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Abstract

Recently, there has been accelerated interest in missions utilizing trajectories near libration
points. The trajectory design issues involved in missions of such complexity go beyond the lack
of preliminary baseline trajectories (since conic analysis fails in this region of the solution space).
Successful and efficient design of mission options will require new perspectives and a more complete
understanding of the solution space is imperative. In this investigation, dynamical systems theory
is applied to better understand the geometry of the phase space in the three-body problem via
stable and unstable manifolds. Then, the manifolds are used to generate various solution arcs and
establish trajectory options that are then utilized in preliminary design for the proposed Suess-Urey

mission.

Introduction

In astrodynamics, the complex missions envisioned
for the upcoming decades will demand innovative
spacecraft trajectory concepts. It is also increasingly
apparent that accomplishment of many short- and
long-term science and exploration goals will require a
broader view that expands the range of options avail-
able. Most recently, for example, the space science
community has had a high level of interest in missions
to the vicinity of the libration points in the Sun-Earth
system. Spacecraft in orbits near libration points of-
fer valuable opportunities for investigations concern-
ing solar and heliospheric effects on planetary envi-
ronments. Current design capabilities for such mis-
sions have significantly improved in the last five years
but are still limited. Computational approaches to
determine a nominal trajectory are essentially man-
ual numerical searches in a regime where conic ap-
proximations are not adequate; standard targeting
and optimization strategies based on linear varia-
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tional methods are difficult to apply and frequently
break down because of the nonlinearities and high
sensitivities in the problem. At the same time, recent
evidence supports the theory that the rich dynamics
in this region of space may lead to previously undis-
covered types of trajectory solutions. Conventional
tools simply do not incorporate any firm theoretical
understanding of the multi-body problem and do not
offer the flexibility to take further advantage of the
dynamical relationships in producing alternative tra-
jectory designs. Nonlinear dynamical systems theory
may offer much insight, particularly in multi-body
regimes, where qualitative information is needed con-
cerning sets of solutions and their evolution. For ex-
ample, invariant manifolds associated with a family of
periodic orbits have already served as a guide to gen-
erate natural pathways near the libration points!~>.
But the primary objective here is to use this infor-
mation for trajectory design.

Trajectory design has traditionally been initiated
with a baseline mission concept rooted in the two-
body problem and conics. Design algorithms built
on conics use trajectory arcs from a limited set of
possible types, 1.e., ellipses, parabolas, and hyperbo-
las. For libration point missions, however, a base-
line concept derived from solutions to the three-body
problem is required. Since no such general solution is
available, the primary goal is to use dynamical sys-



tems theory to systematically numerically explore the
types of solution arcs that may be available (as well
as general behavior in various regions of the phase
space) for design in the three-body problem. The
secondary goal is to use the information to guide the
mission design process for the proposed Suess-Urey
mission by patching various segments together. Pre-
liminary design is accomplished in the context of the
restricted problem of three bodies, and then the so-
lution is computed using a model that incorporates
ephemeris data as well as solar radiation pressure.

Background

Much success has been achieved in mission design
and analysis with traditional approaches (including
conic analysis). Standard analytical and numerical
methods do provide very accurate information, even
for multi-body problems, because the present tech-
niques can very accurately represent the evolution of
a particular trajectory. The most challenging inter-
planetary missions involving multiple gravity assists
have been designed with such tools. However, only
a limited region of the orbit design space has actu-
ally been exploited thus far. In this view, it is then
necessary to generalize the baseline model and ex-
plore larger regions of the solution space in the gen-
eral n—body problem. An extension to increase the
complexity of the model in the basic problem is the
examination of three- and four-body systems. Af-
ter 200 years, the three-body problem remains un-
solved, but, in the last 20 years, substantial progress
has been made in recognizing that the unique dy-
namic characteristics in the problem can be used for
mission design. The trigger that refocused interest
in the problem was the discovery of new types of
particular solutions in the three-body problem: pe-
riodic halo orbits and quasi-periodic Lissajous tra-
jectories. These trajectories (three-dimensional in
configuration space) are not found in the region of
the solution space occupied by solutions to the two-
body problem. A number of missions have already
incorporated Lissajous and/or halo orbits as part of
the trajectory design: ISEE-3 (1978 launch), WIND
(currently en route to arrive in 1997), SOHO (1995
launch), ACE (1997 launch), and others currently in
development. It is not a coincidence that the trajec-
tories employed in these missions are all somewhat
similar. Without a firm theoretical understanding of
this region of the solution space, trajectory design for
these types of missions typically relies on past numer-
ical search results for guidance in the construction of
baseline trajectories. While this approach has clearly
resulted in very successful flight paths, increased sci-
ence opportunities will demand more flexibility and a

better understanding of the design process. To make
real progress on these mission design issues, it is im-
portant to view this as a problem in mechanics, not
numerical analysis. Of course, without a general solu-
tion to this nonlinear problem, numerical analysis is
still critically necessary. But clever, less costly solu-
tions are available if knowledge of the solution space
is expanded and algorithms that employ the dynam-
ical relationships are developed.

Restricted Problem of Three Bodies

Lissajous trajectories are three dimensional (3-D)
quasi-periodic solutions in the 6-D phase space as-
sociated with the three-body problem. Under cer-
tain conditions, a special subset of Lissajous trajec-
tories emerges — precisely periodic solutions that have
been labeled halo orbits. Halo orbits as originally de-
fined in the circular restricted three-body problem,
that is, precisely periodic, do not exist in a general
ephemeris model with perturbations such as solar ra-
diation pressure and non-periodic primary motion.
However, Lissajous trajectories can still be generated
and careful selection of in-plane and out-of-plane am-
plitudes will produce a Lissajous trajectory that is
very close to periodic; the label “halo orbits” usu-
ally includes such variations. Halo orbits and Lis-
sajous trajectories are not isolated numerical solu-
tions. They are actually members of extensive fam-
ilies (sets of solutions) with similar characteristics.
Currently, they are frequently computed, in conjunc-
tion with the transfer paths, using straightforward
propagation from Earth launch conditions. A more
optimal approach may be to initially identify and de-
sign a particular halo orbit and/or Lissajous trajec-
tory to closely match the specifications of the mis-
sion of interest; then, the best transfer path from
Earth or the most useful trajectory arc to/from an-
other point/orbit in this region can be determined.
Previous efforts have produced a numerical process
that successfully generates a member of a Lissajous
family of solutions®.

Of all possible Lissajous trajectories, halo orbits
have most frequently been considered as nominal li-
bration point orbits for mission planning. From an
analytic approximation as a initial estimate™®, a pe-
riodic halo orbit can be produced numerically. An
example of a northern (Class I) L; halo orbit is pre-
sented in Figs. 1-3. Three planar projections of the
orbit are shown with the origin in each plot corre-
sponding to the Sun-Earth/Moon barycenter. The
three axes in the figure are defined consistent with
the rotating frame typically used in the restricted
three-body problem. Thus, the z axisis directed from
the larger primary (Sun) to the smaller (Earth/Moon
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Fig. 3. Halo (4, = 120,000 km): Y — Z Projection

barycenter), the y axis is defined in the plane of mo-
tion of the primaries and 90° from the z axis, and the
z axis completes the right handed frame. The orbit
shown here has an approximate out-of-plane ampli-
tude A, = 120,000 km, which requires the corre-
sponding in-plane amplitudes 4, = 667,980 km and
A; = 208,270 km. Each revolution has a duration
of approximately six months. Note that the space-
craft moves along its path about L; in a clockwise
direction as viewed in the y — z plane (Fig. 3).

Dynamical Systems and Invariant Manifolds

The geometrical theory of dynamical systems (from
Poincaré) is based on the phase portrait of a dy-
namical system as discussed in various mathemati-
cal sources®!%. The geometric model for the set of
all possible states of a system is the phase space (or
state space), which is assumed to be an open set in
IR™. The state space, filled with trajectories, is the
phase portrait of the dynamical system. This portrait
may begin with special solutions that include fixed
points (or equilibrium points), periodic orbits, quasi-
periodic motions, homoclinic and heteroclinic mo-
tions. Beyond these solutions, flat Euclidean spaces
will not suffice for all geometric models; in some cases,
curved spaces (differential manifolds) are necessary.
The manifold then becomes the geometrical model
for the space of dependent variables.

A manifold is an m—dimensional analog of a
two-dimensional surface in IR*. To provide fa-
miliarity and intuition, manifolds will be called
m—dimensional surfaces in this discussion. Thus, an
invariant manifold is a surface (m—dimensional) de-
fined by the following property: orbits starting on the
surface remain on the surface throughout the course
of their dynamical evolution. So, an invariant mani-
fold is a collection of orbits that form a surface. Addi-
tionally, the set of orbits that approach or depart an
invariant manifold asymptotically are also invariant
manifolds (under certain conditions) which are called
stable and unstable manifolds, respectively. In reach-
ing toward a complete understanding of the global
dynamics, knowledge of the invariant manifolds of a
dynamical system as well as the interactions of their
respective stable and unstable manifolds is absolutely
essential.

In the three-body problem, the six-dimensional
phase space can be envisioned as composed of sub-
spaces of various dimensions. Thus far, the link to
these subspaces, or manifolds, has been the periodic
halo orbits and the quasi-periodic Lissajous trajecto-
ries in the vicinity of libration points. In the context
of the three-body problem, the libration points, halo
orbits, and the tori on which Lissajous trajectories



are confined, are themselves invariant manifolds. In
this study, the periodic halo orbits are used as the
reference solution for investigating the phase space.
It is possible to exploit the hyperbolic nature of these
libration point orbits by using the associated stable
and unstable manifolds to generate transfer trajecto-
ries as well as general trajectory arcs in this region
of space. The first concern, then, is the computation
of the stable and unstable manifolds associated with
a particular halo orbit. The procedure is based on
the availability of the monodromy matrix associated
with the halo orbit. This matrix essentially serves to
define a discrete linear map of a fixed point in some
arbitrary Poincaré section. As with any discrete map-
ping of a fixed point, the characteristics of the local
geometry of the phase space can be determined from
the eigenvalues and eigenvectors of the monodromy
matrix. These are characteristic not only of the fixed
point, but of the halo orbit itself.

The local approximation of the stable (unstable)
manifold involves calculating the eigenvectors of the
monodromy matrix that are associated with the sta-
ble (unstable) eigenvalues, and then using the state
transition matrix to propagate the approximation to
any point on the halo. The eigenvalues are known to
be of the following form*?5:

AL > 1, )\2:(1/)\1)<1, A3= Ay =1,
As = A3, and [As] = [X¢| = 1,

where A5 and Mg are complex conjugates. Stable
(and unstable) eigenspaces, E* (E*) are spanned by
the eigenvectors whose eigenvalues have modulus less
than one (modulus greater than one). There exist
local stable and unstable manifolds, W, and W _,
tangent.to the eigenspaces at the fixed point and of
the same dimension!?. Thus, for a fixed point X
defined along the halo orbit, the one-dimensional sta-
ble (unstable) manifold is approximated by the eigen-
vector associated with the eigenvalue Ay (A1). First,
consider the stable manifold. Let YW denote a six-
dimensional vector that is coincident with the stable
eigenvector and is scaled such that the elements cor-
responding to position in the phase space have been
normalized. This vector serves as the local approx-
imation to the stable manifold (W?*). Remove the
fixed point X from the stable manifold to form two
half-manifolds, W*" and W* . Each half-manifold
is itself a manifold consisting of a single trajectory.
Now, consider some point X, on wer. Integrating
both forward and backward in time from X, produces
we. Thus, calculating a half-manifold can be bro-
ken down into two steps: locating or approximating a
point on W* +, and numerically integrating from this
point.

To generate the stable manifold, an algorithm
has been employed that was developed to find both
the stable and unstable manifolds of a second order
system!!. The algorithm, however, does not possess
any inherent limit to the order of the system, and
has been used successfully here. Near the fixed point
XH, W s determined, to first order, by the stable
eigenvector YW". The next step is then to global-
ize the stable manifold. This can be accomplished by -
numerically integrating backwards in time. It also re-
quires an initial state that is on W*" but not on the
halo orbit. To determine such an initial state, the
position of the spacecraft is displaced from the halo
in the direction of YW by some distance d such that
the new initial state, denoted as X" is calculated

as

XV =xH 4 dyW. (1)
Higher order expressions for X" are available but
not necessary. The magnitude of the scalar d should
be small enough to avoid violating the linear estimate,
yet not so small that the time of flight becomes too
large due to the asymptotic nature of the stable man-
ifold. This investigation is conducted with a nominal
value of 200 km for d. Note that a similar proce-
dure can be used to approximate and generate the
unstable manifold.

Visualizing Manifolds

In most texts dealing with dynamical systems the-
ory, lower dimensional problems are usually consid-
ered. This setting generally makes it easier to under-
stand the mechanics and to visualize the behavior of
the system. When adding the complexity of higher di-
mensional systems (e.g., six dimensions), conceptual
understanding becomes more difficult. In the case
of halo orbits in the restricted three-body problem,
the stable and unstable manifolds for any fixed point
along the halo are one dimensional. This then implies
that the stable and unstable manifolds for the entire
halo orbit are two dimensional. This is an important
concept when considering design options. Thus, it
would be helpful in understanding the solution space
if these 2-D surfaces could be visualized. While it
is not possible to graphically represent a two dimen-
sional surface in the full six dimensional phase space,
much can still be gained conceptually by projecting
this surface onto the three dimensional configuration
space.

As an example, consider a halo orbit near Ly, in
the Sun-Earth/Moon system, one with an A, ampli-
tude of approximately 150,000 km. A limited set of
points is selected in some specified part of the halo;
this relatively small region along the path is identi-
fied in Figs. 1-3 as all the points in the shorter arc



defined by the “x”s that are seen in each projection.
The part of the halo identified in the figures is not
selected arbitrarily; rather, it is already known that
manifolds computed using these points will pass close
to the Earth. For convenience, this region along the
halo will be designated the EA (Earth Access) re-
gion. Each point in the EA region can be defined as
a fixed point X and its corresponding one dimen-
sional stable manifold is then globalized. Together,
these one dimensional manifolds form the two dimen-
sional manifold associated with this region of the halo
orbit. Several views of the projection of this surface
onto configuration space are shown in Fig. 4. Begin-
ning with an ¢ — y projection in the upper left, a
series of views is presented in the figure. The views
are ordered, top to bottom, to represent an observer
moving in a positive sense about the z—axis. Thus,
the view in Fig. 4c is the  — z projection. The dra-
matic bend/twist in the surface corresponds to the
close passage of the manifold by the Earth (closest
approach is approximately 11,000 km). Observe how
“narrow” the surface becomes as it approaches the
halo versus how “broad” it is between the Earth and
the halo. The behavior of this portion of the stable
manifold would seem to suggest that targeting some
state on the manifold well before it approaches the
halo would be easier than targeting a specific point
on the halo orbit itself. With the broader surface fur-
ther away from the halo, more options may become
available. Another observation is the “twisting” and
“folding” of the manifold near the Earth as seen in
Fig. 4. This implies that a variety of options (various
combinations of altitudes, inclinations, etc.) may ex-
ist for insertion directly onto the manifold near the
Earth. It is important to note that the particular
characteristics of the manifold that are observed here
are not unique to this halo or the stable manifold, 1.e.,
they can be seen on halos of any size for both stable
and unstable manifolds alike. Thus, corresponding
to unstable manifolds, these observations offer Earth
return options as well.

Solutions Using Stable and Unstable Manifolds

Earth-to-Halo Transfers

The design procedure for transfers from the Earth
to a halo orbit is frequently based on a shooting
method, where a set of initial conditions near Earth
is selected, then propagated forward in time; the ini-
tial state is adjusted to achieve an acceptable result.
This process can be modified, of course, to incorpo-
rate backwards integration. The procedure is compli-
cated by the fact that there are no analytic expres-
sions or approximations to provide a guess to initiate
the process. Unfortunately, there is also a lack of

control over the final complete solution; the high sen-
sitivity of the resulting halo orbit relative to slight
changes in the initial conditions near the Earth make
it very difficult to achieve a set of precise character-
istics that may be specified for the desired halo or
Lissajous orbit.

As an alternative, the stable manifold may offer
design options for Earth-to-halo transfers. Concep-
tually, the transfer design process consists of identi-
fying the subspace (or surface, as seen, for example,
in Fig. 4) that contains the endpoints of the bound-
ary value problem - the “endpoints” are, in fact, or-
bits - and then moving on the surface from the point
(orbit) of origin to the destination orbit. So, rather
than a targeting problem to reach a specified insertion
point on the halo orbit, the transfer design problem
becomes one of insertion onto the manifold, directly
from the Earth parking orbit, if possible. Using sta-
ble/unstable manifolds to construct transfer trajec-
tories from the Earth to the halo orbit implies an
asymptotic approach toward the halo, and thus, may
result in no halo orbit insertion maneuver. The flight
time along such a transfer path is actually very rea-
sonable. The resulting algorithm based on this con-
cept has been very successful at quickly producing
insight into the problem as well as generating Earth-
to-halo transfer trajectories®®. A distinct advantage
of this approach is that the designer ultimately has
more control over each aspect of the trajectory; and,
the transfer path emerges without a random search
process. Unfortunately, not every halo orbit possesses
stable manifolds that pass at the precise altitude of
the specified Earth parking orbit. In particular, as
the size of the halo orbit decreases, the associated sta-
ble manifolds move further away from the Earth until
direct insertion onto a manifold from the parking or-
bit is no longer possible for a direct transfer. This
corresponds to the well known observation that more
AV is required to insert into a small halo/Lissajous
orbit. The stable/unstable manifolds control the be-
havior of all nearby solutions in this region of the
phase space. Thus, the behavior of the manifolds can
provide insight into optimal insertion locations along
the halo, and the manifolds may serve as a first guess
for use in a differential corrections scheme*. The ap-
plication of this approach can be seen in Figs. 5 and
6, where a transfer trajectory is presented as viewed
in a rotating coordinate frame. The plot represents
the z —y (Fig. 5) and the x — z (Fig. 6) projections of
a transfer to the halo orbit near Ly shown in Figs. 1-3
(roughly the same size as the halo used for ISEE-3).
The halo orbit is denoted by dots. With an A, ampli-
tude of 120,000 km, this halo is too small for its stable
manifolds to pass the Earth at a reasonable parking
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orbit altitude (for a direct transfer), i.e., no “free”
direct transfers exist. It is therefore necessary to in-
troduce a maneuver. By understanding the behavior
of the stable manifolds, a point along the halo can
be identified that is associated with a manifold that
passes closest to the Earth; note that the best choice
is a point in the EA region that is identified in Figs.
1-3. The trajectory approaches the halo orbit along
a natural pathway that results in a lower cost. In
this case, the maneuver is placed at the halo orbit in-
sertion point and has a value of 20.8 meters/second.
Time and effort to produce results of this type are
minimal and the process can be automated*?®.
Halo-to-Earth Transfers

As mentioned previously, similar consideration can

be given to the use of the unstable manifold when
exploring trajectory options. One possible appli-
cation involves a return trajectory, i.e., a transfer
from a halo orbit to the Earth. As a demonstra-
tion of this option, consider a halo orbit near Lo
that is much larger than the one considered previ-
ously (A, = 569,275 km). This particular libration
point orbit is shown in Figs. 7 and 8. A point along
the path is identified for computation of the unstable
manifold; this point also belongs to the EA region
in this (Class II) southern Ly orbit. In contrast to
the relatively small halo used in Figs. 5 and 6, the
manifolds corresponding to this large Ls halo pass
arbitrarily close to the Earth. Proceeding as before,
a study of the behavior of solutions on the unstable
manifold indicates the existence of a solution that
asymptotically departs the halo orbit and results in a
close approach of the Earth at an altitude of 185 km
(this number can be made smaller or larger).

Halo-to-Halo Transfers

The concepts underlying the Earth-to-halo and
halo-to-Earth transfers can be combined to investi-
gate new families of solutions in the three-body prob-
lem. By proper choice of the parameter d in Eqn. (1),
both stable and unstable manifolds can be used to
produce transfers between halo orbits and Lissajous
trajectories®®. A search for halo-to-halo transfers
yields various options. Consider two halo orbits that
are close in size; one is near Ly, the other is near Lo,
and both can be pre-determined. For now, the L;
halo is designated as the departure orbit. A point
along the L; halo is selected as the departure point.
This choice is based on observations of the behavior
of the manifolds in different regions along the halo,
i.e., the point whose unstable manifold approaches
an L, Lissajous upon globalization. Then, in simi-
lar fashion, a stable manifold associated with an L,
halo orbit is computed that approaches an Lq Lis-
sajous upon backwards integration. Once both man-
ifolds have been generated, the locations that repre-
sent the minimum distance between the manifolds is
determined, and these are defined as the end states
of each. Almost certainly, there will be a discon-
tinuity between these two states. Since the goal is
a solution that is continuous in position, a differen-
tial corrections scheme is introduced to drive the end
states of both the forward and backward paths to
some mutual target point (in position) between them
by introducing AV’s at the “initial” points near the
halos. The final result is a transfer with three ma-
neuvers (typically): one at each halo orbit and one
at the patch point (the mutual target point between
the end states).

The first example of this procedure i1s shown in
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Figs. 9 and 10. Here, the L; halo is designated as
the departure halo and L, as the arrival halo. Both
are northern (Class I) halo orbits with out-of-plane
amplitudes of approximately 492,000 km and 483,000
km, respectively. The total AV for the transfer is
40.63 m/s; the AV's near the halos are 0.86 m/s and
3.60 m/s, respectively, and a 36.17 m/s velocity dis-
continuity exists at the patch point (marked with an
“0”). This procedure has been applied to halos of
various sizes and the costs have been similar®.
Another example of the application of this same
procedure to determine different types of solutions is
shown in Figs. 11 and 12. In this case, the Ly halo is
a northern (Class I) halo with an out-of-plane ampli-
tude of approximately 537,000 km, and the Ly halo

is a southern (Class IT) halo with an A, of approxi-
mately 554,000 km. The final trajectory has maneu-
vers of 6.76 m/s at the Ly halo deaprture point, 42.01
m/s at the patch point (marked with an “o” in Figs.
11 and 12), and no maneuver at the Ly halo arrival
for a total cost of 48.77 m/s. Numerical evidence
suggests that this type of trajectory does not exist
for halos that are smaller than those presented here.
It is important to note that none of the examples
discussed here have been optimized.

Suess-Urey Trajectory Design

Mission Goals and Constraints

Planetary scientists have recently expanded their
efforts to exploit the scientific potential of libration
point trajectories. Thus, more proposals now use
Lissajous trajectories as a centerpiece of the mission
design. One such example is the recently proposed
Suess-Urey (SU) mission. The primary goal of SU
is to collect solar wind particles for a period of ap-
proximately two years, and then analyze their chem-
ical and isotopic compositions. Solar wind particles
do not strike the Earth due to the Earth’s magnetic
field. Collection of these particles must then be car-
ried out beyond the influence of the Earth’s mag-
netic field making a Lissajous orbit near L; an ideal
platform. The analysis of the solar wind contents
is to be accomplished on Earth which mandates an
Earth return trajectory from the L; Lissajous. Upon
return, a capsule will reenter the atmosphere to be
captured by a helicopter in mid-air after decelera-
tion; the need for a day side reentry is apparent.
The geographical target is the Utah Test and Train-
ing Range (UTTR), with the additional constraint of
a west-east approach. These mission goals can now
be summarized with the following preliminary design
constraints: 1) transfer from a low Earth parking or-
bit to a Lissajous trajectory near Li; 2) maintain the
Lissajous orbit for two years (four revolutions); 3)
return for a day side reentry into the Earth’s atmo-
sphere with a declination of 40.6° (location of UTTR)
and an inclination as low as possible (due to west-east
approach). These constraints combine to form a very
complex mission that serves as an excellent opportu-
nity to demonstrate the construction of a continuous
trajectory from trajectory arcs (on the manifolds) in
the three-body problem.

Preliminary Study in the Restricted Problem

This investigation begins in the circular restricted
problem using the Sun as the larger primary and the
Earth/Moon barycenter (mass equal to the sum of
the masses of the Earth and Moon) as the second
primary, consistent with the previous discussion. The
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objective in using this model is to establish the quali-
tative nature of solutions that may satisfy the mission
constraints. However, the results from a study in the
restricted problem will translate very well into the
more complicated model that incorporates ephemeris
data. Use of this model also allows straightforward
application of dynamical systems theory.

Using the concepts discussed in connection with
Figs. 5 and 6, Figs. 7 and 8, and Figs. 11 and 12,
the general shape of the transfer out from Earth, the
L; Lissajous, and the Earth return begins to emerge.
The mission constraint that has the most impact on
the shape of the trajectory is the day side reentry re-
quirement. Recall from the definition of the rotating
coordinate system that the Sun is in the negative z
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Fig. 11. Halo-to-Halo Transfer; 48.77 m/s: X —Y
Projection
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Fig. 12. Halo-to-Halo Transfer; 48.77 m/s: X — Z
Projection

direction at all times. The AV that would be needed
for a direct return from the L; Lissajous with a day
side reentry would be prohibitive. A return from a
Lissajous near Ls, however, would allow a direct day
side return. Figures 7 and 8 illustrate the potential
use of the unstable manifold associated with a halo
near Ly to accomplish this task. To be a legitimate
option, a transfer from the L; halo to the L, halo
must be realized. Figs. 11 and 12 exhibit one option
for such a transfer.

Before proceeding with trajectory construction,
however, further investigation of the unstable L,
manifold is helpful. In particular, arcs (on the mani-
fold) are sought that leave the Ly halo and approach
the Earth in a manner consistent with a combination



of the trajectory segments in Figs. 11 and 12 and Figs.
7 and 8. Consider then, a halo orbit near L; with an
A, amplitude of approximately 518,000 km. A short
investigation of the manifolds originating from differ-
ent regions of the halo quickly provides a clearer view
of the type of trajectory that will satisfy the mission
requirements. The z — y and & — z projections of one
of the unstable manifolds are seen in Figs. 13 and
14. Thus, an Earth Access region for halo departure
has been established, one that results in the desired
day side reentry. A two dimensional surface can be
computed that is associated with this EA region. A
closer look at the surface of unstable manifolds will
provide useful information regarding the inclination
and declination issues.

A number of views of the projection of the sur-
face onto configuration space (similar to Fig. 4) are
seen in Fig. 15. Contrary to Fig. 4, only the region
near the Earth is presented in Fig. 15. The impor-
tant observation here is the two basic types of Earth
approach. Some manifolds approach the Earth with
very high inclinations relative to the ecliptic (as high
as 74.2°); then there is a transition to a region where
the manifolds approach with much lower inclinations
(as low as 50.7°). This will clearly impact the west-
east reentry requirement.

The size of the L; halo orbit used to generate Figs.
13 through 15 is not an arbitrary choice. An orbit of
this size is necessary to approach the Ls region in the
manner that would meet the mission requirements
(recall that halo-to-halo transfers of this type do not
exist for smaller halos). It was also selected because
none of the unstable manifolds originating from the
designated EA region of the halo pass closer than 125
km altitude above the Earth. However, it is more de-
sirable for the mission to use a smaller halo/Lissajous
near Li, and eventually, it will be necessary to em-
ploy an unstable manifold that reaches closer to Lo
(which would require a even larger halo orbit near
L1). It now becomes necessary and appropriate to
patch trajectory arcs together. As an example, con-
sider a smaller halo (4, = 450,000 km) near L; and
alarger halo (A4, = 565,000 km) also near L;. A sim-
ilar study of the unstable manifolds is done on both
halos. In the case of the larger halo, a 1-D unstable
manifold is computed such that the approach to the
Earth is in the region of lower inclinations (as op-
posed to the higher inclinations seen in Fig. 15), and
passes at a reasonable altitude as well. Then, for the
smaller halo, a 1-D manifold is determined with the
same z — z plane crossing (after leaving the vicinity
of the halo) as the larger halo. This crossing point
will serve as one of the patch points. Now, another
point is chosen on the manifold corresponding to the
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Fig. 14. Unstable Manifold for Halo with 4, =
565,000 km

larger halo near L,. The same differential corrections
technique used to generate the halo-to-halo transfers
is then applied here. Finally, the trajectory is com-
pleted by adding the initial segment, i.e., the transfer
out from the Earth to the L, halo. Using the stable
manifold (as with Figs. 5 and 6), a “free” transfer
can be generated from a parking orbit of 185 km (ar-
bitrary). The final two segments that comprise the
return are presented in Figs. 16 and 17. Each patch
point is marked with an “0.” While there is no maneu-
ver for the halo orbit insertion, some AV is required
at the other patch points. At this stage, however, the
more important information is the qualitative char-
acteristics and using them to guide the design process
in the full model.
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Fig. 17. Patched Solution in Restricted Problem

Solution in Model Using Ephemerides

The qualitative characteristics of the trajectory in
Figs. 16 and 17 will now serve as a guide for the final
and complete result in the full model that includes
ephemerides and solar radiation pressure. It is now
appropriate to list more specific mission requirements
for the trajectory: 1) transfer directly to an L; Lis-
sajous from an Earth parking orbit with an altitude
of 200 km and an inclination (relative to the equator)
between 28.5° and 31.0°; 2) maintain the spacecraft
in the vicinity of L; for two years; 3) return to Earth
with a nominal altitude of 200 km at perigee on the
day side; 4) two days before perigee, perform a ma-
neuver that will result in an altitude of 125 km with
a flight path angle of -7.9%, declination of 40.6°, a
longitude of -114.6°, and a west-east approach.

One possibility that satisfies each of the mission re-
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quirements is presented in Figs. 18 (z — y projection)
and 19 (2 — z projection). These figures are plot-
ted in the rotating/oscillating libration point frame
with the origin at Ly. Each significant maneuver is
marked with an “0.” The trajectory begins in a cir-
cular parking orbit with an altitude of 200 km and an
inclination of 29.0°. The direct transfer to the Lis-
sajous orbit is initiated with an impulsive tangential
AV of approximately 3.2 km/s. Approximately 195
days later (at the far z — z plane crossing), the space-
craft executes the Lissajous orbit insertion maneuver
(LOI) into a Lissajous trajectory with approximate
amplitudes of A, = 320,000 km, 4, = 220,000 km,
and Ay = 700,000 km. Over the next four revolutions
around the Lissajous, small maneuvers (less than 1
m/s) may be executed to maintain the orbit as well
as initiate the return portion of the trajectory. A
little more than two years after LOI, as the space-
craft departs the vicinity of L, a maneuver of 36.6
m/s is performed at the & — z crossing approximately
midway between [; and the Earth. This propels the
spacecraft on the transfer from L; to the vicinity of
Ls. En route to Lo, the spacecraft passes near the
Lunar orbit, but there is no Lunar encounter. As the
spacecraft, approaches L, another maneuver of 14.3
m/s is implemented to set up the return. This time,
as the spacecraft crosses the Lunar orbit, there is a
distant lunar encounter. Shortly after this encounter,
afinal AV of 3.5 m/s is executed to lower perigee and
initiate reentry at an altitude of 125 km with a decli-
nation of 40.6°, a longitude of -114.6°, an inclination
of 49.7°, and a flight path angle of -7.9°. Final reen-
try is scheduled to be on September 18, 2002. Table
1 provides a summary of the major trajectory events.

Conclusions
The similarities between Figs. 18 and 19 and Figs.
16 and 17 provide much encouragement for use of the

restricted problem to capture the qualitative char-
acteristics of the design space. With the use of dy-

Table 1. Suess-Urey Trajectory Summary

Event Date Altitude AV

(m/d/y) (km) | (m/s)
Earth Launch 08/22/99 200 | 3193.6
LOI 03/04,/00 11.4
Maneuver 04/25/02 36.6
Maneuver 07/06/02 14.3
Lunar Encounter | 09/16/02 | 100,000
Maneuver 09/16/02 3.5
Reentry 09/18/02 125




0.5+

y6
(10°) 0.0
(km)
-0.5 —
I I I | I [ I
0.0 0.5 1.0 1.5 2.0 2.5 3.0
x (10° km)
Fig. 18. One Option for Suess-Urey Mission: X — Y Projection
0.5
V4
(10%) 0.0
(km)
-0.5 —

I I I I I I I
0.0 0.5 1.0 1.5 2.0 25 3.0

x (10° km)

Fig. 19. One Option for Suess-Urey Mission: X — Z Projection

13



namical systems theory, investigating trajectory op-
tions in the restricted problem becomes much more
efficient. It also provides important insight into the
natural dynamics of this highly complex system: not
only are the natural solutions exposed, but potential
problems can also be identified (as was demonstrated
in Fig. 15 with the high and low inclination reentries).
While the advantage of using dynamical systems the-
ory in the restricted problem is clear, application to
the more complex model is still under development.
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