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REPRESENTATIONS OF INVARIANT MANIFOLDS FOR 

APPLICATIONS IN THREE-BODY SYSTEMS 
 

K. Howell,* M. Beckman,† C. Patterson,** and D. Folta§

 
The Lunar L1 and L2 libration points have been proposed as gateways granting inexpensive 
access to interplanetary space. To date, only individual solutions to the transfer between three-
body systems have been found. The methodology to solve the problem for arbitrary three-body 
systems and entire families of orbits is currently being studied. This paper presents an initial 
approach to solve the general problem for single and multiple impulse transfers. Two different 
methods of representing and storing the invariant manifold data are presented. Some particular 
solutions are presented for two types of transfer problems, though the emphasis is on 
developing the methodology for solving the general problem. 

 
INTRODUCTION 
 

With the increasing interest in missions involving Sun-Earth and Earth-Moon libration points, 
it is necessary to further develop numerical, and possibly semi-analytical, tools to assist in trajectory 
design in multi-body regimes.  Halo orbits are well-known examples of periodic orbits in such regions 
of space. Thus far, Earth-to-halo transfers, as well as halo-to-Earth arcs, have been computed using a 
number of different numerical procedures including exploitation of the invariant manifolds associated 
with a particular periodic halo orbit (or quasi-periodic Lissajous trajectory). More recently, transfers 
between different three-body systems are a new focus for potential mission scenarios. Developing 
transfers between Earth and a halo orbit or between different three-body systems involves the 
numerical integration of different sets of initial conditions near a desired halo orbit manifold until a 
trajectory is identified that is most suitable for the application of interest.  Of course, the 
stable/unstable invariant manifolds that correspond to a single periodic halo orbit are infinite in 
number, but reside on the surface of a tube. Nevertheless, continuous computation of individual 
manifolds using numerical integration is not efficient or even practical for some applications. In the 
analysis of trajectories to/from a halo orbit, for example, the size of the most useful periodic orbit may 
be unknown and its amplitude may serve as a design parameter. The design space then includes not 
just a tube corresponding to the invariant manifolds of one halo orbit; rather, it becomes a volume 
consisting of many tubes. For the related problem of system-to-system transfers, the goal is the 
intersection of two manifold tubes – one from each system. A maneuver at an intersection point will 
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shift the vehicle from one tube to the other. In the Circular Restricted Three-Body Problem (CR3BP), 
the flow in this region of space can also be visualized by noting that the tube is a separatrix, i.e., it 
bounds different regions of the flow.1 Thus, transit trajectories might be sought that pass inside the 
tubes and shift from one tube to the next. In this case, the spatial intersection of the tubes is still the key 
information to complete the computations. Computing these intersections is facilitated by efficient but 
accurate approximations of the tubes. So, the objective of this work is twofold: (i) 
representations/approximations of the invariant manifolds associated with periodic libration point 
orbits that are efficient and accurate in an automated process; (ii) demonstration that the approximation 
can be used to generate solutions to representative problems. 

 
It is generally impossible to determine an analytical expression for stable and unstable 

manifolds, so accurate numerical computations are required. This method usually proceeds by using 
one set of initial conditions and numerically integrating a single trajectory. Increasingly, the required 
trajectory length is long and accuracy suffers if the step size is small enough to accommodate 
potentially sharp changes along the path. Hobson offers some consideration of this issue and a method 
for approximating the manifold that includes an estimate of the errors.2 Hobson’s method is an 
improved approach to globalize the manifold in terms of step size, and it still employs the standard first 
order approximation to initiate the process. A single trajectory may not, however, reflect the actual 
complex dynamical behavior of the system. In fact, the problems of interest here include a complete set 
of manifolds associated with a periodic orbit as part of the potential solution space. This set is 
comprised of the stable or unstable manifolds that are located along the surface of a tube corresponding 
to the periodic halo orbits in the CR3BP. Either the numerical computation of some minimum number 
of orbits is required to represent the tubes or individual trajectories must be computed or recomputed 
as needed. If such data must be available for analysis, it may require a large amount of storage and 
retrieval capability. The specific requirements depend upon the application, of course. Relatively 
recently, a number of mathematicians have investigated approximation techniques. Guder et al.3 
introduce cell mapping for the prediction of long term behavior and global analysis of nonlinear 
dynamical systems. Dellnitz and Hohmann4 use these cell mapping techniques combined with a 
subdivision procedure to approximate unstable manifolds and global attractors. However, they are not 
interested in determining the full global behavior; rather, a numerical method that allows the 
approximation of the global attractor up to a specified accuracy is detailed. A box in IRn is specified in 
which the dynamical behavior is to be analyzed. The box is subdivided and boxes discarded that do not 
contain part of the relative global behavior. A continuation method is further developed by Dellnitz and 
Hohmann to approximate the types of invariant manifolds that are of interest here. This method is also 
called an “outer approximation” of the unstable manifold. It is very useful to obtain a global view, 
however, it does not offer a parameterization of the manifold via arc length and small details along the 
path may cause difficulty. Another technique by Krauskopf and Osinga5,6 is designed to specifically 
produce a list of points on the manifold by adding new points at prescribed distances from the last 
point and essentially “growing” the manifold. It is difficult to search this type of solution space, 
however, for the state information that is desired for the applications presented in this paper. 

 
Approximating the manifold tubes for application to mission design is the first step in this 

current investigation. The process must be straightforward and offer accurate representations of the 
position and velocity states. It might also be used to represent the volume that includes multiple 
manifold surfaces to aid in determining a specific halo orbit for a given scenario. This process is 
applicable to error analysis, recovery, and design for contingencies. Recent studies suggest that these 
types of analyses would greatly benefit from another parameter such as halo orbit size; if the manifold 
is represented in an easily accessible form, it can be accomplished in a automated manner.7,8  
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Application of these approximations to the system-to-system problem of recent interest is also 

used to demonstrate the approach. As noted by Farquhar et al.,9 the libration points may become a 
primary hub for future human activities in the Earth’s neighborhood. The Sun-Earth L2 point is 
expected to become the location of a number of large astronomical observatories. These L2 telescopes 
may require human servicing and repair as the missions become more ambitious and, thus, more 
complex. Closer to Earth, the Earth-Moon L1 libration point is suggested as the staging node for the 
missions to the Sun-Earth L2 point as well as the Moon, Mars, and the rest of the solar system. Folta et 
al.10 produce various trajectories to support the human servicing role and offer other examples as well. 
But, improved and automated schemes for computation of such designs will be necessary for efficiency 
and larger studies. Lo and Ross11 also support the Earth-Moon L1 point as a “portal” to move beyond 
the Earth’s neighborhood. The manifold tubes are introduced by Lo and Ross as the basis for the 
design strategy to produce the trajectories to move between these systems. Koon et al.12 describe the 
concept in more detail for the Earth-Moon to Sun-Earth problem. It has also been examined in the 
Jovian system.13 In any case, intersections may ultimately be sought between many tubes from many 
different halo orbits in each system; the complexity forces a new look at the computations. Of course, 
this problem creates a very complicated solution space and some representation of this set of solutions 
is sought to facilitate an automated design procedure. This study examines both splines and a cell 
structure to represent the manifolds. 
 
MANIFOLD APPROXIMATIONS: SPLINES 
 

In order to consider the intersection of a single trajectory (or a group of trajectories) with a 
surface that defines an invariant manifold corresponding to some halo orbit, the manifold must be 
generated and stored in an accessible format. One method investigated is the use of splines. The 
existing algorithms within the MATLAB™ Spline Toolbox™ are incorporated. 
 

The data set that corresponds to a manifold associated with one periodic halo orbit in some 
arbitrary system is first generated numerically using a variable step propagator and the differential 
equations that model the CR3BP. Multiple individual trajectories along one tube are generated to 
produce a good approximation to the entire manifold surface. For this analysis, N points along the halo 
orbit are identified and then globalized to generate N manifolds identified with one tubular surface 
corresponding to a specified periodic halo orbit. The initial state vectors are propagated and then the 
states are identified further along each trajectory, each at the same time, resulting in Nx6 vector 
elements that together represent a manifold surface. This data set is placed in a grid for later 
computations. The grid is comprised of N columns and M rows (M number of integration points, each 
at the same time). Spline knots are placed along each trajectory at the location of each isolated state 
vector, measured in time from the initial state at the halo orbit. The spline function is generated from 
the knot sequence, jξ , and the polynomial coefficients, , jic
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A bivariate manifold spline is then generated for a manifold surface corresponding to a single halo 
orbit. The bivariate spline function yields manifold position data for a given trajectory, η , or 
equivalently the phase angle or time of the originating halo orbit (a total of N trajectories), and the time 
from the start of the manifold, τ  (a total of M points), 
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This process enables calculation of position components given two parameters: number of the 
trajectory (or trajectory tag number) and time from the periodic orbit. The result appears in Figure 1. 
 
 

 
       
Sun-Earth L1 (SEL1) Manifold 
  

 
 

Earth-Moon L2 (EML2) Manifold 
 

Figure 1  Position Splines 
 

 The spline function can be expanded to include a third variable – the size of the 
originating halo orbit, ξ . The resulting trivariate spline now represents a volume in configuration 
space and may be used to search for solutions where the size of the halo orbit is not fixed. For 
position, 
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The velocity data can then be stored in a separate spline function, 
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State information can be now obtained from the spline approximations. 
 

 
MANIFOLDS APPROXIMATIONS: CELLS 
 

Also investigated is a representation of the manifolds in terms of a relatively 
straightforward cell structure such that each cell includes a polynomial model of one or more 
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manifolds. Thus, the potential set of solutions may incorporate manifolds from various halo 
orbits. The cell structure then includes volume elements that can be searched for intersections 
with other single trajectories or intersections with other cells. 
 

In the Sun-Earth system, consider a stable manifold tube that is computed numerically. 
With this initial surface, the manifold tubes that correspond to several additional, nearby halo 
orbits fill a volume in space as the individual manifold surfaces wrap around each other.  To 
model any particular tube, exploit the fact that over small regions the stable manifold of a halo 
orbit in the circular restricted three-body problem is nearly flat and can be represented in position 
and velocity by low order functions. A volume of space through which several manifold surfaces 
pass and that is sufficiently small to be approximated in this manner is denoted here as a cell. 
(See Figure 2.) 

   

             
 

 
 
 
 

Figure 2  Cells are Volumes in Space Defined to Contain  
  Small Regions of Manifold Trajectories 

Within a cell, position data obtained from a single stable manifold tube are approximated using 
the fit function from Mathematica© to produce an analytical function of a surface.  This process is 
repeated with other nearby manifolds until surface approximation functions for several manifolds 
passing through the cell are available.  With this same position data, velocity data are also used to 
generate a single fit of each velocity component within the cell as a function of position.  Thus, if 
N stable halo manifolds pass through a single cell, N fits to approximate the manifold surfaces are 
produced as well as 3 fits to approximate velocity components as a function of position. 
 
Fitting and Cell Shapes 
 
 The velocity components are fit as third order polynomial functions of position in the 
standard rotating coordinate frame associated with the circular restricted three-body problem 
(CR3BP), that is, 

  (3) 
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For the surface (position) fits, which often globally exhibit significant curvature, the position data 
are transformed to a spherical coordinate set and the surface is defined by a fit of radial data as a 
function of angular coordinates as follows, 

2
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2
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2
9 10 11 12

2
13 14
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+

θ

+

+
             (4)   

 
where θ  and φ  are angles that orient the radial direction in 3D. The origin for the spherical set of 
coordinates is selected as the average center of curvature computed from every data point within 
the cell. This transformation is accomplished by defining unit vectors in the average tangential, 
normal, and binormal directions from the mean center of the data and placing the cell origin along 
the normal direction at a distance equal to the average radius of curvature.  With a small data set, 
this choice encourages a cell shape that is indicative of the local shape of the manifold itself and a 
smooth surface fit with little variation in r. In some areas of the tube, however, manifold 
trajectories tend to lie in the same plane as the path representing the centers of curvature for the 
data; for a cell to contain several such trajectories, this choice will result in a large variation in r.  
In this case, the origin is shifted to a location along the binormal direction.  With the data points 
transformed to this frame, the cell boundaries are defined as the minimum and maximum values 
of r, θ , and φ . The fits are reasonably accurate everywhere except very near the Earth where the 
curvature of the actual manifold is high. Along the manifolds, a high curvature region requires the 
use of smaller cells within which the manifolds can be approximated as nearly flat.  Also, the 
volume of space contained in a cell should not extend too far beyond the volume defined by the 
manifold. Consequently, cell sizes and shapes are tailored to the local shape of the manifold 
volume.  Then, position and velocity functions for the manifold data within the cells can be 
determined with standard fitting algorithms. This process has been automated for examples of the 
type examined here. Consider a halo orbit with out-of-plane amplitude Az as it appears in Figure 
3. In Figure 3(a), the maximum and median position errors along the surfaces are compared with 
actual manifold tube data within the cells.  Median errors are typically less than 500 km, and 
maximum errors typically less than 5000 km; the most notable exceptions are locations very near 
the Earth where the error actually extends beyond the range of the display.  In Figure 3(b), the 
median and maximum percentage errors in the velocity functions are compared to actual velocity 
data. Note that the velocity errors are typically very small. 
 
Cell Creation 
 

Approximation of an entire volume of manifolds involves slicing that volume into many 
such cells.  The creation of the cells begins with a single tube of trajectories, each propagated 
backwards to its first periapsis point.  The cells cover the entire area of the tube and are kept 
relatively small so that the analytical approximations remain accurate.  Also, they are designed to 
overlap at their edges so that the fits within one cell mesh smoothly with the fits of a neighboring 
cell. Consequently, the fits within the cells collectively represent a more continuous 
approximation of the manifold. 
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Figure 3  SEL1 Manifold Position and Velocity Fits :Halos Range in Size from 

Az  800,000 km to Az ≈ ≈  880,000 km 
 
 

To create the cells, a manifold tube is sliced into two types of sections.  The first section 
is formed by truncating the tube close to the periodic orbit. That is, the manifold is computed for 
a specified length of time from the initial point near the halo orbit. In the first step, this time 
corresponds to a distance close to one revolution about Li. This length of the manifold is denoted 
as a “band.” Using the libration point as an origin or a point further along the stable manifold 
associated with the libration point itself, the orbit is geometrically sliced into 64 sectors 
(typically) and the data within each sector are used to define a new cell and frame.  This process 
is then repeated a predetermined number of times to create two or three additional bands. The 
second section is comprised of the rest of the tube. The method of cell creation is then modified 
in this second type of section to more closely follow the evolution of the manifold trajectories. A 
limited number of neighboring trajectories on the manifold are collected and denoted here as a 
“ribbon.” It is then propagated backward from the last section to periapsis and sliced evenly in 
distance along its length.   Each slice of data taken from the ribbon is used to define a new cell.  
The process is repeated using the last trajectory of the previous ribbon as the first trajectory of a 
new ribbon until the entire the tube is represented. Note that before this step is complete, some 
cells may require resizing to maintain accuracy. A maximum volume is selected and any cell 
larger than the maximum is sliced in half along its largest side. When placing data in cells it is 
also important that a minimum amount of data from a minimum number of trajectories always be 
present so that surface fits can be accurate.  To accomplish this, manifold tubes have actually 
been propagated twice, the second time containing three times the number of trajectories than the 
first, and with many more points.  The manifolds with the sparse data are used to create most of 
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the cells, but when the minimum point and trajectory requirements are not met within a cell, the 
more densely populated arc is incorporated.   
 
Adding Manifold Data 
 

After initial cell creation, the cells contain the data corresponding to merely one manifold 
tube.  Data from additional manifold tubes can be added with certain caveats.  The cell shapes at 
this point are tailored to the original tube shape and size, so the trajectories of any other manifold 
tube will not be fully contained within their volumes. Therefore, to contain as much data as 
possible from a nearby tube, the cells may be required to increase in size. However, the fitting 
process is premised on the idea that manifold data can be approximated only over small regions, 
so cell growth is limited to encompass only the new tube data. A single cell originally contains all 
manifold data from one tube within a bounded volume.  The data of a second tube is transformed 
to the original cell’s spherical coordinate frame, and the angular bounds of the cell are increased a 
small amount. Any part of the new tube’s data that fits within the new angular bounds of the cell 
is considered as data for a second surface within the cell.  The bounds of the cell are then reset to 
reflect the increase in the volume of the stored data. In Figure 4 is an example of multiple SEL1 
manifold tubes that have been placed in the same set of cells. They range in size from 
Az=~800,000 km to Az =~976,000 km.  Originally, only three tubes are placed in the cells in 
Figure 4, however, vacant areas appear. In these areas, the velocity fits will be less accurate.  
This problem can be solved by adding more 
manifold tubes without allowing cell growth, but 
maintaining the minimum number of points and 
trajectories.  (Figure 4 includes five manifolds 
through the cells.) If, in a single cell, the minima 
are not met then the data for that surface does 
not get added to the cell.  So some cells may 
contain more manifold tubes from a wider range 
of halos than other cells.  It is also possible to 
approximate the wider range of halos by 
stacking cells, essentially implementing the cell 
creating process for the manifolds of one set of 
halo orbits, then creating entirely new cells for a 
larger or smaller set and repeating. 

 
 

Figure 4  Five Tubes through 
 a Set of Cells 

Example: Using Cells to Find Halo Transfers in the CR3BP 
 

With approximations defined for Sun/Earth L1 (SEL1) stable manifolds within the cells, 
the process of computing transfers to halo orbits is simplified.  For any spacecraft trajectory that 
intersects a cell at a point rint with a velocity vint, an initial guess for a ∆V that might be necessary 
to complete a transfer is simply  whereintint )(~ vrVV −=∆ )(~

intrV  is the approximation for a 
manifold velocity at the intersection point. It is assumed that the continuous distribution of 
periodic orbits in a family possesses manifolds that exist on a continuum of surfaces passing 
through the cells, and that velocity on those surfaces varies continuously throughout the volume.  
Analytical approximations for only a few of the surfaces of position are planned to be available, 
but a single velocity approximation is continuous over the entire cell volume.  So, even if rint lies 
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between or outside the known manifold surfaces within the cells, it is still identified with some 
member of the manifold continuum, thus, the velocity fit can be applied and used as an initial 
guess for the velocity of a manifold trajectory passing through that point. Moreover, it is not 
necessary that a particular halo orbit be specified in advance.  Indeed, if the best intersection point 
within the cell is to be selected from among all possible points in the volume, and that best point 
is not known a priori, then any halo orbit in or near the range of those used to initially generate 
the manifolds and create the cells may serve as the ideal target halo for the transfer.  So rather 
than selecting a halo and attempting to locate intersections with its stable manifold, an easier 
approach may be the determination of the intersections with a volume of stable manifolds that are 
associated with a set of periodic orbits and use the lowest-cost intersection point to define the 
target orbit. 
 
The Use of Surface Fits in Determining a Destination Halo Orbits 
 

An intersection point rint inside a cell has spherical coordinates (r, ,θ φ ).  This point may 
be inside, outside, or somewhere between the surfaces defined within the cell that correspond to 
known manifold tubes as is apparent in Figure 5.  To discover its location relative to the existing 

surface fits, calculate ),(~ φθir  where i 
ranges from 1 to n, the number of surfaces 
within the cell. Each surface, and thus 
each value of ),(~ φθir ,  is associated with 
a specific halo.  These halo orbits can be 
characterized by the initial conditions used 
to propagate them numerically in the 3-
body problem. For example, 

 are the states at the 
point of the maximum z amplitude and are 
used to parameterize a single halo orbit. 
Each initial condition is fit as a quadratic 
function of 

)0,,0,,0,( 000
iii yzx

),(~ φθir , directly associating 
the halo orbits  to the sizes of the manifold 
tubes at ( ,θ φ ) within the cell.  This 
procedure yields functions that can be 
solved for a set of initial conditions (and 
thus the size) of a destination halo orbit as 
a function of the location r within the cell, 
that is, 

 
 

2
0 0 1 2x x xx a a r a r= + +        (5a) 

Figure 5  Locating the Intersection Point within a Cell                   (5b) 2
0 0 1 2z z zz a a r a r= + +

         (5c) 2
0 0 1 2y y yy a a r a r= + +
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The coefficients can be determined by solving the following three matrix equations, 
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If the number of surfaces n > 3, this is accomplished with a least squares fit.  If n < 3, then a less 
accurate linear fit must suffice.  However, an effort has been made to always include at least three 
manifold surfaces in every cell.   
 
Approaching the Destination Halo Orbit 
 
 Approximations from fit functions are generally most successful when applied near or 
within the bounds of the region where the data are available.  This region is defined by the 
surfaces within the cell.  Thus, the surfaces nearest and furthest from the cell origin define the 
region.  The distance between these two surfaces at any point ( ,θ φ ) in the cell defines a width, 
w( ,θ φ ), and any trajectory intersection point that is more than a distance w from the surfaces is 
ignored as a potential transfer point for the given cell (but, it would re-emerge in another cell). 
These low order velocity fits within the cells are generally sufficient to produce a trajectory arc 
from a point within the cell to the vicinity of the libration point orbit, but it is likely that it will not 
directly insert into a periodic orbit.  The sensitivity of the problem demands that some amount of 
targeting is used to complete the transfer. However, with the approximation, it is an additional 
automated step that results in successful transfers to halo orbits in the circular restricted problem. 
 
 Assume that an initial trajectory originates from somewhere in or beyond the current 
system. There is no restriction on the source of the incoming leg. Assuming that this path will 
intersect one or more cells, they are identified and all intersecting points rint within the cell are 
tagged. For each intersection point, the velocity discontinuity is calculated, that is,  

seeking the location rint int( )∆ = −cellV V r v int that minimizes ∆Vcell.  The calculated ∆Vcell is then 
applied.  The point of closest approach to the halo is determined. Since ∆Vcell is an 
approximation, the transfer arc will not approach the periodic orbit asymptotically. A halo orbit 
insertion (HOI) point is selected and targeted from rint and a HOI ∆V is included at the HOI point.  
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This completes the transfer with a total cost C = ∆ + ∆ + ∆cell targeter HOIV V V . This cost is a 

function of the HOI location.  For convenience, the MATLAB™ Optimization Toolbox™ 
function fminbnd is utilized to find a minimum of this cost as a function of the HOI location. 
 
 Numerical values for a test case appear in Table 1 and Figure 6. Three halos at Az = 
~800,000 km, Az = ~840,000 km and Az = ~880,000 km are used to generate manifold cell 
volumes, and a fourth stable manifold to a halo orbit of amplitude Az = ~945,000 km, one that is 
not incorporated in any of the fitting, is used to test the transfer procedure.  A point along this 
actual stable manifold is perturbed with a value equal to 20 m/s at a point within a cell.  At 
 

∆V

Table 1 
Targeting a Halo Orbit 

 
Step in Process Destination 

Halo Orbit
Total ∆V at 
intersection

∆VHOI

Exact Manifold 
Intersection 

Az = 945,481 km 
 

20 m/s -- 

Approximation Result 
at Same Intersection Point 

Az = 945,176 km 
 

19.69 m/s 1.43 m/s 

 
this precise intersection point, the approximations within the cells are employed to estimate the 
velocity at this point, approximate the appropriate  and determine the specific halo that 
would minimize the cost. The actual manifold should be the best solution and the results of the 
approximations appear in the table. A good estimate of the destination halo is achieved and the 
transfer is accomplished with a cost very similar to the 20 m/s perturbation. 

∆V

 

 
 

Figure 6  Transfer Determined Using Cells 
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SYSTEM-TO-SYSTEM TRANSFERS 
 
 A more challenging problem is the system-to-system transfer. In particular, for 
demonstration here, the transfer from an L1 or L2 libration point orbit in the Earth-Moon system 
to an L1 or L2 halo orbit in the Sun-Earth system is considered. As noted previously, similar types 
of transfers are the focus of a number of researchers.9-12,14 In this work, an efficient method of 
computation is sought using approximations to the manifolds. The ultimate objective is to use the 
approximation to produce the transfers in full, 3-D ephemeris models that may include other 
perturbations as well. This problem is approached using both splines and cell structures. 
Ultimately both may be useful in designing these types of trajectories. 
 
Using Splines to Determine the Intersections of Earth-Moon and Sun-Earth Tubes 
 
 Using the manifold position spline functions, intersections can be computed between 
invariant manifolds of different three-body systems. Assuming that the goal is to shift directly 
from the surface of one manifold to the other, these intersections result in one-impulse transfers 
between the three-body systems. Such could be the case if it was desired to depart an Earth-Moon 
L2 orbit and reach a Sun-Earth L1 halo orbit, for example. Figure 7 includes an example of a large 
Sun-Earth L1 stable manifold and various Earth-Moon L2 unstable manifolds at different phases 
of the Moon. From this figure, it is apparent that the tubes intersect. Using a  
 
  

 
 

Figure 7  Intersections Between Tubes  
 
 
Moon phase of 210 deg, an intersection between the manifolds is assured at greater than one 
point. The MATLABTM Optimization ToolboxTM is employed to determine the intersections. The 
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MATLABTM function fmincon produces a minimum of a constrained nonlinear multivariate 
function. The solution yields a position on each manifold, the two of which differ by only 43 km 
for this example. Repeated uses of fmincon for numerous values of η  for one manifold results in 
the entire intersection ring. The ring is successfully computed and appears in Figure 8. Once the 
intersection is determined in configuration space, the velocity differences are also available, and 
the cost can be computed. 
 

  
 

Figure 8 Ring of Intersection 
 
 

Using Cells to Approximate a Transfer and Shift into the Ephemeris Model 
 
 The same Earth-Moon system to Sun-Earth system transfer is also attempted using the 
cell structure. In this case, the problem is solved in two steps. First, an approximate solution is 
obtained in the circular restricted problem using the cells. Then, the solution is transferred to a 
more complete model. Using the software package Generator, developed at Purdue University, 
this approximation is used to produce an end-to-end trajectory from an Earth-Moon libration 
point orbit to a Sun-Earth libration point orbit. It is noted that other researchers are also seeking 
transfers of this type in the full ephemeris model.10-12   
 

In the circular restricted Earth-Moon system, unstable manifolds for an L1 halo of  
amplitude Az = ~39,000 km are propagated.  These manifolds form a tube, of course. Any of the 
trajectories can be transformed to Sun-Earth coordinates and intersections are determined with 
cells that correspond to the SEL2 stable manifold. A set of cells is generated for SEL2 stable 
manifolds to halos ranging from Az = ~170,000 km to Az = ~220,000 km as seen in Figure 9. 
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These cells contain position and velocity fits 
for the data of only three tubes. Initially, the 
Moon is  out-of-phase with the Sun-Earth 
system.  It is also noted that the EM frame is 
rotated -5

45

o about the Sun-Earth x-axis to more 
accurately represent the inclination of the 
Moon’s orbit. After the transformation to the 
Earth-Sun system, the Earth-Moon manifold 
trajectories are searched to locate all 
intersections with the SEL2 cells, and the 
transfer approximation process proceeds.  In 
Figure 9, all EM manifold trajectories are 
overlaid with the SEL2 cell outlines. The 
estimated total cost for the “best” transfer is 
24.518 m/s, as determined in the circular 
restricted problem. The transfer appears in 
Figure 10 in both the circular restricted Earth-
Moon view (Figure 10(a)) and the circular 
restricted Sun-Earth view (Figure 10(b)). In the              Figure 9 EML1 Paths Intersect Cells 
Earth-Moon view it is observed that the mani- 
fold that from the vicinity of L1 does encircle L2 as it departs the system. This characteristic is 
actually familiar.  
 
 
 

 
                                   (a)                                                                        (b) 
 
 Figure 10 Transfer from the Earth-Moon L1 Halo Orbit to a Sun-Earth L2 Halo Orbit 
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Table 2 

Solution for Transfer to Halo Orbit 
 
 
 

Destination 
Halo Orbit

Total ∆V at 
intersection

∆VHOI

Approximation Result 
at Best Intersection Point 

Az = 123,265 km 
  

21.146 m/s 3.372 m/s 

 
 
 
Recall that the ∆V is calculated in the Sun-Earth frame with no regard for the dynamical effects 
of the Moon.  This solution is then transferred into a model with a complete ephemeris 
formulation. The Generator 3.0.2 software, developed at Purdue, incorporates an RK 8/9 
integrator; the gravity of the Sun, Earth, and Moon is included for this example as well as the 
modeling for their ephemeris locations, but no solar radiation pressure force is added. The first 
arc of the transfer, as viewed in the Earth-Moon frame, appears the same as that in Figure 10(a). 
The Sun-Earth view is seen in Figure 11 and some differences relative to the solution in the 
circular problem now appear. The cost at the intersection point is now 15.27 m/s; there is no 
longer any libration orbit insertion maneuver, i.e., ∆  = 0. V
 

                           
 

                               
 

Figure 11  Transfer in the Sun-Earth System: Ephemeris Model 
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Finally, patch points are introduced into Generator (as marked in Figure 12) and all legs are 
simultaneously corrected to yield a zero cost solution. Of course, the final libration point orbits 
are not periodic but are Lissajous quasi-periodic trajectories. The final size of the halo orbits in 
the full model in the Earth-Moon system corresponds to Az = ~39,600 km; in the Sun-Earth 
system the out-of-plane amplitude is Az = ~163,000 km. In the Sun-Earth view, the final 
ephemeris zero cost solution appears in Figure 13. Note that it is very similar to the plot in Figure 
11, obtained before the cost reduction process. It is interesting to compare the Earth-Moon 
departure path from the approximation in the circular problem to the final ephemeris result 
corresponding to the no cost solution as nearly as possible. This comparison appears in Figure 14. 
All of the general characteristics are maintained. As this example is reviewed, observe that every 
step of the process yields a libration point orbit of different size. This flexibility appears to aid the 
search for a solution. 

  
Figure 12  Patch Points in the Cost Reduction Algorithm 
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Figure 13  Final Solution From an Earth-Moon L1 Lissajous Trajectory to a Sun-Earth L2 
Lissajous Trajectory in the Full Model (Zero Cost) 

 
 
 

 
Figure 14  Comparison of the Circular Approximation to the Departure Trajectory from 

the Earth-Moon System with the Final Ephemeris Solution 
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SUMMARY 
 
 The objective of this research activity is the development of approximations for stable 
and unstable manifolds and the use of these objects in mission design applications. Besides 
numerical integration, a number of different approaches have been explored by other researchers 
to approximate stable and unstable manifolds. The applications here necessitate a formulation that 
offers a parameterization that can be exploited for targeting and design. Both splines and cell 
structures are investigated and prove successful in computations.  
 
 The system-to-system transfers are a challenging application of the approximation tool. 
The immediate goal for extension of this work is generalization for the system-to-system 
application. Further developments are planned that include a wider range of applications as well. 
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