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As mission requirements become increasingly complex, improved flexibility in
mission design tools is vital. Strategies that offer interactive access to a variety of
solutions supply an enhanced perspective of the design space. In this investigation,
interactive and automated trajectory design tools are examined for applications in
the Earth-Moon system. Operating within a graphical user interface, these tools
offer a composite view of multi-body orbits possessing a variety of characteristics,
and facilitate the assembly of end-to-end mission designs via interactive selec-
tion of trajectory arcs with desirable characteristics. Final designs are imported
into NASA’s General Mission Analysis Tool for validation and further access in a
mission setting.

INTRODUCTION

Improved flexibility in trajectory design tools is essential to accomodate increasing complexity
in mission requirements. Strategies that offer interactive access to a variety of solutions provide
an enhanced perspective of the design space, and enable the rapid design and analysis of trajectory
options. Several tools exist that exploit dynamical systems theory for mission design, including
Generator1, 2 and LTool.3 A tool to interactively compute libration point orbits and their associated
manifolds is demonstrated by Mondelo et al.4 The software AUTO allows for computation of peri-
odic orbits, numerical continuation of orbit families, and bifurcation detection and analysis.5 Addi-
tionally, an interactive design approach based in visual analytics has been previously demonstrated
by Schlei for a variety of mission design applications in multi-body regimes.6 In this investigation,
an Adaptive Trajectory Design (ATD) strategy, providing access to a composite view of multi-body
orbits possessing a variety of characteristics within one interactive design setting, is demonstrated.
The availability of a large assortment of orbit types within one mission design environment offers
the user a unique perspective in which various mission design options may be explored, and the
effectiveness of different orbits in meeting mission requirements may be evaluated. In this analysis,
trajectory designs that incorporate theoretical solutions from the Circular Restricted Three-Body
(CR3B) model are demonstrated in the Earth-Moon system using the interactive ATD environment,
in which trajectories are assembled via point-and-click arc selection. Once a discontinuous base-
line is assembled within the design environment, it is then transitioned into a unified higher-fidelity
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ephemeris model via interactive ATD differential corrections environments. The final trajectory is
imported into NASA’s General Mission Analysis Tool (GMAT)7, 8 where it can be accessed in a
mission setting for further analysis.

An interactive design environment that supplies a composite view of multi-body orbits is not only
useful from a trajectory design perspective, but also to gain insight into the relationships between
different orbit types. For example, the role of invariant manifolds in facilitating the resonance tran-
sitions experienced by several Jupiter-family comets has been examined by previous researchers,
e.g., Koon et al.9 The relationship between Distant Prograde Orbits (DPOs)10 and libration point
orbits has been demonstrated by Parker et al.11 The transfer trajectories for the P1 and P2 spacecraft
from the ARTEMIS12 mission incorporate stable and unstable manifolds associated with libration
point orbits in the vicinity of L1 and L2; a merged view of the P1 and P2 mission orbits with mem-
bers from the family of DPOs in the Earth-Moon system reveals an association between these orbit
structures. In this composite view, it is apparent that the transfers employed for ARTEMIS inherit
characteristics associated with nearby DPOs. Orbits from the family of DPOs near the energy level
associated with the ARTEMIS trajectories are unstable, and, therefore, possess stable and unstable
manifolds that asymptotically approach and depart the orbits. Exploiting these manifold structures,
heteroclinic connections9, 11 (free transfers) are computed that closely resemble the transfers exe-
cuted by the ARTEMIS spacecraft.

CIRCULAR RESTRICTED THREE-BODY MODEL

The CR3B model13 proves useful for preliminary analysis of trajectory options within the Earth-
Moon system. The motion of a spacecraft, assumed massless, is determined by the gravitational
forces of the Earth and the Moon, each represented as a point mass. The orbits of the Earth and
Moon are assumed to be circular relative to the system barycenter. A barycentric rotating frame is
defined such that the rotating x-axis is directed from the Earth to the Moon, the z-axis is parallel
to the direction of the angular velocity of the primary system, and the y-axis completes the right-
handed, orthonormal triad. The position of the spacecraft relative to the Earth-Moon barycenter
is defined in terms of rotating coordinates as r = [x, y, z], where bold symbols denote vector
quantities. The mass parameter is defined as µ = m2

m1+m2
, where m1 and m2 correspond to the

mass of the Earth and Moon, respectively. The first-order, nondimensional, vector equation of
motion is

ẋ = f (x) , (1)

where the vector field, f (x), is defined

f (x) =
[
ẋ, ẏ, ż, 2nẏ + Ux,−2nẋ+ Uy, Uz

]
, (2)

noting that the nondimensional mean motion of the primary system is n = 1. In Equation (2),
U (x, y, z, n) = 1−µ

d + µ
r + 1

2n
2
(
x2 + y2

)
is the pseudo-potential function, with the nondimensional

Earth-spacecraft and Moon-spacecraft distances written as d and r, respectively, and the quantities
Ux, Uy, Uz represent partial derivatives of U with respect to rotating position coordinates. The
only known integral of the motion is the Jacobi constant, evaluated as C = 2U − v2, where v =(
ẋ2 + ẏ2 + ż2

)1/2. This quantity is a constant of motion in the rotating frame and provides useful
information about the energy level associated with a given solution in the CR3B model.

2



ADAPTIVE TRAJECTORY DESIGN STRATEGIES

In response to an increasing need for a fast and efficient trajectory design process that utilizes well
known multi-body solutions, an effort was initiated to develop an interactive design environment.∗

An interactive design strategy that incorporates a variety of theoretical solutions (e.g., conic arcs,
periodic and quasi-periodic libration point orbits, invariant manifolds, P1- and P2-centered orbits
in the CR3B model, etc.) offers an environment in which exploration of the design space is simple
and efficient. Rather than locating single point solutions, a more thorough search of the global
solution space is facilitated. In this investigation, Adaptive Trajectory Design (ATD) strategies that
supply access to a composite view of multi-body orbits possessing a variety of characteristics are
examined. Using graphical user interfaces (GUIs) in MATLAB R©, the ATD environment offers
access to a variety of multi-body solutions, in addition to conic arcs. User interaction with plots
allows for point-and-click arc selection, as well as interactive trajectory ‘clipping’, in which the
desired arc along a longer trajectory may be isolated. A general overview of the ATD strategy is
summarized as follows:

1. Select desired three-body system

2. Compute and select trajectory arcs of interest

3. Store any desirable arcs within ‘arc list’

4. Arrange all arcs within arc list into appropriate sequence for final design

5. Distribute nodes along each arc to facilitate differential corrections processes, and save data

6. Load saved data into differential corrections environments

7. Apply desired constraints, transition solution to ephemeris model, and save converged data as
GMAT script file

8. Load saved data into GMAT and reconverge end-to-end result

In items 1-4, various trajectory options may be efficiently and rapidly explored within the interactive
design environment. Once a design is selected, it is modified via steps 5-7 to include additional
constraints and to transition the solution to a higher-fidelity ephemeris model. Finally, in step 8, the
solution is reconverged within GMAT, where the end-to-end ephemeris solution can be subsequently
employed for further analysis and to support other activities.

Trajectory Design Employing ATD: Sample Transfer to a Lunar Distant Retrograde Orbit

To demonstrate the design strategies employed within ATD, it is useful to begin with a relatively
simple design goal. Consider a trajectory design concept to transport a spacecraft from a 200-km
Low-Earth Orbit (LEO) to a Distant Retrograde Orbit (DRO)10, 14 in the vicinity of the Moon. The
ATD design space, depicted in Figure 1, offers access to a large assortment of orbit types within one
mission design environment, thus facilitating exploration of trajectory designs that include various
types of orbits. For example, sample members from the family of DROs about the Moon are pre-
computed by Capdevila15 and are available within the ATD environment. In the following example,
the ATD strategies are demonstrated to design a transfer from LEO to a DRO about the Moon.
∗The development effort is suported, in part, by the IRAD program at NASA Goddard Space Flight Center.
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Figure 1. ATD design enviromnent graphical user interface

Assembling a Trajectory Design To begin the design process, the desired three-body system is
selected to be the Earth-Moon system. Trajectory arcs are then computed or selected, and the
desired arcs are stored within an ‘arc list’ to be incorporated into the final design. For this example,
the family of DROs is selected from a list of available orbit types, and a representative set of orbits
from the family appears in blue in Figure 2(a). Recall that the view appears in the Earth-Moon

(a) DRO family (b) selected DRO

Figure 2. Selecting a distant retrograde orbit from within the DRO family in the Earth-Moon system

rotating frame as the result of a previous selection. A particular member from the family is selected
via point-and-click interaction with the plot, and appears in red. Saving this selected orbit to the
arc list and removing the unselected family members from the plot, the selected DRO appears in
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blue in Figure 2(b). The Moon appears near the center of the DRO, and the Earth-Moon L1 and L2

points appear as black dots to the left and right of the orbit. Stability information for any periodic
orbit that is selected within ATD is available. The selected DRO is stable, and, therefore, does not
possess stable or unstable invariant manifolds.

Without the availablility of natural flow into/away from the orbit via the manifolds, an alternative
transfer arc from the Earth is sought. For this example, a conic arc is employed to deliver the
spacecraft to the selected DRO. Conic arcs centered on either primary are available to be computed
within the ATD environment, and may be adjusted by the user. Selecting the ‘Get Conic’ button
within the ‘Additional Tools’ panel, the GUI in Figure 3(a) appears (note that the selected DRO
still appears on the plot in blue). The user may specify various characteristics for the conic arc

(a) conic transfer to DRO (b) bridge arc between conic and DRO initial state

Figure 3. Incorporating a conic arc to transfer to a DRO, in addition to a bridge
segment to adjoin the conic arc and DRO initial state

to achieve the desired transfer. Choosing the Earth as the central body, a transfer from a 200 km
altitude LEO to the DRO is sought. Thus, a radius of r = 6578 km and a true anomaly of θ = 0◦ are
selected. The eccentricity value is modified until the transfer apogee is at roughly the same radius
as a selected point on the DRO. Here, the selected point along the DRO is the x-axis crossing on the
far side of the Moon (generally the most efficient entry point into this type of DRO) and the selected
value for the eccentricity is e = 0.97. Because the DRO lies within the x − y plane, the conic arc
is also selected to possess 0◦ inclination relative to this plane. The phase angle measures the angle
between the initial point along the conic, i.e., 6578 km perigee, and the x-axis in the Earth-Moon
rotating frame. Changing this parameter to a value of −102◦, the transfer apogee aligns closely
with the selected x-axis crossing of the DRO. Finally, a value of 0.5 is selected for the number of
revolutions, and the corresponding conic arc appears in black in Figure 3(a). The listed parameters
may be adjusted until the transfer satisfies the user requirements, and the final conic arc is returned
to the main design window of the GUI. The conic arc is saved to the arc list, where it is stored
with the selected DRO. Once the desired arcs are stored within the list, they may be sorted into
the appropriate order. In general, the final state along one arc may not align well with the initial
state along another, thus, a ‘bridge’ segment may be required to reduce any discontinuity between
two adjacent arcs. For example, while the conic arc aligns well with the x-axis crossing along the
DRO on the far side of the Moon, the initial state along the precomputed DRO is actually the x-axis
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crossing on the near side of the Moon. To bridge this gap, an arc from the DRO that links these two
x-axis crossings may be selected and incorporated into the design. To do this, the DRO from the arc
list is interactively selected and the ‘Clip Selected’ button is employed. A ‘clipping’ GUI appears,
as demonstrated in Figure 3(b). The conic arc appears in red, and the selected orbit, i.e., the DRO,
is plotted in black with the initial state appearing as a red star. Within this GUI, the desired start and
end locations along the DRO are interactively selected to be the two x-axis crossings. By pressing
‘Clip,’ the red highlighted portion of the DRO appears that offers a link from the conic arc to the
initial state along the DRO. Once the desired portion has been clipped, it is returned to the main
GUI and added to the arc list. The final design appears in Figure 4 and includes: (1) the red conic
arc producing transport from LEO to the vicinity of the DRO, (2) the green bridge that provides the
link between the final state along the conic and the initial state along the DRO, (3)-(6) four copies of
the DRO to include four revolutions along this final orbit. Note that the conic arc is plotted within

Figure 4. All desired arcs are stored in the arc list and are sorted into the appropriate
order for the final design

the Earth-Moon rotating frame but the data are from the two-body problem. To this point, items 1-4
from the ATD strategy are completed. The final four items allow the solution to be transitioned into
a higher-fidelity model, and, ultimately, to be reproduced in GMAT.

Transitioning the Final Design to an Ephemeris Model Once the final trajectory design is com-
plete, a differential corrections process that ensures continuity along the path, in addition to any
other desired constraints, is vital. Within the ATD differential corrections environments, constraints
are interactively applied to the trajectory and the solution is reconverged in a unified dynamical
model. To facilitate convergence in the corrections process, it is useful to distribute nodes or patch
points along each arc to reduce integration times and, therefore, sensitivities. Upon saving the data
associated with the trajectory design in Figure 4, the user is prompted to add nodes to each arc.
The process of adding nodes is interactive; the user selects the number of nodes in addition to the
method of distribution for the nodes (methods currently include equal distribution in time, and equal
distribution within the data output from the numerical integration of each arc to accomodate regions
of higher sensitivity), and is also able to add and delete nodes via point-and-click interaction. As
an example, four nodes are equally distributed in time along the conic arc in Figure 5(a), and one
additional node is interactively added between the first and second nodes. Nodes in the figure are
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represented as black dots. The final state along the trajectory is additionally plotted as a black dot,
although this point will not be included as a node in the data output. Three nodes are selected to
be equally distributed in time along the conic to DRO bridge arc, as demonstrated in Figure 5(b).
Finally, six nodes are distributed equally in time along each revolution of the DRO. The final state
along the final trajectory arc in the design is always included as an additional node so that con-
straints may be applied at this terminal point. The data is saved in a *.mat file, and is then available
to either reload into the design GUI for further modifications, or to be loaded into a differential
corrections environment. Two ATD differential corrections environments appear in Figure 6. The

(a) adding nodes to conic arc (b) adding nodes to conic bridge

Figure 5. Nodes are distributed along each arc within the final assembled trajectory
design to aid in differential corrections processes

GUI in Figure 6(a) allows the user to apply constraints within the CR3B model, while the environ-
ment in Figure 6(b) facilitates the transition of the solution to a higher-fidelity ephemeris model.
Within each differential corrections environment, constraints are interactively selected and applied,
and any desired maneuvers are added and positioned via point-and-click selection. The available
constraints in the GUIs in Figure 6 include fixing the location of a node, enforcing the condition that
a particular node be an apsis, and constraining the altitude at a given node, although any additional

(a) corrected in CR3B model (b) corrected in Sun-Earth-Moon ephemeris model

Figure 6. Applying differential corrections to compute a continuous transfer between
the Earth and a DRO

desired constraints could be incorporated into the GUI environment. These constraints may be ap-
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plied to multiple nodes along the trajectory. Velocity continuity is enforced between any arcs where
maneuvers are not allowed, and position continuity is enforced between all arcs. For this example,
the initial state is constrained to correspond to a 200-km altitude perigee. The corrected paths are
computed within the CR3B model and a Sun-Earth-Moon ephemeris model, and are plotted in blue
in Figures 6(a) and 6(b). A single maneuver is permitted to link the conic arc to the DRO, and
the magnitude of this maneuver is 605.4 m/s for the CR3B model and 585.7 m/s in the ephemeris
model. It is possible to reduce the magnitude of this maneuver using a constraint on the maximum
value of the total ∆v, however, no constraint on the maneuver size is included in this example.
Finally, the ephemeris solution is saved within the ATD corrections environment and a script file
is internally produced that is accessed via GMAT. This script file provides the transition from the
ATD environment in MATLAB, to the GMAT mission design environment. Opening the output in
GMAT, each node position along the ephemeris path is targeted using optimization to reduce the
∆v required at each node. Running this script file reconverges the solution within GMAT, and the
resulting solution appears in Figure 7. The reconverged solution requires 586.16 m/s and corre-
sponds to a 36.6 day total time-of-flight. While the example in Figure 7 offers a relatively simple

(a) Earth-centered rotating view (b) Moon-centered rotating view

Figure 7. Final converged transfer from Earth to a sample DRO is transitioned to GMAT

transfer, other transfer designs exist.14, 16, 17 The interactive design process available within the ATD
environment allows the user to rapidly explore alternative design options and to gain insight into the
solution space. In the following examples, more complicated designs are assembled to demonstrate
the design capabilities that are available when utilizing ATD strategies.

APPLICATION OF ADAPTIVE TRAJECTORY DESIGN STRATEGIES TO THE DESIGN
OF TOURS IN THE EARTH-MOON SYSTEM

Using the strategies presented in the previous section, it is a simple and efficient process to explore
the design space and to compute trajectory designs for a variety of scenarios. In the following
examples, the ATD environment is explored for application to tours within the Earth-Moon system.
The roles of various orbits in facilitating transport in the Earth-Moon system are demonstrated,
emphasizing the value in design tools that offer access to a composite view of a variety of orbit
types.
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Tour of Libration Point Orbits Using Resonant Orbits

In addition to considering invariant manifolds associated with libration point orbits, a variety of
different orbit types are useful when designing transfers in the Earth-Moon system. For example,
the role of resonant orbits in the design of libration point tours in the Earth-Moon system has been
previously demonstrated by Vaquero and Howell.18, 19 Incorporating families of resonant orbits into
the ATD environment, the process to reproduce similar tours is straightforward. Many resonant
orbits, such as members of the 4:3 resonant family, visit the regions of Earth-Moon space in the
vicinity of the L3-L5 libration points, and are, therefore, useful in the design of tours. In the
following example, a tour of the L3, L4, and L5 points is constructed using a selected member
of the Earth-Moon family of 4:3 resonant orbits to facilitate the transfers.

To begin, consider the families of 4:3 resonant orbits and L3 Lyapunov orbits, plotted in blue
in Figure 8(a). Because the motion of these orbits is similar in the vicinity of L3, it is difficult to
identify the L3 family from this view. Zooming in on the region near L3, it is easier to distinguish
the families and to select orbits of interest. Sample Lyapunov and resonant orbits are selected from
within the families, and are plotted in orange and cyan, respectively. While a different pair of orbits
could be selected, these sample orbits are identified because it is visually apparent that the orbits
are roughly tangent to one another as they cross the x-axis, indicating that a reasonable transfer
is possible. Next, assuming the selected 4:3 resonant orbit is employed to design the tour, the L4

and L5 Lyapunov orbits are selected. In Figure 8(b), sample members from the families of planar

(a) selected 4:3 resonant and L3 orbits (b) selected L4 and L5 orbits

Figure 8. Building a tour of the L3, L4, and L5 points using resonant orbits in the
Earth-Moon system

L4 and L5 Lyapunov orbits are plotted in blue. The cyan 4:3 orbit appears tangent to the pair of
selected pink orbits in the vicinity of L4 and L5, thus, these pink orbits are incorporated into the
tour. Each of the selected orbits (L3-L5 Lyapunovs and 4:3 resonant) is stored in the arc list in
the lower right of Figure 8(b). In their current form, these orbits comprise a discontinuous set of
trajectory arcs. It is necessary, then, to link these arcs so that the resulting trajectory produces a
continuous tour of the desired libration points. For example, the portion of the 4:3 resonant orbit
that supplies a connecting arc between the L4 and L3 libration point orbits is isolated using the
clipping technique. The desired start and stop locations are interactively selected along the orbit,
and all excess is removed. This process is demonstrated in Figure 9(a), where the entire resonant
orbit appears in black and the red segment along the resonant orbit is clipped to supply the transfer
from L4 to L3. Repeating the clipping procedure to generate the transfer arc between L3 and L5, a
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(a) clipped resonant orbit arc (b) final tour design

Figure 9. A tour of the L3, L4, and L5 points is constructed using resonant orbits in
the Earth-Moon system

baseline for the final tour appears in Figure 9(b). Note that bridge arcs, plotted in blue, are isolated
using the clipping procedure and are included to reduce discontinuitites between the resonant orbit
transfer arcs and the initial states along the precomputed L4 and L5 orbits. Four copies of each
libration point orbit are included in this baseline so that multiple revolutions along each orbit are
incorporated. The final itinerary proceeds as follows: (1)-(4) L4 Lyapunov orbit in pink, (5) L4

bridge arc in blue, (6) resonant transfer arc in green, (7)-(10) L3 Lyapunov orbit in orange, (11)
resonant transfer arc in purple, (12) L5 bridge arc in blue, and (13)-(16) L5 Lyapunov orbit. Once
all arcs are assembled and properly sorted, nodes are distributed along each arc and the data is saved
to a *.mat file to be loaded into the interactive differential corrections environments.

With the discontinuous baseline assembled and sampled, the data for the particular mission sce-
nario is loaded into the CR3B corrections environment depicted in Figure 10. Four locations are
interactively selected along the path, corresponding to user-specified locations where maneuvers
will be allowed. Position continuity is enforced along the trajectory, and the corrected solution ap-
pears in blue in Figure 10(a). The corrected trajectory includes maneuvers totalling 1005.4 m/s.
Using this converged solution as the new baseline, and applying an upper limit on the total allowed
∆v, an interactive continuation strategy is facilitated to reduce the required ∆v for the end-to-end
trajectory. Using this procedure, the total ∆v is reduced to 700 m/s, and the resulting tour, as con-
structed in the CR3B model, appears in Figure 10(b). The total required ∆v can be further reduced,
however, the L3 orbit shape begins to experience significant changes. With the desired constraints
applied to the baseline trajectory, this solution is transitioned to an ephemeris model. Reconverging
the solution from Figure 10(b) in a Sun-Earth-Moon model, assuming an epoch of January 1, 2020
00:00:00.000 UTC, the resulting tour appears in Figure 11(a). The ephemeris path requires a total
∆v of 680.1 m/s. Saving the ephemeris data from this GUI, the script file output is loaded into
GMAT, and the reconverged tour requires 680.6 m/s, comprised primarily of four impulsive maneu-
vers of magnitude equal to 33.8 m/s, 293.9 m/s, 227.2 m/s, and 125.3 m/s. The time-of-flight along
the tour totals 345.7 days. Of course, other epochs and constraints can easily be accommodated.

Exploiting resonant orbits, a tour of the L3-L5 Earth-Moon libration points is straightforward to
design within the ATD environment. With the resonant, L3, L4, and L5 orbit families all available
within one design setting, the process of selecting desirable orbits to generate the tour is intuitive.
An interactive interface for arc selection and manipulation allows the user to quickly isolate trajec-
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(a) correcting discontinuous path (b) reducing total ∆v

Figure 10. Differential corrections schemes and continuation methods allow for en-
forcement of constraints and reduction of total required ∆v

(a) corrected Sun-Earth-Moon ephemeris path (b) ephemeris path in GMAT

Figure 11. Corrected ephemeris path for an Earth-Moon libration point orbit tour

tory arcs of interest, and to assemble the individual arcs into an end-to-end mission design.

Accessing Libration Points via Vertical Orbit Manifolds

The families of vertical orbits and their associated invariant manifolds cover an expansive region
of the space in the Earth-Moon system. For example, Haapala and Howell20 compute a variety of
homoclinic connections (free transfers) associated with vertical orbits in the vicinity of L1 and L2;
two sample connections appear in Figures 12(a)-12(b). Similar connections are reproduced within
the ATD environment by employing the stable and unstable manifolds asymptotic to vertical orbits
with energy levels near the values employed by Haapala and Howell. The selected vertical orbit
nearby the energy level associated with homoclinic connection 2 appears in Figure 13(a). Manifolds
are straightforward to compute within ATD for any periodic orbit by selecting a desired number of
trajectories to represent the manifold surface, as well as the integration time. For example, 50
sample arcs along the unstable manifold surface that flows away from the vertical orbit and toward
the Earth are propagated for 75 days, and are plotted in magenta in Figure 13(b). A sample stable
manifold appears in green. A particular unstable manifold arc, plotted in red, is selected from the
collection and is clipped so that the final position is near the final state along the stable manifold.
Together, the green and red arcs form the initial guess for the transfer leg of a homoclinic connection
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associated with the L2 vertical orbit. Using ATD to assemble the initial guesses and reconverging
the connections in GMAT, the resulting transfers appear in Figures 12(c)-12(d) and require 0.22
m/s and 213.9 days, and 0.33 m/s and 171.3 days, respectively. Both transfers depart from an

(a) homoclinic 1 (b) homoclinic 2

(c) 213.9 day transfer (d) 171.3 day transfer

Figure 12. A pair of homoclinic connections associated with L2 vertical orbits are
reproduced using ATD

(a) selected vertical orbit (b) unstable manifold

Figure 13. Reproducing a homoclinic connection within ATD

L2 vertical orbit and traverse the Earth-Moon system before returning back to the vertical orbit.
Because the transfer in Figure 12(d) includes a single revolution about L3, it offers the potential to
transfer between the L2 vertical orbit and an L3 libration point orbit. In this example, tours that
incorporate both the L2 vertical orbit and an L3 orbit are constructed within the ATD environment.
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To design a three-dimensional transfer between L2 and L3 libration point orbits, an L3 orbit that
is nearly tangent to the homoclinic transfer in Figure 12(d) is sought in an effort to reduce the total
required ∆v. While the L3 families of halo and vertical orbits do not include any orbits that align
well with the connection in Figure 12(d), an L3 orbit is simple to construct using clipping to isolate
the L3 revolution from the homoclinic transfer, as demonstrated in Figure 14(a). Here, the selected
unstable and stable manifolds employed to compute the homoclinic connection appear in pink and
green. A section from the unstable/stable manifold is clipped out and appears in cyan/blue. These
clipped portions supply an approximation for a single revolution about L3. To include multiple
revolutions, four copies of the single revolution are concatenated, and the discontinuous baseline is
corrected using the CR3B corrections tools to form a continuous, maneuver-free orbit in the vicinity
of L3. The corrected orbit, plotted in Figure 14(b), is then reloaded into the ATD environment
for use in the design of a transfer between L2 and L3. After importing the L3 orbit from Figure
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(a) isolating L3 revolution (b) corrected L3 orbit

Figure 14. An L3 orbit is constructed by sampling a portion of an L2 vertical homoclinic connection

14(b) back into the design GUI, the portion of the vertical homoclinic path that allows transport
between L3 and the L2 vertical, i.e., the green stable manifold, is selected and appears in green in
Figure 15(a), with the L3 orbit in blue. Three revolutions along the vertical orbit are additionally
included, and appear in purple. This baseline trajectory is corrected for continuity in the CR3B
model, allowing a single maneuver to link the L3 orbit to the vertical orbit stable manifold. The
magnitude of the maneuver is reduced from 241.7 m/s to 100 m/s by applying an upper limit on the
total allowed ∆v within the differential corrections process. Finally, the solution is transitioned to
an ephemeris model and is reconverged within GMAT. The resulting 210.6 day trajectory requires
a single maneuver of 100.5 m/s and is plotted in Figure 15(b). The design appearing in Figure 15
is straightforward to modify within the ATD environment. Sample trajectory designs with modified
itineraries appear in Figure 16. The design in Figure 16(a) incorporates a transfer from the L2

vertical to the L3 orbit, via the vertical orbit unstable manifold, before a return back to the L2

vertical orbit, and requires a total of 200.3 m/s to enter and depart the L3 orbit. A departure leg
from a 200-km LEO is included in the path displayed in Figure 16(b), and two maneuvers of 657.4
m/s and 86.2 m/s are permitted to transfer in and out of the L3 orbit.

A variety of solution types prove useful in the design of tours in the Earth-Moon system. Using
the ATD environment, a homoclinic connection associated with an L2 vertical orbit is reproduced.
Arcs from the homoclinic solution are manipulated within the design interface to produce a connec-
tion between L2 and L3, and the process to modify the itinerary is straightforward and efficient.
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(a) connecting L2 and L3 orbits (b) ephemeris path in GMAT

Figure 15. A transfer from an L3 orbit to the L2 vertical is designed in the Earth-
Moon system and corrected in a Sun-Earth-Moon ephemeris model

(a) 318.4 day time-of-flight, total ∆v = 200.3 m/s (b) 239.5 day time-of-flight, total ∆v = 744.1 m/s

Figure 16. A transfer between the L3 and L2 orbits in the Earth-Moon system is
modified within ATD to include additional arcs

RELATING ORBIT STRUCTURES NEAR THE MOON IN THE EARTH-MOON SYSTEM

A design environment that offers a composite view of multi-body orbits is useful, not only to
explore a variety of mission design options, but also to gain insight into the relationships between
different orbit types. The application of stable and unstable manifolds associated with orbits in the
vicinity of L1 and L2 to locate transfers in the vicinity of the smaller primary has been demonstrated
by previous researchers (e.g., Conley,21 Koon et al.,9 Gómez et al.,22 and Parker et al.11). Parker et
al. additionally demonstrate the relationship between Distant Prograde Orbits (DPOs) and libration
point orbits, and compute heteroclinic chains and complex periodic orbits that include each orbit
type. Transfer trajectories for the P1 and P2 spacecraft from the ARTEMIS12 mission incorporate
stable and unstable manifolds associated with libration point orbits in the vicinity of L1 and L2.
A merged view of the P1 and P2 mission orbits with members from the family of DPOs in the
Earth-Moon system reveals an association between these orbit structures, and it is apparent that
the transfers employed by the ARTEMIS spacecraft inherit characteristics associated with nearby
DPOs. Exploiting the manifold structures associated with DPOs, a transfer that closely resembles
those executed by the ARTEMIS P1 spacecraft is computed.
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Interaction between ARTEMIS P1 Orbit and Distant Prograde Orbits

ARTEMIS was the first libration point mission in the Earth-Moon system. Near the end of the
THEMIS mission, the THEMIS spacecraft P1 and P2 were flown to the vicinity of the Moon where
they were maintained in large quasi-halo orbits about the Earth-Moon L1 and L2 points before
entering long-term lunar orbits.26 The transfer between orbits in the vicinity of L2 and L1 for the
P1 spacecraft is imported into the ATD environment and appears in blue in Figure 17. Both planar

(a) x− y projection (b) x− z projection

Figure 17. ARTEMIS P1 transfer between L2 and L1 libration point orbits

and three-dimensional DPOs exist.10, 20, 23, 24 Comparing the transfer arc between the libration point
orbits to a sample three-dimensional DPO, plotted in pink, qualitative similarities are apparent. By
including various orbit types within one mission design setting, the relationship between transfers
between L1 and L2 libration point orbits and the family of DPOs may be explored.

Members from the family of DPOs near the energy level associated with the ARTEMIS trajecto-
ries are unstable and, therefore, possess stable and unstable manifolds that asymptotically approach
and depart the orbit. Exploiting the manifold structures associated with planar DPOs, heteroclinic
chains (free transfers) are computed that are qualitatively similar to the transfers executed by the
ARTEMIS spacecraft. A plot displaying the ranges for the Jacobi constant values associated with
the planar family of DPOs, as well as the L1 Lyapunov and L2 Lyapunov orbits, appears in Figure
18. For a periodic orbit, the associated monodromy matrix possesses eigenvalues λ1 = λ2 = 1,
λ3 = 1/λ4 (|λ3| ≥ 1), λ5 = 1/λ6 (|λ5| ≥ 1), and the stability index may be computed as
ν = 1

2(λi + 1/λi).19, 25 Note that λi may be complex. For a planar periodic orbit, the monodromy
matrix possesses eigenvectors v̄3, v̄4 with a zero component in z and ż. Then, the stability parameter
ν2D is defined ν2D = 1

2(λ3 + 1/λ4). For eigenvectors v̄5, v̄6 that possess zero x, y, ẋ, ẏ compo-
nents, ν3D = 1

2(λ5 + 1/λ6). Values of ν may range from (−∞,−1] and [1,∞). The parameters
ν2D and ν3D are represented in Figure 18 for sample members from the family of DPOs: the value
of ν3D is mapped to the colorbar and the values x0 and C are represented by a colored marker for
each sample orbit (here, x0 indicates the value of x along the orbit at the x-axis crossing for which
ẏ < 0); a gray vector of magnitude |ν2D| is attached to each colored marker. An orbit for which
|ν2D| > 1 is unstable and possesses planar stable and unstable invariant manifolds that provide
asymptotic flow into and away from the orbit. The black box indicates the region on the plot for
which all three orbit types exist and possess a value of |ν2D| > 1. For any value of Jacobi constant
within this region, free transfers exist between the families of L1 and L2 Lyapunov orbits as well as
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Figure 18. Transfers between L1 and L2 Lyapunov orbits and Moon-centered DPOs
are available for a range of energy levels

the family of DPOs.

The trajectories employed for the ARTEMIS spacecraft correspond to Jacobi constant values
within the range indicated by the black box in Figure 18, and serve as a useful example to demon-
strate the relationship between the families of Lyapunov and distant prograde orbits. To exam-
ine this relationship, planar Lyapunov orbits of a similar y-amplitude to the libration point orbits
from the ARTEMIS P1 path are first computed. Within the ATD design environment, an interac-
tive targeting algorithm produces the option to locate a libration point orbit possessing a desired
in-plane or out-of-plane amplitude. The maximum y−amplitudes associated with the P1 L1 and
L2 libration point orbits are 58816 km and 63520 km, respectively.26 Within the targeting tool, a
Lyapunov/halo/vertical orbit can be computed for a user specified y- (Lyapunov or halo orbits) or z-
amplitude (halo or vertical orbits). For this analysis, Lyapunov orbits corresponding to y-amplitudes
of 59000 km and 63500 km are computed in the vicinity of L1 and L2, respectively. These orbits
correspond to Jacobi constant values of C = 3.10007 and 3.10172, consistent with the highlighted
Jacobi constant range in Figure 18. The selected Lyapunov orbits are saved to the arc list, and ap-
pear in Figure 19(a) in orange and purple. In addition, sample members from a precomputed family
of DPOs are plotted in blue in the figure, with a particular orbit from the family selected and plotted
in red. This orbit corresponds to a Jacobi constant value of C = 3.10224, and is plotted in light
blue in Figure 19(b), in addition to the selected L1 and L2 Lyapunov orbits. The periods of the L1

Lyapunov, L2 Lyapunov, and distant prograde orbits are 13.6 days, 15.6 days, and 13.9 days.

The three selected orbits have not been computed for precisely the same value of Jacobi constant,
however, they correspond to relatively close values of C and prove useful to gain insight into the
behavior of the ARTEMIS P1 transfer between L2 and L1. Within the ATD design GUI, manifolds
associated with each of the selected periodic orbits are computed. For example, 50 sample trajec-
tories along the unstable manifold associated with the L2 Lyapunov are propagated for 25 days;
the figure is ‘undocked’ from the ATD GUI and appears in Figure 20(a). A particular trajectory is
interactively selected, and appears in red. The selected manifold is qualitatively similar to the light
blue DPO, that is, the manifold closely shadows the DPO over the integration time, indicating that
a nearby heteroclinic connection between the Lyapunov and DPO may exist. Additionally, sample
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(a) selecting a DPO (b) all three selected orbits

Figure 19. Selecting orbits with amplitudes similar to those employed for the
ARTEMIS P1 trajectory

(a) L2 Lyapunov unstable mani-
fold

(b) L1 Lyapunov stable manifold

(c) DPO stable manifold (d) DPO unstable manifold

Figure 20. Manifolds associated with Lyapunov orbits and DPOs indicate the exis-
tence of a nearby heteroclinic chain

stable manifolds asymptotic to the L1 Lyapunov orbit and DPO are computed and appear in Figures
20(b) and 20(c), respectively; sample trajectories along the unstable manifold associated with the
DPO are plotted in Figure 20(d). A clear association between the manifolds associated with the
Lyapunov orbits and the central DPO is observed. Specifically, the selected manifolds, plotted in
red, asymptotic to the Lyapunov orbits additionally shadow the DPO, and the DPO manifolds that
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are plotted in red inherit characteristics associated with the Lyapunov orbits. Thus, a heteroclinic
chain is sought to produce a free transfer from the L2 Lyapunov to the DPO, and from the DPO to
the L1 Lyapunov. A heteroclinic chain with the itinerary L2 Lyapunov → DPO → L1 Lyapunov
is assembled from the manifolds plotted in Figures 20(a)-20(b), and the transfer design appears in
Figure 21(a). The transfer, as converged within a Sun-Earth-Moon ephemeris model, appears in Fig-

(a) L2-DPO-L1 design (b) L2-L1 design

Figure 21. Assembled transfer designs between L2 and L1 Lyapunov orbits

ures 22(a)-22(b) and requires a total time-of-flight of 143.2 days, including roughly two revolutions
along each of the Lyapunov orbits as well as the DPO. Within GMAT, solar radiation pressure (SRP)
is included in the force model, and the resulting transfer requires a total of 0.17 m/s, comprised of
maneuvers with magnitudes on the order of 1 × 10−5 to 1 × 10−3 m/s. Without the inclusion of
SRP, the total ∆v is 0.12 m/s. Employing the DPO manifolds plotted in red in Figures 20(c)-20(d),
a direct transfer between the L2 and L1 Lyapunov orbits is constructed and appears in Figure 21(b).
The converged transfer in the Sun-Earth-Moon ephemeris model appears in Figure 22(c)-22(d). In-
cluding SRP, the reconverged GMAT solution requires a total of 0.10 m/s and 86.4 days, including
two revolutions along each Lyapunov orbit totalling roughly 58 days. For all solutions, a start epoch
of January 1, 2020 00:00:00.000 UTC is arbitrarily selected, and continuity in position is enforced
to ∼0.01 m. Note that the pulsation in the rotating frame has been removed in the plots in Figures
22(a) and 22(c) (i.e., the Earth, Moon, and libration points are fixed in these figures), however, the
trajectories in Figures 22(b) and 22(d) are plotted in the pulsating rotating frame.

A design setting that offers a composite view of multi-body orbits is useful to gain insight into
the relationships between various orbit types. Transfer trajectories for the P1 and P2 spacecraft
from the ARTEMIS mission are qualitatively similar to nearby distant prograde orbits. Exploiting
manifolds associated with members from the family of DPOs near the energy level associated with
the ARTEMIS trajectories, transfers that closely resemble the ARTEMIS P1 transfer are efficient to
design within the ATD environment.

CONCLUSIONS

Improved flexibility in mission design tools is vital to enable the design of missions with increas-
ingly complex requirements. Interactive and automated trajectory design tools provide an enhanced
perspective of the design space and facilitate rapid exploration of a variety of design concepts. In
this investigation, Adaptive Trajectory Design (ATD) strategies are demonstrated for mission design
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(a) L2-DPO-L1 corrected ephemeris path (b) L2-DPO-L1 path in GMAT

(c) L2-L1 corrected ephemeris path (d) L2-L1 path in GMAT

Figure 22. Corrected ephemeris path resembling the ARTEMIS P1 transfer

applications in the Earth-Moon system. Operating within a graphical user interface, the ATD tools
facilitate the assembly of end-to-end mission designs via interactive selection of trajectory arcs with
desirable characteristics. By enabling access to a large assortment of orbit types within one mis-
sion design environment, ATD offers the user a unique design perspective in which various mission
design options may be explored, and the effectiveness of different orbits in meeting mission re-
quirements may be evaluated. Sample mission designs are demonstrated, including a tour of the L3,
L4, and L5 libration points using resonant orbits as the transfer mechanism, and a transfer between
orbits in the vicinity of L2 and L3 employing manifolds associated with an L2 vertical orbit. Final
designs are imported into NASA’s General Mission Analysis Tool (GMAT), where the end-to-end
ephemeris solution is reconverged and can be accessed in a mission setting for further analysis and
to support other activities.
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