit and Sun-

tracking attitude motion can be achieved without 

requiring any active control. 

These novel orbit-attitude coupled dynamics can 

reduce the use of orbit and attitude control system, 

thereby reducing the weight of a spacecraft and 

prolonging the life time of the mission. It is therefore 

concluded that the proposed natural orbit-attitude 

coupled dynamics is feasible and useful for real small-

body missions. 
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Appendix A: Derivation of Eq. (21) 

Considering a 2-1-3 rotation sequence from the Sun-

pointing coordinate to the spin-free coordinate with an 

Euler angle set of (𝜙, 𝜃, 0) , the angular momentum 

vector can be expressed as follows, according to the 

kinematic equations [9]: 

 

𝝎𝑆𝐹/𝑆𝑃 
𝑆𝐹 = [

�̇�

�̇� cos 𝜙

−�̇� sin 𝜙

] ≃ [
�̇�

�̇�
0

] (50)   

Here, it is assumed that 𝜙, 𝜃 ≪ 1, which means that the 

𝑧  axis of the spacecraft-fixed coordinate points very 

closely in the Sun direction. Under this assumption, the 

following equation holds from Eq. (4): 

 
𝝎𝑆𝑃/𝐼 = 𝑪𝑆𝑃 𝝎𝑆𝑃/𝐼 

𝑆𝑃 ≃ [
0

−𝑁
0

] 
𝑆𝐹

 
𝑆𝐹  (51)   

where 𝑁  denotes the mean motion of the revolution 

orbit of the small body around the Sun, and thus, 

𝝎𝑆𝑃/𝐼 
𝑆𝑃 ≃ [0, −𝑁, 0]T  . From Eqs. (50) and (51), the 

following equation can be obtained: 

 

𝝎𝑆𝐹/𝐼 = 
𝑆𝐹 𝝎𝑆𝐹/𝑆𝑃 + 𝝎𝑆𝑃/𝐼 

𝑆𝐹
 

𝑆𝐹 ≃ [
�̇�

�̇� − 𝑁
0

] (52)   

Letting Ω𝑧denote the angular velocity of the spacecraft-

fixed coordinate relative to the spin-free coordinate 

yields 𝝎𝑆𝐶/𝑆𝐹 
𝑆𝐹 = [0, 0, Ω𝑧]T . Then, the following 

equation is obtained from Eq. (52): 

 

𝝎𝑆𝐶/𝐼 = 
𝑆𝐹 𝝎𝑆𝐶/𝑆𝐹 + 𝝎𝑆𝐹/𝐼 

𝑆𝐹
 

𝑆𝐹 ≃ [
�̇�

�̇� − 𝑁
Ω𝑧

] (53)   

From Eqs. (20), (52), and (53), the attitude motion 

observed in the spin-free coordinate can be expressed in 

the same coordinate by Eq. (21).  

 

Appendix B: Derivation of Eq. (45) 

Considering a 2-1-3 rotation sequence from the Sun-

pointing coordinate to the spacecraft-fixed coordinate 

with an Euler angle set of (𝜙, 𝜃, 𝜓) , the relationship 

between angular velocities and Euler angles can be 

expressed as the equation below  [9]. 

 �̇� = �̃�𝑥 cos 𝜓 − �̃�𝑦 sin 𝜓

�̇� = (�̃�𝑥 sin 𝜓 + �̃�𝑦 cos 𝜓) sec 𝜙

�̇� = (�̃�𝑥 sin 𝜓 + �̃�𝑦 cos 𝜓) tan 𝜙 + �̃�𝑧

 (54)   

where 𝝎𝑆𝐶/𝑆𝑃 
𝑆𝐶 = [�̃�𝑥, �̃�𝑦 , �̃�𝑧]

T
. Considering angular 

velocity vectors among the inertial, Sun-pointing, and 

spacecraft-fixed coordinate, the following equation 

holds: 

  𝝎𝑆𝐶/𝑆𝑃 
𝑆𝐶 =  𝝎𝑆𝐶/𝐼 

𝑆𝐶 − 𝑪𝑆𝑃 
𝑆𝐶  𝝎𝑆𝑃/𝐼    

𝑆𝑃  

⇔ { 

�̃�𝑥 = 𝜔𝑥 + 𝑁 cos 𝜙 sin 𝜓
�̃�𝑦 = 𝜔𝑦 + 𝑁 cos 𝜙 cos 𝜓

�̃�𝑧 = 𝜔𝑧 + 𝑁 sin 𝜙

 (55)   

Then, substitution of Eq. (55) into Eq. (54) yields Eq. 

(45).  
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Appendix C: Explicit forms of forces and torques 

The spherical harmonics coefficients are defined as 

follows [23]: 

𝐶20 =
1

10𝑅𝑎
2

{2𝑅𝑐
2 − (𝑅𝑎

2 + 𝑅𝑏
2)},  𝐶22 =

1

20𝑅𝑎
2

(𝑅𝑎
2 − 𝑅𝑏

2)

𝐶40 =
15

7
(𝐶20

2 + 2𝐶22
2 ), 𝐶42 =

5

7
𝐶20𝐶22, 𝐶44 =

5

28
𝐶22

2

 

 

  (56)   

Considering the vector form of the Taylor series, the 

following equation can be derived: 

 𝑓(𝑹) = 𝑓(𝒓 + 𝝆)

≃ 𝑓(𝒓) + ∇𝑓(𝒓) ⋅ 𝝆 +
1

2
𝝆T∇2𝑓(𝒓)𝝆

 (57)   

where 

 
∇𝑓(𝒓) =

𝜕𝑓

𝜕𝑹
|

𝑹=𝒓
,    ∇2𝑓(𝒓) =

𝜕2𝑓

𝜕𝑹2
|

𝑹=𝒓

 (58)   

When the approximation expressed by Eq. (56) is 

applied to Eqs. (8) and (9), and higher-order terms are 

neglected, the explicit forms of forces and torques are 

derived by Eqs. (60) and (61). Here, the moment of 

inertia tensor is defined by the equation below. 

 
𝑰 = ∫(|𝝆|2𝑬 − 𝝆𝝆T)𝑑𝑚  (59)   

 

 𝑭𝐺,𝐶00
= −

𝑚𝜇

|𝒓|3
𝒓

𝑭𝐺,𝑐𝑜𝑢𝑝 = −
3𝜇

|𝒓|5
𝑰𝒓 −

3

2

𝜇

|𝒓|5
tr(𝑰)𝒓 +

15

2

𝜇

|𝒓|7
(𝒓T𝑰𝒓)𝒓

𝑭𝐺,𝐶2𝑘
= 𝑚𝜇𝐶20𝑅𝑎

2 (−
15

2

(𝜸 ⋅ 𝒓)2

|𝒓|7
𝒓 + 3

𝜸 ⋅ 𝒓

|𝒓|5
𝜸 +

3

2

1

|𝒓|5
𝒓)

+𝑚𝜇𝐶22𝑅𝑎
2 (−15

(𝜶 ⋅ 𝒓)2 − (𝜷 ⋅ 𝒓)2

|𝒓|7
𝒓 + 6

𝜶 ⋅ 𝒓

|𝒓|5
𝜶 − 6

𝜷 ⋅ 𝒓

|𝒓|5
𝜷)

𝑭𝐺,𝐶4𝑘
= 𝑚𝜇𝐶40𝑅𝑎

4 (−
315

8

(𝜸 ⋅ 𝒓)4

|𝒓|11
𝒓 +

35

2

(𝜸 ⋅ 𝒓)3

|𝒓|9
𝜸 +

105

4

(𝜸 ⋅ 𝒓)2

|𝒓|9
𝒓 −

15

2

𝜸 ⋅ 𝒓

|𝒓|7
𝜸 −

15

8

1

|𝒓|7
𝒓)

+𝑚𝜇𝐶42𝑅𝑎
4 (−

945

2

{(𝜶 ⋅ 𝒓)2 − (𝜷 ⋅ 𝒓)2}(𝜸 ⋅ 𝒓)2

|𝒓|11
𝒓 + 105

(𝜶 ⋅ 𝒓)(𝜸 ⋅ 𝒓)2

|𝒓|9
𝜶

                         −105
(𝜷 ⋅ 𝒓)(𝜸 ⋅ 𝒓)2

|𝒓|9
𝜷 + 105

{(𝜶 ⋅ 𝒓)2 − (𝜷 ⋅ 𝒓)2}(𝜸 ⋅ 𝒓)

|𝒓|9
𝜸

                         +
105

2

(𝜶 ⋅ 𝒓)2 − (𝜷 ⋅ 𝒓)2

|𝒓|9
𝒓 − 15

𝜶 ⋅ 𝒓

|𝒓|7
𝜶 + 15

𝜷 ⋅ 𝒓

|𝒓|7
𝜷)

 

+𝑚𝜇𝐶44𝑅𝑎
4 (−945

(𝜶 ⋅ 𝒓)4 + (𝜷 ⋅ 𝒓)4 − 6(𝜶 ⋅ 𝒓)2(𝜷 ⋅ 𝒓)2

|𝒓|11
𝒓 + 420

(𝜶 ⋅ 𝒓)3

|𝒓|9
𝜶

                         +420
(𝜷 ⋅ 𝒓)3

|𝒓|9
𝜷 − 1260

(𝜶 ⋅ 𝒓)(𝜷 ⋅ 𝒓)2

|𝒓|9
𝜶 − 1260

(𝜶 ⋅ 𝒓)2(𝜷 ⋅ 𝒓)

|𝒓|9
𝜷)

 (60)   

 

 
𝑻𝐺𝐺,𝐶00

= −
3𝜇

|𝒓|5
𝒓 × 𝑰𝒓

𝑻𝐺𝐺,𝐶2𝑘
= 𝜇𝐶20𝑅𝑎

2 {(
105

2

(𝜸 ⋅ 𝒓)2

|𝒓|9
−

15

2

1

|𝒓|7
) 𝒓 × 𝑰𝒓 − 15

𝜸 ⋅ 𝒓

|𝒓|7
(𝒓 × 𝑰𝜸 + 𝜸 × 𝑰𝒓) + 3

1

|𝒓|5
𝜸 × 𝑰𝜸}

+𝜇𝐶22𝑅𝑎
2 (105

(𝜶 ⋅ 𝒓)2 − (𝜷 ⋅ 𝒓)2

|𝒓|9
𝒓 × 𝑰𝒓 − 30

𝜶 ⋅ 𝒓

|𝒓|7
(𝒓 × 𝑰𝜶 + 𝜶 × 𝑰𝒓)

                     +30
𝜷 ⋅ 𝒓

|𝒓|7
(𝒓 × 𝑰𝜷 + 𝜷 × 𝑰𝒓) + 6

1

|𝒓|5
(𝜶 × 𝑰𝜶 − 𝜷 × 𝑰𝜷)}

 (61)   
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