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EXPLORING THE IMPACT OF A THREE-BODY INTERACTION
ADDED TO THE GRAVITATIONAL POTENTIAL FUNCTION

IN THE RESTRICTED THREE-BODY PROBLEM

Natasha Bosanac∗, Kathleen C. Howell†, and Ephraim Fischbach ‡

Many binary star systems (e.g., pulsar-white dwarf) are known to possess significantly smaller
companions, such as an exoplanet, in orbit about the binary. In this investigation, the dynam-
ical environment near the binary is modeled using a three-body interaction added to the
inverse-square pairwise gravitational forces in the circular, restricted three-body problem
(CR3BP), given a mass ratio of 0.3. This additional force contribution is assumed to depend
inversely on the product of the distances between the three bodies. Frequency analysis is
used to characterize the effect of this three-body interaction on periodic and quasi-periodic
orbits in the exterior region for a large mass ratio binary. Sufficiently scaled attractive three-
body interactions appear to induce period-multiplying bifurcations, with a low multiplicative
factor, along families of periodic orbits, an effect that is not reproducible using large mass ra-
tios in the range [0.2, 0.4] in the CR3BP. Repulsive three-body interactions appear to impact
the formation of families of periodic orbits, influencing the location of stable and unstable
orbits within a periodic orbit island chain. In addition, repulsive interactions influence the
openings of the Lagrange point gateways, as compared with the CR3BP.

INTRODUCTION

Consider a binary star system (e.g., pulsar-white dwarf, pulsar-pulsar) with a significantly smaller com-
panion, such as an exoplanet, in orbit about the binary. Such a dynamical scenario has been both speculated
and observed by astronomers in a variety of star systems far beyond the boundaries of the solar system.1

However, given the absence of experimental data gathered within the vicinity of the binary, it is possible that
the gravitational field within this system might not be accurately modeled solely using pairwise gravitational
forces. In this investigation, the presence of an additional three-body interaction is considered. Many-body
forces are not an entirely new concept; in fact, the importance of three-body interactions in accurately model-
ing force fields on the atomic scale is well established in nuclear physics.2 On a much larger scale, the motion
of a small body orbiting a binary star system serves as a new and interesting application for determining the
characteristics of a three-body interaction in orbital dynamics.

Since binary star systems are located many light-years from the Earth, the characteristics of the binary, and
any smaller companions, are determined from pulsar timing measurements;3 the availability of timing data
renders such binaries suitable applications for exploring the influence of a three-body interaction. A pulsar
in complete isolation would rotate about its spin axis with a constant angular velocity, emitting pulses of
radiation at a constant rate. However, in the presence of additional bodies, the pulsar appears to rotate with a
nonconstant angular velocity. The resulting Doppler shift in the timing of the pulses is approximately fitted
to the orbit of the pulsar, which is typically correlated to the masses and orbits of any companions. These
orbits are governed by a dynamical environment that may be modeled using various interactions, including
those due to pairwise point-mass gravity, gravitational wave radiation, and magnetic fields.
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The dynamical model for the motion of the exoplanet is derived based on the circular restricted three-body
problem (CR3BP), but extended to incorporate an additional term in the potential function: a three-body in-
teraction. This additional contribution is assumed to depend inversely on the product of the distances between
the three bodies: the closer the bodies, the stronger the three-body interaction. The subsequent set of differ-
ential equations comprises the framework for a modified circular restricted three-body problem (MCR3BP).
In the configuration modeled in this investigation, the two stars comprising the binary are assumed to possess
similar mass and follow circular paths about their mutual barycenter. Although a large mass ratio reflects the
physical configuration of many binary star systems, it is significantly larger than the mass ratios of natural
systems considered within the solar system.

This investigation is comprised of two parts. First, the characteristics of the CR3BP are explored for a
relatively large mass ratio. Natural solutions in the MCR3BP are then analyzed and compared to those in
the CR3BP to explore the effect of the three-body interaction. Given that many of the known binary star
systems are postulated to possess one or more exoplanets in large orbits about both stars, this investigation of
three-body interactions is currently limited to the study of trajectories far from the binary. For an exoplanet
to be bound to the vicinity of the binary over a long period of time, it likely exhibits ordered motion that is
not sensitive to perturbations. These orbits can be decomposed into the sum of multiple sinusoidal waves
that are characterized by their fundamental frequencies. Monitoring the influence of a three-body interaction
on any fundamental frequencies may represent the potential impact on the behavior of an exoplanet. Thus,
frequency analysis is employed to investigate the effect of the additional three-body contribution on the
dynamical environment in the vicinity of a binary.

DYNAMICAL MODEL

The MCR3BP is formulated similar to the traditional CR3BP.4 Although the notation and the general
configuration are consistent between the two systems, the MCR3BP incorporates the presence of three-body
interactions in addition to pairwise gravitational interactions. The form of the augmented potential in the
MCR3BP influences the equations of motion, yielding a model that still admits an integral of the motion.
Particular solutions, in the form of equilibrium points and zero velocity curves, are also available in this
augmented model and still establish bounds on the motion.4

Rotating Coordinate Frame and Nondimensionalization

By convention, the body of interest, P3, moves in the vicinity of the larger and smaller primaries, P1 and
P2, each body Pi possessing a mass Mi. Figure 1 depicts the configuration of these three bodies. As in
the CR3BP, a rotating coordinate frame, x̂ŷẑ, is introduced and oriented relative to an inertial frame, X̂Ŷ Ẑ.
In the frame that rotates with the motion of the two primaries the location of P3, measured with respect to
the barycenter, is written in terms of the nondimensional coordinates (x, y, z). Consistent with the CR3BP,
length quantities are nondimensionalized such that the distance between P1 and P2 is equal to a constant
value of 1. In addition, time is nondimensionalized such that the mean motion of the primaries is equal to
1, while the characteristic mass quantity, m∗, is the sum of the masses of the primaries. The characteristic
mass quantity yields nondimensional mass values for P2 and P1 equal to µ and (1− µ), respectively. In the
first half of this investigation, the mass ratio is varied within the range µ = [0.2, 0.4]. During analysis of the
MCR3BP, however, the value for µ is fixed at 0.30. This large mass ratio has not been explored extensively
from the perspective of the CR3BP. It is, however, representative of the order of magnitude corresponding to
many binary pulsar systems, such as the pulsar-white dwarf binary system PSR B1620-26 that is known to
include at least one exoplanet.3

Equations of Motion

Given a system configuration consistent with the CR3BP, derivation of the differential equations governing
the motion of P3 in the MCR3BP requires the definition of the potential function. In the rotating frame, the
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Figure 1. Definition of the rotating coordinate frame with a constant angular velocity
relative to the inertial frame at a nondimensional rate of unity about the Ẑ-axis.

scalar potential corresponding to P3, per unit mass, is assumed to consist of the following terms:

U3 =
1− µ
r1

+
µ

r2︸ ︷︷ ︸
pairwise potential

+
k

r1r2︸︷︷︸
three-body potential

(1)

where r1 =
√

(x+ µ)2 + y2 + z2 and r2 =
√

(x− 1 + µ)2 + y2 + z2 are the nondimensional distances
between P3 and each of the primaries, and k is the constant that scales the contribution of the three-body
interaction to the resultant potential. Since the magnitude and sign of this constant are unknown, it is assumed
that k can be selected as either positive, negative or zero. When the value of the constant k is equal to zero,
the potential of the MCR3BP reduces to the CR3BP potential; if k is positive, the three-body interaction is
attractive, while a negative value of the coefficient corresponds to a repulsive interaction.

From the definition of the potential function in Equation (1), the equations of motion for P3 are derived
and a constant of motion is subsequently identified. Since the potential function depends only upon position
variables, it is differentiated to determine the force per unit mass acting on the body, P3. The equations of
motion in terms of the rotating frame are then written as:

ẍ = 2ẏ + x− (1− µ)(x+ µ)
r3
1

− µ(x− 1 + µ)
r3
2

− k
[

(x− 1 + µ)
r1r3

2

+
(x+ µ)
r3
1r2

]
(2)

ÿ = −2ẋ+ y − (1− µ)y
r3
1

− µy

r3
2

− k
[
y

r1r3
2

+
y

r3
1r2

]
(3)

z̈ = − (1− µ)z
r3
1

− µz

r3
2

− k
[

z

r1r3
2

+
z

r3
1r2

]
(4)

Although the complete, three-dimensional equations of motion are available, only planar solutions are con-
sidered throughout this investigation. The equations of motion can then be written in terms of the partial
derivatives of U∗, the pseudopotential function.4 This quantity is exploited to develop the energy integral
that corresponds to the equations of motion as formulated in the rotating frame. Since the pseudopotential
is autonomous, its derivative with respect to time is always equal to zero. A constant energy integral, C,
therefore, exists and is equal to:

C = x2 + y2 +
2(1− µ)

r1
+

2µ
r2

+
2k
r1r2

− ẋ2 − ẏ2 − ż2 (5)

When the contribution of the three-body potential is omitted by selecting k = 0, this energy integral reduces to
the well-known Jacobi Constant of the CR3BP.5 Given that there are infinite possible sets of initial conditions
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in the form of six position and relative velocity states, (x, y, z, ẋ, ẏ, ż), numerical methods and visualization
techniques are employed to explore the solution space. At various values of the energy constant, a wide
array of behavior may exist, and the corresponding steady-state solutions are characterized using concepts
developed in dynamical systems theory.

TIME-VARYING SOLUTIONS

Since the equations of motion in the CR3BP are nonintegrable and autonomous, four types of steady-state
solutions exist: equilibrium points, periodic orbits, quasi-periodic orbits, and chaotic motion.6 Each of these
solutions, for a mass ratio of µ = 0.3, is plotted in Figure 2(a)-(d) in position space, with blue filled circles
indicating the location of the primaries. While the equilibrium point locations remain constant over time,
periodic solutions are time-varying and repeatable. In the rotating coordinate system, a period-q orbit can
encircle the primaries or an equilibrium point q times during one period, T . The dense set of periodic orbits
in the CR3BP forms the underlying structure of the phase space: a stable orbit attracts trajectories in its
vicinity, while trajectories near an unstable orbit flow away from the orbit.7 Thus, identifying periodic orbits
and evaluating their stability delivers significant insight into the behavior in their vicinity. Quasi-periodic
orbits offer additional information concerning the dynamical environment. Such orbits are bounded and each
traces out a torus, with a nearby stable periodic orbit at its center.5 Investigating the properties of quasi-
periodic orbits and their excursions within the phase space enables a representation of the significant stable
dynamics within the CR3BP.
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Figure 2. Examples of steady-state solutions in the CR3BP for µ = 0.3: (a) equilib-
rium points, (b) a periodic orbit, (c) a quasi-periodic orbit, and (d) chaotic motion.

Stability

The stability of a periodic orbit is typically deduced from the monodromy matrix, defined as the state
transition matrix (STM) propagated for precisely one period of the orbit.8 Given a reference planar periodic
orbit, the solution that approximates a nearby arc is determined using the linear variational equations of
motion. The solution describing the relative neighboring arc is written as:

δx̄(t) = Φ(t, 0)δx̄(t0)

where δx̄(t0) is the vector variation with respect to the initial state along the orbit and Φ(t, 0) is the state
transition matrix, essentially a linear mapping from t0 to a time t.9 Via Floquet theory, the monodromy
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matrix of the reference periodic orbit is decomposed into the following form:

Φ(T, 0) = V(0)eΩTV(0)−1 (6)

where the diagonal elements of Ω are the Poincaré exponents, Ωi, for i = 1...4.9 Since eΩT is a diagonal
matrix, V(0) is a matrix that is formed from the eigenvectors of the monodromy matrix, Φ(T, 0), and the
Poincaré exponents are related to its eigenvalues such that λi = eΩiT . The eigenvalues of the monodromy
matrix reflect the characteristics of the underlying linear system; however, the nontrivial eigenvalues also
supply insight into the stability of the periodic orbit in the original, nonlinear system. Each planar, periodic
orbit possesses a monodromy matrix that can be decomposed into four eigenvalues and their associated eigen-
vectors.9 Two of the eigenvalues are equal to unity due to periodicity; the other two nontrivial eigenvalues
may be represented in the form λ = a ± bi, in terms of two real numbers, a and b. Depending on the value
of these integers, three specific cases of eigenvalues emerge: real, complex, and imaginary. Regardless of
the form of these eigenvalues, they appear as a reciprocal pair due to the symplectic properties of the state
transition matrix. From the Lyapunov definition of stability, stable periodic orbits possess a nontrivial pair
of complex or imaginary eigenvalues, λ1, λ2 = a ± bi. A pair of reciprocal eigenvalues, |λ1| = a > 1 and
|λ2| = 1/a < 1, however, correspond to an unstable periodic orbit.8 Since the stability of an orbit reflects the
behavior of solutions within its vicinity, a monodromy matrix that possesses complex eigenvalues indicates
the oscillatory motion of nearby quasi-periodic orbits.

Bifurcations

In the CR3BP, periodic orbits exist in families that, for a given mass ratio, depend upon the energy constant.
Varying C, the natural parameter, directly modifies the vector field, f̄(x̄), and, therefore, its infinite set of
solutions. A local bifurcation occurs if a change in the energy constant results in a change in the qualitative
behavior of trajectories in the vicinity of a periodic orbit. In dynamical systems, a bifurcation may result in a
change in the stability of the periodic orbits along a family, the formation of a new family of periodic orbits,
or termination of the current family.10 Since the stability of a periodic orbit reflects the behavior of nearby
trajectories, local bifurcations are detected and characterized by monitoring the pair of nontrivial eigenvalues
of the monodromy matrix corresponding to each periodic orbit along a family. Introducing an alternative
representation of the nontrivial eigenvalues, a stability index is employed. This quantity is defined as the sum
of the two reciprocal eigenvalues, equal to s = λ+ 1

λ . Given the form of this expression, possible bifurcations
can be detected through changes in the stability of the periodic orbits comprising a family, reflected by the
stability index passing through any critical values.

Although many possible bifurcations exist, two types emerge within the dynamical environment that is the
focus of this investigation: tangent and period-multiplying bifurcations. A family of periodic orbits undergoes
a tangent bifurcation when the qualitative stability characteristics of its orbits change with the energy constant.
During this type of local bifurcation, the nontrivial eigenvalues of the monodromy matrix pass through the
critical values λ1 = λ2 = +1. Simultaneously, the stability index passes through s = 2. Depending on
the type of tangent bifurcation, the change in stability may be accompanied by the creation of families of
similar period or by the intersection with another family of orbits. Across each form of tangent bifurcation,
the eigenvalues that reflect the stability of the orbits along a family transition between the unit circle and the
real axis. During a period-multiplying bifurcation of multiplicative factor m, a family of period-mq orbits
emerges from a family of period-q orbits. At the critical value of the natural parameter, the orbit located at the
intersection of the two families is equivalently described as a period-mq orbit or a period-q orbit traced out
m times. Employing properties of the STM, this bifurcation is detected when the eigenvalues of the period-q
orbits along a family pass through the first and (m− 1)-th complex roots of unity, that are equal to:

λ1, λ2 = cos
(

2π
m

)
± sin

(
2π
m

)
i (7)

or, equivalently, when the stability index passes through the critical value:

s = 2 cos
(

2π
m

)
(8)
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Since the stability index does not reflect the imaginary components of any complex conjugate eigenvalues,
confirmation of a period-multiplying bifurcation requires verification that the eigenvalues do not split off the
unit circle after passing through the corresponding roots of unity.

Quasi-Periodic Orbits

Stable periodic orbits are typically surrounded by quasi-periodic orbits, corresponding to nonperiodic,
bounded motion that lies on a two-dimensional torus.7 A torus is parameterized using two noncommensu-
rate, fundamental frequencies:5 the central frequency, ω1, in the direction of the periodic orbit, and ω2, the
transverse frequency. A quasi-periodic orbit is reconstructed using sinusoidal waves with frequencies that are
equal to linear combinations of these two fundamental frequencies. When the two dominant frequencies are
commensurate, their ratio is equated to the ratio of two integers: a limiting case that corresponds to a resonant
periodic orbit. Computing and interpreting the frequency decomposition of ordered motion is, therefore, a
key element in the analysis of the dynamics in the CR3BP.

FREQUENCY ANALYSIS

Frequency analysis can be used to characterize a quasi-periodic orbit by decomposing its trajectory into
linear combinations of the fundamental frequencies of the oscillatory motion in each of the central and trans-
verse directions. A variable, y(t), corresponding to a quasi-periodic orbit, can be expressed using a Fourier
series in rectangular form as:

y(t) =
∞∑
m=1

(Am cos(2π(rmω1 + smω2)t) +Bm sin(2π(rmω1 + smω2)t)) (9)

where Am and Bm are, respectively, the coefficients of the cosine and sine components for the m-th domi-
nant linear combination of the fundamental frequencies, ωm = (rmω1 + smω2), for the integers rm and sm.
Various properties of quasi-periodic orbits are identifiable from the fundamental frequencies and some sig-
nificant characteristics can be deduced. These frequencies can directly represent: (i) the presence of resonant
orbits, (ii) a qualitative evaluation of the orbital stability, (iii) an estimate of the orbital period (to within an
integer ratio) and, (iv) through either the number of map crossings of a periodic orbit or the number of stable
islands on a map, the existence of a quasi-periodic orbit (to within an integer ratio). Frequency analysis is,
therefore, an appropriate basis from which to explore the influence of three-body interactions on the form and
prevalence of ordered motion in the MCR3BP.

The numerical approach to frequency analysis, which is adopted in this investigation, is based on Laskar’s
Numerical Analysis of the Fundamental Frequency (NAFF algorithm).11 Laskar’s method decomposes a
trajectory, integrated over a finite time interval, into a finite set of sinusoidal waves. A differential corrections
algorithm is employed to iteratively update the initial guess for each sinusoidal wave until the trajectory is
sufficiently reconstructed from the dominant linear combinations of the two fundamental frequencies. From
an implementation perspective, the NAFF algorithm requires less memory and computational time than the
construction of a normal form for the dynamical topology in the vicinity of a periodic orbit. Thus, Laskar’s
method is employed in this initial investigation.

Discrete Fourier Transform

Each of the numerically integrated trajectories in this investigation are actually only composed of a set
of states at a finite set of times, yielding discrete time-dependent functions. A Discrete Fourier Transform
(DFT) is, therefore, employed to determine the underlying frequencies of each numerically integrated path
and the coefficients describing the corresponding sinusoidal wave. Assume that a continuous function, y(t),
is sampled atN equally-spaced time intervals, each of length ∆t, whereN is assumed to be even. Each point
along the function, sampled at tn = n∆t, possesses a value ỹ(n) corresponding to the integer time indices
n = 0, 1, ...N − 1. The N samples, ỹ(n), in the time domain, are then transformed into the N values of
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Ỹ (m) in the frequency domain using the DFT, defined as:

Ỹ (m) =
N−1∑
n=0

ỹ(n)(cos(2πmn/N)− i sin(2πmn/N)) (10)

for the m-th frequency, ωm = m
N∆t . The rectangular coefficients for each sinusoidal wave, with frequency

ωm, are subsequently computed as:

Ãm = 1
N

∑N−1
n=0 ỹ(n) cos(2πmn/N) B̃m = −1

N

∑N−1
n=0 ỹ(n) sin(2πmn/N) (11)

where the tilde indicates that the original function is discrete in the time domain. Given knowledge of a finite
number of these sinusoidal wave coefficients and their corresponding frequencies, the original function is
reconstructed using a truncated Fourier series expansion.

Numerical Frequency-Refinement

The limitations of the DFT are apparent when a frequency decomposition is applied to numerically inte-
grated trajectories in the CR3BP. Although the accuracy of the resulting frequency decomposition theoreti-
cally improves as the integration time increases, small errors in the analyzed function accumulate over long
integration times. The integration time interval is, therefore, selected to supply sufficient resolution in the fre-
quency spectrum, while maintaining an accurate representation of a natural trajectory in the CR3BP. For the
implementation in this analysis, constraints on the computation time, as well as the allowable variation of the
energy constant, limit the maximum integration time to a range between 5, 000 and 10, 000 nondimensional
time units: corresponding to approximately 500-1000 revolutions about the primaries. For a trajectory prop-
agated over this time span, the accuracy of any frequency computed via the DFT, using a Hanning window,
is on the order of 10−4 (nondimensional time units)−1. In the CR3BP, the fundamental frequencies corre-
sponding to the quasi-periodic orbits within a stable island at a given energy level can vary by a smaller order
of magnitude than the accuracy obtained through the use of a DFT, implemented using an FFT algorithm.
Thus, a frequency resolution of 10−4 is considered insufficient for this application. A targeting scheme is,
therefore, implemented to individually refine the parameters that describe the trajectory of interest.

The differential corrections scheme implemented in this investigation is formulated such that free variables
are iteratively updated to satisfy a defined set of constraints. In particular, the independent elements of
the free-variable vector available for adjustment correspond to the parameters describing the j-th sinusoidal
wave. Three real-valued parameters, therefore, form the free variable vector, X̄:

X̄ =
[
ωj Aj Bj

]T
(12)

The sinusoidal wave constructed from the initial guess for the free variable vector is iteratively refined until it
coincides with one of the sinusoidal waves comprising the original function, ỹ(tn). Constraints can, therefore,
be formulated to target the local maximum amplitude of the following quantity:

u(ωj) =
1
N

N∑
n=1

ỹ(tn) [cos(2πωjtn)− sin(2πωjtn)i] (13)

where N is the number of points comprising the discrete function ỹ(tn). Differentiating u(ωj), and writing
the result in terms of the independent set of free variables, produces the frequency constraint:

∂u(ωj)
∂ωj

=
2√

D2
c +D2

s

[
Dc

∂Dc

∂ωj
+Ds

∂Ds

∂ωj

]
= 0 (14)

where Dc and Ds are, respectively, the real and imaginary components of the rectangular form of u(ωj).
These two variables are computed as:

Dc = 1
N

∑N
n=1 ỹ(tn) cos(2πωjtn) Ds = 1

N

∑N
n=1 ỹ(tn) sin(2πωjtn) (15)
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Equation (14) is not the sole constraint to target the sinusoidal wave corresponding to ωj because it does not
constrain the two free amplitude variables, Ac and As. Thus, two additional constraints are incorporated,
equating the cosine and sine components of the DFT of the original function, ỹ(tn), evaluated at ωj , and the
DFT of the approximation, ỹj(tn). These scalar constraint equations are deduced to be of the following form:

∆Dc =
1
N

N∑
n=1

[Aj cos(2πωjtn) +Bj sin(2πωjtn)] cos(2πωjtn)−Dc = 0 (16)

∆Ds =
1
N

N∑
n=1

[Aj cos(2πωjtn) +Bj sin(2πωjtn)] sin(2πωjtn)−Ds = 0 (17)

If ∆Dc = ∆Ds = 0, Equations (16) and (17) reflect the fact that the amplitude and phase of the sinusoidal
approximation, ỹj(tn), match the amplitude and phase of the contribution to the original function from the
frequency ωj . Since the frequency and amplitude constraints are expressed in terms of the free variables,
the constraints from Equations (14), (16), and (17) are assembled to form the three-dimensional constraint
vector, F̄ (X̄). Given the definitions for the elements of the free variable and constraint vectors, the Jacobian
matrix, DF̄, is computed and an update equation, at each iteration, i, is formulated using Newton’s method
to equal:

X̄i+1 = X̄i −DF̄(X̄i)−1F̄ (X̄i) (18)

The free variable vector is iteratively updated until the constraint vector is equal to zero, to within a user-
specified tolerance. When these constraints are satisfied, the sinusoid described by the free variables is
present in the original function, ỹ(tn).

A straightforward process to generate an initial guess for the resulting differential corrections scheme is
developed using the fundamental principles of frequency decomposition. After determining the contribution
from ω0 = 0, each of the M dominant frequencies in ỹ(tn) are computed in order of decreasing amplitude.
The initial guess for the set of parameters that describe each sinusoidal wave is constructed using the FFT
algorithm. Each local maximum in the Fourier transform computed by the FFT represents an approximate fre-
quency representation of the original function. The nearby free variables that represent the sinusoidal waves
present in the original function are then determined using the described differential corrections algorithm.

Frequency Decomposition of Trajectories

To produce the frequency representation for various types of trajectories, this frequency-refinement tech-
nique is explored within the context of the CR3BP. First, a trajectory is selected from the desired region
in a Poincaré map that has been constructed using a y = 0 surface of section at a specified energy level.
Once the map crossing that corresponds to a desired trajectory is identified, the initial state is propagated
for approximately 9, 000 nondimensional time units and sampled every 0.05 time units to generate a discrete
set of data points. The discrete function, created from the x-coordinate in each sample, is multiplied by a
Hanning window and initially decomposed into its frequency representation using an FFT algorithm. Each
trajectory that is examined in this investigation lies in the exterior region; thus, a frequency analysis of the
set of x-components corresponding to the state vectors along the path reveals the underlying frequencies. If
any fundamental frequencies are identified from the DFT, the initial guesses for the corresponding sinusoidal
waves are corrected using the frequency-refinement targeting scheme.

Features in the DFT are employed to characterize and identify natural trajectories.4 A sample quasi-
periodic orbit is plotted in both configuration space and the frequency domain in Figure 3 over 100 time
units. The location of the two primaries are overlayed as red dots, and the arrow indicates the direction of
orbital motion. In Figure 3(b), the DFT constructed from the corresponding orbital data appears, scaled by
the maximum amplitude of the computed Fourier coefficients. Multiple peaks are apparent in this frequency
representation, each located at linear combinations of the two fundamental frequencies. Exploiting knowl-
edge of the eigenvalues associated with the stable periodic orbit at the center of this quasi-periodic orbit, the
largest peak approximately occurs at the frequency denoted ω1. The two smaller peaks are located equidistant
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Figure 3. Representation of a quasi-periodic orbit in the (a) configuration space of
the CR3BP and (b) frequency domain.

from this dominant peak; this distance is labeled ω2. An irrational ratio of these dominant frequencies indi-
cates that the trajectory corresponds to a quasi-periodic orbit. As the contribution from the transverse mode
approaches zero, the quasi-periodic orbits in a stable island reduce, in the limit, to the stable periodic orbit at
their center. Although a periodic orbit possesses a single fundamental frequency, it can be characterized by
the features in its DFT. In fact, for a period-q orbit, stable or unstable, the numerically-detected ratio ω2/ω1

is equal to an integer ratio 1/q since two independent frequencies do not exist. The ratio of the two dominant
frequencies that are present in the DFT of a natural trajectory is, therefore, used to identify the form of the
corresponding nonchaotic orbit.

CIRCULAR RESTRICTED THREE-BODY PROBLEM: LARGE MASS RATIOS

Characteristics at µ = 0.3

The process of decomposing a single trajectory into its fundamental frequencies is extended to the fre-
quency representation of the dynamical structures in the CR3BP at a single energy level. Frequency de-
composition is applied to the analysis of retrograde trajectories in the vicinity of a stable period-1 orbit
located in the exterior region in the CR3BP at a mass ratio µ = 0.3. At discrete values of the energy
constant, nearby quasi-periodic orbits are sampled and decomposed into their fundamental frequencies.
For each value of the energy constant, the frequency ratio that corresponds to ordered motion intersecting
y = ẋ = 0, forms a one-parameter curve. As an example, consider an energy constant that is equal to the
value C = 3.880149584125780. The corresponding Poincaré map at y = 0, localized to the exterior region,
is plotted in Figure 4. The structures captured by this map are located to the left of the two primaries and far
beyond the location of L3. By observation, the periodic and quasi-periodic orbits form concentric curves and
island chains that cross the ẋ = 0 line, overlaid in blue in the figure. The structures within this region are,
therefore, sufficiently represented by considering only trajectories corresponding to map crossings coinciding
with the ẋ = 0 line. For each orbit, a variable x0 is assigned to represent the nonunique x-coordinate of the
map crossing coinciding with the ẋ = 0 line. In addition, the quantity ω2/ω1 is the frequency ratio of the
corresponding orbit, computed using the frequency-refinement technique. At the specified energy level, each
of the intersecting nonchaotic orbits is, therefore, identifiable using the coordinate pair (x0, ω2/ω1).

At a given energy level, the one-parameter curve representing the frequency ratios of quasi-periodic orbits
as a function of x0 reveals the structures visible in a Poincaré map. The frequency ratios, computed for orbits
in the vicinity of the stable period-1 orbit at C = 3.880149584125780, are plotted in blue in Figure 5. This
plot also features red dashed lines at selected, labeled integer ratios. Consider the two intersections of the
frequency ratio curve with the ω2/ω1 = 1/5 line: both occur at the same x-coordinate as the intersections
of the period-5 island chain with the ẋ = 0 line on the map depicted in Figure 4. The left-most intersection
of the period-5 island chain with the ẋ = 0 line occurs at an unstable periodic orbit; on the right, a stable
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Figure 4. Poincaré map at C = 3.880149584125780 for µ = 0.3, constructed using a
y = 0 section, localized to the exterior region in the CR3BP.

5 4.5 4 3.5 3 2.5

0.17

0.18

0.19

0.2

0.21

0.22

x

ω
2
/
ω

1

ω2
ω1

= 1
5

ω2
ω1

= 2
11

ω2
ω1

= 1
6

Figure 5. Frequency representation of retrograde periodic and quasi-periodic orbits
in the vicinity of the stable period-1 orbit in the exterior region for µ = 0.3 at an
energy level C = 3.880149584125780.

period-5 orbit intersects the ẋ = 0 line. Correspondingly, these two intersections appear distinctly different
in the frequency representation: the unstable orbit appears as a steep change in the frequency ratio, while the
frequency ratio at the location of the stable orbit lies at the center of a plateau formed by the numerically-
detected frequency ratios of its surrounding quasi-periodic orbits. Extending these observations, any stable
or unstable period-q orbit is identified and located on the frequency ratio curve when the previously described
features are centered about the integer ratio, p/q for q > 1 and p < q. As demonstrated in this example,
the denominator of the corresponding ratio equals the q map crossings of a retrograde period-q orbit in the
exterior region. In addition, the sum p + q is approximately equal to the ratio of the orbital period to the
period of the primaries; this property is apparent using any differentially corrected period-q orbit. Thus,
the one parameter frequency ratio curve reveals the presence of quasi-periodic orbits and some qualitative
properties of any embedded period-q orbits.

A frequency representation of the structures present over a range of energy levels introduces a third param-
eter identifying each orbit: its energy level. A single orbit is, therefore, described by the tuple (x0, ω2/ω1, C).
Accordingly, ordered motion within a specified range of energy levels forms a two-parameter surface when
represented using frequency ratios. To reduce the complexity in visualizing the resulting surface approxima-
tion, simple two-dimensional representations of this three-dimensional information are constructed. Due to
the inherent loss of information, the specific configuration must be tailored to the immediate goal.

To represent the form and stability of ordered motion, the frequency ratio is plotted for each value of x0

that identifies an orbit at any energy level. An example of this concept is depicted in Figure 6 for retrograde
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Figure 6. Composite representation of the frequency ratios of retrograde periodic
and quasi-periodic orbits in the exterior region in the CR3BP with µ = 0.3 for energy
levels between C(L1) and C(L3).

periodic and quasi-periodic orbits in the exterior region in the CR3BP at a mass ratio of µ = 0.3 for energy
levels between C(L1) and C(L3). Overlaid on this plot are red dashed lines indicating the integer ratios cor-
responding to selected low-order period-q orbits. Analysis of this figure reveals that the frequency ratio passes
through integer ratios, m/q, reflecting various period-q orbits, signaling the existence of the corresponding
orbits within the specified energy range. Consider the curves intersecting the integer ratio ω2/ω1 = 1/3.
The lack of data points on the left half of this intersection reveals the location of the unstable orbit within
a period-3 chain, while the horizontal accumulation of points on the right side indicates the stable period-3
orbit and its surrounding quasi-periodic motion. Features in the frequency domain representation, therefore,
represent, qualitatively, the stability of nonchaotic motion over a range of energy levels.

To determine the boundaries of a structure within the phase space and the energy levels at which it exists,
a two-dimensional representation is constructed using approximate level sets of the frequency ratio. Given
a period-q orbit that possesses the frequency ratio p/q, its corresponding level set at the frequency ratio is
approximated by processing the discretely sampled tuples (x0, ω2/ω1, C). If the period-q orbit is stable, its
associated quasi-periodic orbits are represented by plotting the (x0, C) coordinates of orbits with frequency
ratios in the range (p/q − ε) < ω2/ω1 < (p/q + ε), for a reasonably small, positively-valued ε. Only
the periodic orbit has a frequency ratio exactly equal to p/q; however, its surrounding quasi-periodic orbits
possess frequency ratios close to the integer ratio. An example of the constructed representation is plotted
in Figure 7 for selected retrograde period-q orbits, and their surrounding quasi-periodic motion, located
in the exterior region in the CR3BP at a mass ratio of µ = 0.3; the corresponding families are labeled
as “P-q”. On the vertical axis, the energy constant computed for each orbit is scaled using the difference
C(L2) − C(L3). The energy levels corresponding to L2 and L3 are used as a reference because these two
Lagrange points bound motion between the interior and exterior regions. To represent the unstable periodic
orbits present in a period-q chain, the energy and appropriate x-crossing of the unstable orbit are obtained
using continuation. This composite frequency representation in Figure 7 depicts the extent of the periodic
orbits in a period-q island chain within the phase space, for various values of the energy. The regions about
each curve, representing a family of periodic orbits, are populated by quasi-periodic orbits; the spread of
points from the curve describing the periodic orbits represents the extent of ordered motion that persists
within the phase space.

Together, the two composite frequency representations in Figures 6 and 7 offer information about ordered
motion in the exterior region in the CR3BP at energy constants between C(L1) and C(L3). As plotted in
Figure 6, each frequency ratio curve, computed at a single energy level, features an undefined maximum
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Figure 7. Composite representation of the energy levels of selected retrograde period-
q orbits and their surrounding quasi-periodic orbits. These orbits are located in the
exterior region in the CR3BP.

frequency ratio corresponding to the period-1 orbit at the center of the stable island. The frequency ratio is
undefined at this location because periodic orbits are only described by one frequency. A quasi-periodic orbit
that exists farther from the central period-1 orbit exhibits a lower frequency ratio. Furthermore, decreasing
the energy constant results in each curve encompassing higher frequency ratios, and over the range of energy
constants that are examined, a variety of low-order period-q orbits exist. Recall Figure 7, which features a
selection of these orbits with the frequency ratio 1/q; each orbit family is formed at an energy constant equal
to the highest energy constant of the period-q family in this frequency representation. The stable orbits in the
resulting island chain are surrounded by quasi-periodic orbits, which extend farther into the phase space with
decreasing energy constant, until reaching a critical value of the energy constant. Then, the stable islands
rapidly decrease in size as the period-q orbits approach a fold bifurcation. Combining the two frequency
representations, therefore, allows for the description and characterization of the range of dynamics present in
the exterior region in the CR3BP at a mass ratio of 0.3.

Influence of the Mass Ratio: 0.2 ≤ µ ≤ 0.4

Additional insight into the CR3BP is gained through a frequency analysis of the stable structures present at
various large values of the mass ratio, within the range µ = [0.2, 0.4]. A frequency analysis is completed for
orbits in the exterior region in the CR3BP for the sample mass ratios µ = 0.2, µ = 0.3, µ = 0.4, which lie in
the range of large mass ratios typical of many known binary star systems. The resulting composite frequency
representation is displayed in Figure 8. The impact of the mass ratio on two specific characteristics of period-
q families of orbits may be discerned from this frequency representation. First, the range of frequency ratios
encompassed by ordered motion in the exterior region decreases with decreasing mass ratio, and vice versa.
Correspondingly, a smaller range of period-q orbits are available for lower mass ratios within the specified
bounds. Consider, for example, a period-5 orbit with frequency ratio 1/5. Since the range of frequency ratios
encompassed by the mass ratios µ = 0.3 and µ = 0.4 includes the frequency ratio 1/5, a period-5 island
chain is present within the energy interval C = [C(L1), C(L3)]. At a mass ratio of µ = 0.2, however, the
selected period-5 island chain is only accessible over a small interval of energy constants within this range,
far from the energy constant at which the period-multiplying bifurcation occurs to form this family of orbits.
To further ascertain the effect of this dependence of the frequency ratio range on the mass ratio, the energy
of each quasi-periodic orbit is plotted as a function of its frequency ratio in Figure 9. Analysis of this figure
suggests that higher order period-q orbits with a low frequency ratio are available at higher values of the
energy constant for a mass ratio of µ = 0.4 than at a mass ratio of µ = 0.3. However, this observation is
not applicable to larger frequency ratios. As an example, consider a mass ratio of µ = 0.4. At this value of
the mass ratio, a period-2 orbit is accessible at a energy constant, relative to that of L2 and L3, that is lower
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than at a mass ratio of µ = 0.3. In addition, the stable orbits in the exterior region do not seem to encompass
a significantly different region of the phase space over the specified range of mass ratios; this observation is
deduced from Figure 8. Similar analyses may also be accomplished in the MCR3BP for various values of
the three-body potential coefficient, k; a comparison of the results to the analysis performed in this section
aids in understanding any effects of the three-body interaction that may not be reproducible by changing the
natural parameters in the CR3BP, including the energy constant and the mass ratio.

Figure 8. Composite representation of the frequency ratios of retrograde periodic and
quasi-periodic orbits in the exterior region in the CR3BP for energy levels between
C(L1) and C(L3) at mass ratios equal to 0.2 (blue), 0.3 (black), and 0.4 (red).

Figure 9. Representation of the frequency ratios and energy levels of retrograde
periodic and quasi-periodic orbits in the exterior region in the CR3BP at mass ratios
equal to 0.2 (blue), 0.3 (black), and 0.4 (red).
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CHARACTERISTICS OF THE THREE-BODY INTERACTION

By combining techniques developed in dynamical systems theory and frequency analysis, a subset of
the underlying dynamical structures in the MCR3BP are examined over a range of values of the three-body
potential coefficient, limited to k = [−0.2, 0.8]. During the following analysis, the mass ratio in the MCR3BP
is held constant at µ = 0.3.

Equilibrium Points

The existence and location of the equilibrium points offer preliminary insight into the impact of a three-
body interaction, for various values of the coefficient k, on the dynamical environment in the MCR3BP.
Solving the equations of motion when the accelerations and velocities are set equal to zero, the equilibrium
points in the MCR3BP are located for various values of k.4 The five equilibrium points that exist in the
range k = [−0.2, 0.8] are plotted in Figure 10. In this figure, the green dots indicate the location of the
five equilibrium points in the CR3BP for a mass ratio µ = 0.3. The equilibrium points for positive values
of k in the specified interval appear as blue dots in the figure, while red dots locate the equilibrium points
corresponding to negative values of k. Since the MCR3BP is formulated to reduce to the CR3BP as the
coefficient k approaches zero, equilibrium points computed for increasing magnitudes of the three-body
potential coefficient exist farther from the equilibrium points in the CR3BP. As an example, the location of
L4 is labeled in Figure 10 for k = −0.2, 0.0, 0.8. Analysis of this figure reveals that, for increasingly positive
values of the three-body potential coefficient, the collinear equilibrium points are located farther from P2.
The location of L1 varies less for positive values of k than the locations of L2 and L3 since L1 exists between
the two primaries, where the inverse-square gravitational forces act in opposing directions. Furthermore,
in the MCR3BP, the triangular equilibrium points, L4 and L5, are no longer located at the vertices of an
equilateral triangle as in the CR3BP; instead, they exist farther from the primaries. For negative values of
k, the equilibrium points are all located closer to P2 than the equilibrium points in the CR3BP. In addition,
the locations of the triangular equilibrium points appear most sensitive to negative values of k, when the
three-body interaction opposes the gravitational forces.
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k = 0.8

k = 0.0
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Figure 10. Location of equilibrium points for values of the three-body potential coef-
ficient in the range k = [−0.2, 0.8].

Another effect of the three-body interaction emerges when the energy constant is evaluated at each equi-
librium point for various values of the constant, k, that scales the additional term. These energy constants,
C(Li), are plotted in Figure 11 and colored as indicated in the legend. Note that, due to symmetry, the value
of the energy constant at the triangular equilibrium points are equivalent. For increasingly positive values of k
within the specified range, the energy constant evaluated at each equilibrium point increases. For increasingly
negative values of k, however, the values of the energy constants C(Li) in the MCR3BP do not maintain an
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Figure 11. Energy constant evaluated at the equilibrium points for the range k = [−0.2, 0.8].

order, by magnitude, that is consistent with the order of the C(Li) values in the CR3BP. Physically, this
change in the order of the values of the energy constants C(Li) translates to the Li gateways opening in a
different order for a decreasing energy constant, or, equivalently, increasing energy. For example, consider
the MCR3BP when k = −0.1: comparison of the energy constant at the three collinear equilibrium points re-
veals that the L2 gateway will open at the lowest energy, or the highest value of the energy constant. Although
P3 can travel between the exterior and P2 regions, it cannot cross into the P1 region. Within the context of the
CR3BP, this scenario is not possible, indicating that a three-body interaction opposing the two inverse-square
gravitational forces can modify the regions that can be traversed along a single, natural trajectory.

Zero Velocity Curves

The regions of allowable motion in the MCR3BP, for various values of k, are straightforwardly visualized
using zero-velocity curves, commonly employed in analysis of the CR3BP.4 For a specified value of the three-
body coefficient, the shape and location of the ZVCs depend upon the energy constant; however, insight
into the possible motion in the planar MCR3BP is obtained by analyzing the ZVCs at the values of the
energy constant corresponding to the three collinear equilibrium points. The ZVCs at these three distinct
energy levels are plotted in Figure 12 for the following values of the three-body coefficient: (a) k = 0.0, (b)
k = −0.1, and (c) k = 0.4. To aid in visual clarity, the ZVCs at C(L1), C(L2), and C(L3) are colored blue,
red, and green, respectively. Additionally, the equilibrium points are represented as black diamonds and the
primaries are indicated by black filled circles.
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Figure 12. Zero velocity curves at the values of C(L1) (blue), C(L2) (red), and C(L3)
(green) corresponding to the three collinear equilibrium points for (a) k = 0, (b)
k = −0.1, and (c) k = 0.4 in the MCR3BP.
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The ZVCs plotted for k = −0.1 reveal that for an energy constant equal to C(L1), P3 can travel through
the L2 and L3 gateways, allowing motion between the vicinity of a primary and the exterior region. However,
a natural trajectory cannot move directly between P1 and P2 without traversing the exterior region; such a
dynamical constraint is not known to exist in the planar CR3BP at any value of the mass ratio. This shape
for the ZVC boundaries corresponds to C(L1) possessing a lower value than the energy constants C(L2)
and C(L3). For the ZVCs plotted at these two larger values of the energy constant, the forbidden regions
encompass less of the exterior region than the ZVCs at a comparable energy level in the CR3BP.

For a positive three-body potential coefficient, k = 0.4, the ZVCs loosely resemble those in the CR3BP,
with some small differences. One example is that the ZVCs at C(L1), evaluated in the MCR3BP, extend
farther into the interior and exterior regions. However, decreasing the energy constant reveals that more of
the interior region is accessible to P3 at higher energies. Consequently, at an energy constant equal to C(L2),
the increased size of the L1 gateway results in a larger range of trajectories passing between the vicinities of
both primaries than in the CR3BP. This increase in the size of the L1 gateway may impact the properties and
the types of periodic solutions that are available within the interior region in the MCR3BP.

Periodic and Quasi-Periodic Structures in the Exterior Region

The previous composite frequency representations are employed to compare periodic and quasi-periodic
orbits in the MCR3BP, with the mass ratio fixed at µ = 0.3. Given that a three-body interaction may be
attractive or repulsive, the MCR3BP is analyzed for selected positive and negative values of the three-body
potential coefficient. In particular, this investigation focuses on three properties of the dynamical character-
istics that are observed in the exterior region: the form of stable structures, the energy levels at which these
structures are available, and their extent within the phase space.

For positive three-body potential coefficients below a critical value, period-q orbits that are present in the
CR3BP also exist in the MCR3BP. In Figure 13, the frequency ratios corresponding to orbits within the
central stable island are plotted for various energy levels in the range C = [C(L3), C(L1)] in the CR3BP
(blue) and in the MCR3BP for k = 0.1 (green). Analyzing this figure, the frequency ratios of the orbits that
exist when k = 0.1 encompass a larger range of integer ratios than in the CR3BP for a mass ratio µ = 0.3.
Thus, periodic orbits existing within this specific range of energy constants in the CR3BP are also present
over a comparable range of energy levels in the MCR3BP for k = 0.1. This effect is similar to increasing
the mass ratio, but cannot be reproduced using a reasonable value for µ. The low-order period-q orbits in the
MCR3BP, over the range of positive coefficients examined in this investigation, appear qualitatively similar
to the CR3BP when represented in the frequency domain. Since they appear consistent between the MCR3BP
for k = 0.1 and the CR3BP, the frequency analysis process reveals a similar configuration for the stable and
unstable orbits within the visible period-q island chains. The phase space representations of stable, low-order
period-q orbits do not exhibit any structural differences between the CR3BP and the MCR3BP, for positive
values of the three-body coefficient.

For attractive three-body interactions in the MCR3BP, period-q islands appear to exist at lower energy
constants than in the CR3BP and extend farther into the phase space. This information is extracted by
considering the energy levels and the locations of a selected set of period-q orbits with frequency ratios 1/q,
as plotted in Figure 14 which includes k = 0.1 (green) and k = 0 (blue). Analysis of this figure reveals that,
incorporating an attractive three-body interaction, each of the selected, stable period-q structures is accessible
over a smaller range of energy values that are lower in magnitude relative to the difference C(L2)− C(L3).
Additionally, the bounds on the quasi-periodic motion about resonant orbits, appear to exist farther from the
corresponding period-q orbit. These observations are not consistent with the previous analysis, suggesting
that this change in the stable motion is not reproducible by changing the mass ratio in the CR3BP.

Beyond a critical positive value of the three-body potential coefficient, period-multiplying bifurcations in-
fluence the underlying periodic orbits in the MCR3BP and, therefore, the surrounding quasi-periodic motion.
In Figure 14, the level sets corresponding to selected period-q orbits for k = 0.6 represent quasi-periodic
orbits that exhibit behavior that is not consistent with the CR3BP. Consider, for example, the leftmost island
surrounding a stable period-4 orbit in Figure 14. The location of the outermost quasi-periodic orbit in the
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Figure 13. Composite frequency representation of retrograde orbits over various
energy levels in the range C = [C(L3, C(L1)], for k = 0.0 (blue) and k = 0.1 (green).
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Figure 14. Composite representation of the energy levels of selected retrograde
period-q orbits (with frequency ratio 1/q) and their surrounding quasi-periodic or-
bits, for k = 0.0 (blue), k = 0.1 (green) and k = 0.6 (magenta).

stable island clearly fluctuates over the range of energy levels where a stable period-4 orbit exists. An ex-
planation for this behavior emerges from a stability analysis of the underlying family of periodic orbits. The
stability index, s, for this family of planar orbits is plotted in Figure 15 as a function of the energy value.
Overlaid on the stability index curve are two red lines located at the critical stability indices s = −2 and
s = +2, the former corresponding to a period-doubling bifurcation. Additionally, the black lines represent
selected, labeled period-multiplying bifurcations. Analyzing this figure, the family of period-4 orbits under-
goes successive period-multiplying bifurcations for multiplicative factors greater than 2. Since the stability
index does not graze or pass through the value s = −2, a period-doubling bifurcation does not occur along
this family. The top and bottom insets of Figure 15 depict Poincaré maps constructed at energy levels below
those corresponding to period-multiplying bifurcations for the multiplicative factors 5 and 3, respectively.
Each map is ”zoomed-in” to the vicinity of one of the period-4 stable islands. Considering the top inset, a
period-4 orbit family has created a family of period-20 orbits at a nearby energy level. Given that this new
family of orbits also has a frequency ratio equal to 1/4, the period-multiplying bifurcation is not detectable
on the frequency representations. Instead, the presence of these bifurcations is reflected in the shape of the
level sets in Figure 14. Since this dynamical behavior is not observed in this region in the CR3BP for a mass
ratio in the range µ = [0.2, 0.4], significantly large positive values of the three-body potential coefficient
apparently induce period-multiplying bifurcations along families of period-q orbits.
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Figure 15. Stability index for selected stable period-4 orbits in the MCR3BP for
a three-body potential coefficient k = 0.6, with dotted lines at the stability indices
corresponding to selected bifurcations. In the insets, zoomed-in views of the Poincaré
map near highlighted period-multiplying bifurcations.

The critical positive value of k at which certain period-multiplying bifurcations occur depends upon the
family of period-q orbits. This observation is straightforwardly supported by an analysis of the stability index
of various orbit families at a single value of the three-body coefficient. As an example, consider the stability
index over some interval of the period-2 to period-5 orbit families plotted in Figure 16 for k = 0.6. The
frequency ratio along these families is equal to ω2/ω1 = 1/q. In comparison to the CR3BP for mass ratios
in the range µ = [0.2, 0.4], the stability indices of the plotted intervals of the period-q families pass through
a wider range of values of s, with the minimum values along these curves varying between each family.
The period-5 family passes through s = −2, undergoing a period-doubling bifurcation at two values of the
energy constant. Between these bifurcations, the members of the family are unstable. This bifurcation does
not occur along this period-5 orbit family in the CR3BP for a large mass ratio within the range of mass ratios
that has been examined. Since the minimum along the curve reflecting the stability index for part of the
period-3 family does not pass through s = −2 or s = −1 for a three-body potential coefficient of k = 0.6,
the period-3 family does not undergo period-tripling or period-doubling bifurcations. Extending this analysis
to periodic orbits in the MCR3BP for different values of k reveals that these bifurcations do occur in the
period-3 family for larger values of the three-body coefficient. Thus, the value of the positive coefficient k
for which period-multiplying bifurcations are present along families of period-q orbits, where q > 1, depends
upon the family.

Negative three-body potential coefficients, smaller in magnitude than a critical value, influence the dynam-
ics in the MCR3BP by reducing the size of the regions of stable motion and the energy levels at which they
exist. The composite frequency representation in Figure 17 depicts the level sets of selected period-q orbits
and their associated quasi-periodic motion for k = 0.0 (blue), k = −0.01 (black) and k = −0.1 (grey). The
stable period-q orbits, for negative values of k, are available at higher energy constants, and over a smaller
range. In addition, the regions of stable motion surrounding the selected families of periodic orbits contract
in the x-direction for k = −0.01. This observation is clear from the level sets in Figure 17, which do not
deviate as far from the period-q orbits as those in the CR3BP for a mass ratio of µ = 0.3.

For a larger negative value of the three-body potential coefficient, the dynamical structures in the exterior
region do not resemble those in the CR3BP over the range of mass ratios that has been examined. In fact,
the frequency analysis process employed in this investigation only captures stable islands for period-q island
chains with an odd value of q. In contrast to the CR3BP, each of these families exhibits a change in the
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Figure 16. Stability index curves for period-2 to period-5 orbits in the MCR3BP for k = 0.1.

Figure 17. Composite representation of the energy levels of selected retrograde
period-q orbits (with frequency ratio 1/q) and their surrounding quasi-periodic or-
bits, for k = 0.0 (blue), k = −0.01 (black) and k = −0.1 (grey).

location of the stable and unstable period-q orbits within the corresponding island chain. This observation
is illustrated by the period-5 island chains in the Poincaré maps plotted in Figure 18 for (a) the CR3BP with
µ = 0.3 and (b) the MCR3BP with k = −0.1. For even values of q, however, the change in the stability of
the orbits in a period-q island chain results in the frequency analysis process detecting only unstable orbits.
To analyze the stable orbits within the island chain, an alternative approach for representing the frequency
decomposition of orbits within an island is appropriate for further investigation of the influence of a three-
body potential term.

CONCLUSION

Augmenting the pairwise gravitational potential in the CR3BP with a three-body interaction, scaled by the
coefficient k, impacts the stable solutions available to a particle orbiting in the exterior region. The influence
of this additional term on the dynamical structures in the MCR3BP, for a mass ratio of µ = 0.3, is explored
using both dynamical systems theory and frequency analysis. Investigation of particular solutions in the form
of equilibrium points and zero velocity curves reveals a change in the bounds on the motion of P3. Modeling
the MCR3BP with a positive three-body coefficient, k, the size of the regions of allowable motion differs
from the bounded regions in the CR3BP. For a large negative coefficient, however, the zero velocity curves
can exhibit significantly different features since the Li gateways open in a different order for i = 1, 2, 3. This
change in the shape of the zero velocity curves may impact the orbits available in the MCR3BP.

Frequency decomposition is employed to locate and represent the periodic and quasi-periodic orbits that
form the underlying structure of the dynamical environment in the augmented model. Within the range of
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Figure 18. Poincaré maps depicting period-5 island chains in the MCR3BP for (a)
k = 0.0 and (b) k = −0.1.

three-body coefficients considered in this investigation, the period-q orbits present in the CR3BP are also
available in the MCR3BP. The value of the three-body coefficient affects the energy levels at which these
orbit families are accessible. In addition, the three-body interaction affects the size of the stable regions within
the phase space. For sufficiently large values of k, period-multiplying bifurcations occur along families of
period-q orbits, as apparent in the frequency representations and confirmed using Poincaré maps. Selecting
a large negative value of k, however, impacts the location of stable and unstable orbits within a period-q
island chain, suggesting a change in the formation of the two period-q orbit families. These changes in
the dynamical environment suggest that the three-body interaction influences the underlying structure of the
MCR3BP with an effect that may not be reproducible by modifying the energy constant or the large mass
ratio in the CR3BP.
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