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2. Basic Photophysics

2.1. Kinetics of Luminescence

Pressure sensitive paint (PSP) and temperature sensitive paint (TSP) are, respectively, based on the oxygen and thermal quenching processes of luminescence which are reversible processes in molecular photoluminescence.  The general principles of luminescence are described in detail by Rebek (1987), Becker (1969) and Parker (1968).  The different energy levels and photophysical processes of luminescence for a simple luminophore can be clearly described by the Jablonski energy-level diagram shown in Fig. 2.1.  The lowest horizontal line represents the ground-state energy of the molecule, which is normally a singlet state denoted by S0.  The upper lines are energy levels for the vibrational states of excited electronic states.  The successive excited singlet and triplet states are denoted by S1 and S2, and T1, respectively.  As is normally the case, the energy of the first excited triplet state T1 is lower than the energy of the corresponding singlet state S1. 

A photon of radiation is absorbed to excite the luminophore from the ground electronic state to excited electronic states (
[image: image1.wmf]1

0

S

S

®

 and 
[image: image2.wmf]2

0

S

S

®

).  The excitation process is symbolically expressed as 
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, where 
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 is the Plank constant and 
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 is the frequency of the excitation light.  Each electronic state has different vibrational states, and each vibrational state has different rotational states.  The excited electron returns to the unexcited ground state by a combination of radiative and radiationless processes.  Emission occurs through the radiative processes called luminescence.  The radiation transition from the lowest excited singlet state to the ground state is called fluorescence, which is expressed as 
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.  Fluorescence is a spin-allowed radiative transition between two states of the same multiplicity.  The radiative transition from the triplet state to the ground state is called phosphorescence (
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), which is a spin-forbidden radiative transition between two states of different multiplicity.  The lowest excited triplet state, T1, is formed through a radiationless transition from S1 by intersystem crossing (
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).  Since phosphorescence is a forbidden transition, the phosphorescent lifetime is typically longer than the fluorescent lifetime.  Luminescence is a general term for both fluorescence and phosphorescence.  
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Fig. 2.1. Jablonsky energy-level diagram

Radiationless deactivation processes mainly include internal conversion (IC), intersystem crossing (ISC) and external conversion (EC).  The internal conversion (IC) is a spin-allowed radiationless transition between two states of the same multiplicity (
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).  Typically, this process is expressed as 
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, where 
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 denotes heat released.  IC appears to be particularly efficient when two electronic energy levels are sufficiently close.  The intersystem crossing (ISC) is a spin-forbidden radiationless transition between two states of the different multiplicity, which are expressed as 
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.  Phosphorescence depends to a large extent on the population of the triplet state (
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) from the excited singlet state (
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) by the intersystem crossing.  In addition, deactivation of an excited electronic state may involve interaction and energy transfer between the excited molecules and the environment like solutes, which are called external conversion (EC).  

The excited singlet and triplet states can be deactivated by interaction of the excited molecules with the components of a system.  These bimolecular processes are quenching processes, including collisional quenching (diffusion or non-diffusion controlled), concentration quenching, oxygen quenching, and energy transfer quenching.  The oxygen quenching of luminescence is the major photophysical mechanism for PSP.  Due to the oxygen quenching, air pressure on an aerodynamic model surface is related to the luminescent intensity by the Stern-Volmer equation that will be further discussed.  The quantum efficiency of luminescence in most molecules decreases with increasing temperature because the increased frequency of collisions at elevated temperatures improves the possibility for deactivation by the external conversion.  This effect associated with temperature is the thermal quenching, which is the major photophysical mechanism for TSP.  

The population of the excited singlet states (
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) and triplet states (
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) at any given time depends on the competition among different photophysical processes listed in Table 2.1.  The singlet state population 
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where 
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 is the light absorption rate of generating the excited singlet states, 
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.  After a pulse excitation, the times required for the populations in the excited singlet state and triplet state to decay to 1/e of the initial value are, respectively, 
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The time constants 
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 are defined as the fluorescent and phosphorescent lifetimes, respectively.  Usually, the lifetime of a specific photophysical process is defined as the reciprocal of the corresponding rate constant.  Typical values of the lifetimes for different photophysical processes are listed in Table 2.1.  When the intersystem crossing from 
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 should be added, respectively, to the right-hand sides of Eq. (2.1) for 
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.  In this case, the kinetic model becomes a coupled system of equations (Mosharov et al. 1997; Bell et al. 2001).  Since 
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Table 2.1. Photophysical processes involving electronically excited states

Step
Process
Rate
Lifetime (s)
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Fluorescence (F)
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Internal Conversion (IC)
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Intersystem Crossing (ISC)

[image: image63.wmf]D

+

®

1

1

T

S



[image: image64.wmf]]

S

[

k

1

)

t

s

(

isc

1

1

-



[image: image65.wmf]8

11

10

10

-

-

-



Phosphorescence (P)
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2.2. Models for Conventional Pressure Sensitive Paint

From a standpoint of engineering application, it is unnecessary to analyze all the intermediate photophysical processes and their interactions.  Therefore, a lumped model for luminescence (fluorescence and phosphorescence) is given here by considering the main processes: excitation, luminescent radiation, non-radiative deactivation, and quenching.  The luminophore is excited by a photon from a ground state 
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 is the rate constant for the radiation process and 
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 is the frequency of the luminescent emission.  In the deactivation process, 
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 is the rate constant for the combined effect of all the non-radiative processes.  If temperature around a luminophore molecule increases, the deactivation rate increases, reducing the radiative process from 
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 for the non-radiative processes is temperature-dependent.  The quenching process by a quencher Q is expressed as 
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The rate of excitation is 
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The amount of luminophore molecules in a given excited state is described by the quantum yield of luminescence defined by 
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The quantum yield ( for the luminescent emission from 
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 with the quencher Q is expressed by 
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where I is the luminescent intensity.  The quantum yield without quenching is 
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where 
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 is the luminescent intensity without quenching.  Dividing 
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where 
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Thus, Eq. (2.8) can be written as 
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When the quencher is oxygen, the Stern-Volmer equation is 
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In general, the rate constants 
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 for the non-radiative and quenching processes are temperature-dependent.  The temperature dependency of 
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 can be decomposed into a temperature-independent term and a temperature-dependent term modeled by the Arrhenius relation (Bennett and McCartin 1966; Song and Fayer 1991), i.e., 
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 are the rate constants for the temperature-independent and temperature-dependent processes, respectively, Enr is the activation energy for the non-radiative process, R is the universal gas constant, and T is the absolute temperature in Kelvin.  The temperature dependency of the rate constant 
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where 
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 is an interaction distance between the luminophore and oxygen molecules, and 
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 is the Avogadro's number.  The diffusivity D has the temperature dependency modeled by the Arrhenius relation 
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where 
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 is the activation energy for the oxygen diffusion process.  Therefore, from Eq. (2.9), the reciprocal of the luminescent lifetime is 
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According to Henry's law, the oxygen population 
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where S is the oxygen solubility in a polymer binder layer and 
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 is the mole fraction of oxygen in the testing gas.  The mole fraction of oxygen 
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 is only a few ppm (1ppm = 10-4%) in a cryogenic wind tunnel where the working gas is nitrogen.  Defining the permeability
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where the coefficients 
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In aerodynamic applications, it is difficult to obtain the zero-oxygen condition since the working gas in most wind tunnels is air containing 21% oxygen.  Thus, instead of using the zero-oxygen condition, we usually utilize the zero-speed (wind-off) condition as a reference.  Taking a luminescent intensity ratio between the wind-off and wind-on conditions, we obtain the Stern-Volmer equation suitable to aerodynamic applications 
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The Stern-Volmer coefficients in Eq. (2.19) are 
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where the reference coefficients are defined as 
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The subscript ‘polymer’ specifically denotes a conventional polymer-based PSP; it will be seen that porous PSPs have somewhat different forms of the Stern-Volmer coefficients.  Eq. (2.19) indicates that a ratio between the luminescent intensities at the wind-on and wind-off conditions is required to determine air pressure.  The intensity-ratio method is commonly employed in PSP and TSP measurements.  

Using the expressions for 
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where the factor 
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 is defined as 
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where the factor 
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Clearly, the Stern-Volmer coefficients 
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Eq. (2.23) indicates that the Stern-Volmer coefficient 
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 for the oxygen diffusion process; this implies that the temperature sensitivity of PSP is mainly related to the oxygen diffusion.  Indeed, experiments conducted by Gewehr and Delpy (1993) and Schanze et al. (1997) for two different oxygen sensors showed that the temperature dependency of the oxygen diffusivity in a polymer dominated the temperature dependency of PSP.  This finding has an important implication in the design of low-temperature-sensitive PSP formulations; the low-temperature-sensitive PSP should have a polymer binder with the low activation energy for oxygen diffusion.  In another special case where 
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 becomes temperature independent.  PSP satisfying the above conditions is so-called ‘ideal’ PSP (see Section 3.6).  This paint is advantageous for correcting the temperature effect since the Stern-Volmer relation becomes temperature independent when the intensity ratio scaled by a single temperature-dependent factor is used as a similarity variable.  

In many PSP measurements, the linear Stern-Volmer relation Eq. (2.19) is sufficiently accurate in a certain range of pressure.  However, over an extended range of the partial pressure of oxygen or air pressure, the non-linear Stern-Volmer behavior becomes appreciable for microheterogeneous PSPs (Carraway et al. 1991a; Xu et al. 1994; Hartmann et al. 1995).  The main physical mechanisms behind the non-linear Stern-Volmer characteristics are associated with microheterogeneity of the environment of a probe molecule and deviation from Henry’s law.  Solid-state matrices like polymers may provide numerous different kinds of environments for a probe molecule, resulting in the non-exponential decay or multi-exponential decay of luminescence.  In some cases, a double exponential model is sufficient for the decay; thus the oxygen quenching of luminescence in microheterogeneous systems is described by a two-component model 
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where 
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 are the Stern-Volmer constants of the two components.  Furthermore, for the probe molecule incorporated into a polymer, dual sorption mechanisms are considered and thus the oxygen concentration is related to the applied partial pressure by adsorption isotherm.  These mechanisms are responsible for a slight deviation of the actual concentration from that given by Henry’s law.  The analytical form of dual sorption in a polymer is obtained by adding the Langmuir isotherm to Henry’s law, i.e., 
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where 
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 is the Langmuir gas capacity due to adsorption and 
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 is the Langumir affinity coefficient.  Based on the dual sorption model Eq. (2.27), Hubner and Carroll (1997) suggested an extended form of the Stern-Volmer relation 
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Eq. (2.28) was able to give a good fit to experimental data for some PSPs.  From a standpoint of aerodynamic applications, an empirical form of the non-linear Stern-Volmer relation is usually given by a polynomial 
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2.3. Models for Porous Pressure Sensitive Paint

In the preceding section, the photophysical models for a conventional polymer PSP are discussed.  Nevertheless, according to the work of Sakaue (1999), the photophysical models for a porous PSP or open PSP system are different.  In general, pores in a porous PSP are macroscopic, which are much larger than the size of an oxygen molecule.  Figure 2.2 shows schematically a comparison of a conventional polymer PSP with a porous PSP.  In a conventional polymer PSP, as shown in Fig. 2.2(a), the oxygen molecules in the working gas permeate into a polymer binder layer and quench the luminescence.  In contrast, as illustrated in Fig. 2.2(b), a porous PSP has a much larger open surface to which the luminophore molecules are directly applied; the oxygen molecules can directly quench the luminescence without having to permeate into a binder layer.  Therefore, the use of a porous material as a binder for PSP offers two advantages.  First, a porous PSP can achieve a very fast time response (in the order of microseconds) for unsteady PSP measurements; secondly, it makes PSP measurements possible at cryogenic temperatures at which oxygen diffusion is prevented through a conventional homogeneous polymer.  
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Fig. 2.2. Schematic of (a) conventional polymer PSP and (b) porous PSP.  From Sakaue (1999)

The oxygen quenching process in a porous PSP is different from that in a conventional polymer PSP.  Figures 2.3(a) and (b) illustrate two scenarios of the oxygen quenching in a porous PSP; in both cases, a luminophore molecule is adsorbed on a porous surface opened to the working gas.  In Fig. 2.3(a), a gaseous oxygen molecule collides to a luminophore molecule, resulting in the oxygen quenching; in this case, the oxygen quenching process is controlled by a collision between the gaseous oxygen molecule and luminophore molecule adsorbed on the surface.  In other case, as illustrated in Fig. 2.3(b), an adsorbed oxygen molecule can cause quenching by diffusing to a luminophore molecule and hence the oxygen quenching process is related to adsorption and diffusion of the oxygen molecule into the luminophore molecule.  Wolfgang and Gafney (1983) studied the oxygen quenching of tris(2,2'-bipyridyl)ruthenium (Ru(bpy)) on a porous Vycor glass and reported that Ru(bpy) was quenched by either a gaseous oxygen molecule colliding to the adsorbed Ru(bpy) or an adsorbed oxygen molecule.  
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Fig. 2.3. Oxygen quenching mechanisms for porous PSP: (a) Collision controlled model; (b) Adsorption controlled model.  From Sakaue (1999)

Two photophysical models were developed by Sakaue (1999) to describe the oxygen quenching on a porous surface by considering the Eley-Rideal (ER) mechanism and Langmuir-Hinshelwood (LH) mechanism.  The ER mechanism is a target annihilation reaction between a gaseous oxygen molecule and an adsorbed luminophore molecule; it is a collision-controlled reaction (Samuel et al. 1992).  The LH mechanism, which is adsorption/surface-diffusion-controlled, is a reaction between an adsorbed oxygen molecule and an adsorbed luminophore molecule (Hinshelwood 1940).  Samuel et al. (1992) studied the oxygen quenching of Ru(bpy) on a porous silica surface over a temperature range of 88-353 K and reported that at low temperatures the oxygen quenching was diffusion-controlled (the LH type).  As temperature increased, the reaction remained the LH type in nature, but it was increasingly influenced by the target annihilation reaction (the ER type).  At higher temperatures, the reaction was no longer the LH type, which was dominated by the ER type reaction.  In these cases, the rate constant kq for the oxygen quenching and the oxygen concentration [O2] were described in a different manner from that for a conventional polymer binder.  

2.3.1. Collision-Controlled Model

When the rate constant kq for the oxygen quenching and the oxygen concentration [O2] are considered in a collision-controlled reaction, the Stern-Volmer relation is called the collision-controlled model to distinguish from the diffusion-controlled relation (or adsorption-controlled model).  The rate of collision of the oxygen molecules on a porous surface is 
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where 
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 is the partial pressure of oxygen, T is the absolute temperature in Kelvin, Mm is the molar mass, R is the universal gas constant, and N0 is the Avogadro's number.  

The rate of the oxygen quenching is modeled by a product of an effective contact area eff and the collision rate 
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Hence, the rate of the oxygen quenching is proportional to the partial pressure of oxygen or air pressure, but is inversely proportional to the square root of temperature.  The Stern-Volmer relation for the luminescent lifetime then becomes 
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For aerodynamic applications, the Stern-Volmer relation for the collision-controlled quenching process can be written as 
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In Eq. (2.33), the Stern-Volmer coefficients are 
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where the coefficients at the reference conditions are defined as 
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Although Eq. (2.33) has the same form as that for a conventional polymer binder, the Stern-Volmer coefficients Acollision and Bcollision have different physical meanings.  The coefficient Bcollision has weaker temperature dependency that is inversely proportional to the square root of temperature.  In contrast, the temperature dependency of Acollision has the same form as that for a conventional polymer binder; linearization of Eq. (2.34) at T = Tref leads to 
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2.3.2. Adsorption-Controlled Model

Besides the collision-controlled quenching, an adsorbed oxygen molecule on a porous surface can also quench the luminescence; if this is the dominant mechanism, the oxygen quenching is controlled by adsorption and surface diffusion of the adsorbed oxygen on the porous surface.  The oxygen concentration on a porous surface, [O2]ads, can be described by the fractional coverage of oxygen on the porous surface 
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where [O2]adsM is the maximum oxygen concentration on the porous surface.  The Stern-Volmer equation is then written as 
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and accordingly the convenient form of the Stern-Volmer relation for aerodynamic applications is 


[image: image199.wmf]q

q

ref

ref

)

T

(

B

)

T

(

A

I

I

+

=

,
(2.39)
where 
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The rate constant kq for the oxygen quenching, which is surface-diffusion-controlled, can be described by (Freeman and Doll 1983) 
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where RAB is the relative distance between an adsorbed oxygen and an adsorbed luminophore, and D is the diffusivity and the parameter  is a ratio of the modified first-order and second-order Bessel functions of the second kind.  Basically, kq is temperature-dependent due to the Arrhenius relation 
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To describe , either the Langmuir isotherm or the Freundlich isotherm can be used (Carraway et al. 1991b).  The Langmuir isotherm relates  to the partial pressure of oxygen 
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The factor b in Eq. (2.42) is a function of temperature (Butt 1980) 
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where kd is the desorption rate constant per unit surface area and Eads is the heat of adsorption.  Since the oxygen concentration is 
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Eq. (2.44) is the adsorption-controlled model derived from the Langmuir isotherm; for 
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where the Stern-Volmer coefficients are 
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The coefficient ALangmuir has the same temperature dependency as that for a conventional polymer PSP and that in the collision-controlled model, i.e., 
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and the linearized form for ALangmuir is 
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Hence, Eq. (2.48) indicates that ALangmuir is related to the temperature dependency of the non-radiative processes of the luminophore.  On the other hand, BLangmuir has the following temperature dependency 
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where 
[image: image216.wmf]ads

sdiff

l

E

E

E

+

=

.  Rewriting Eq. (2.49) in an exponential form yields 


[image: image217.wmf]ú

ú

û

ù

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

T

T

ln

2

1

1

T

T

T

R

E

exp

B

B

ref

ref

ref

l

ref

,

Langmuir

Langmuir

,
(2.50)
and furthermore, linearization of Eq. (2.50) at T = Tref gives 
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where 
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.  Clearly, the temperature dependency of the coefficient BLangmuir, Eq. (2.51), is associated with both surface diffusion and adsorption; but it has the similar form to Eq. (2.23) for a conventional polymer layer.  The reference Stern-Volmer coefficients 
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The Freundlich isotherm can serve as another model for surface adsorption 
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where the coefficient and exponent are 
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The exponent  is an empirical parameter that is temperature-dependent.  For a known ref at a known reference temperature Tref, EadsM is given by 
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Substituting Eqs. (2.52), (2.53) and (2.54) into Eq. (2.39), we obtain the non-linear Stern-Volmer equation 
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where 
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The coefficient AFreundlich has the same temperature dependency as that in other models 
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and the linearized form for AFreundlich is 
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The coefficient BFreundlich has the temperature dependency 
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Substituting Eqs. (2.41) and (2.53) into (2.59) yields 
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where 
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which is similar to BLangmuir.  After rewriting all the terms in Eq. (2.61) in an exponential form, linearization at T = Tref yields 
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(2.62)
where
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(2.63)
Similar to the Langmuir-type model, the coefficient BFreundlich has the temperature dependency associated with surface diffusion and adsorption.  However, the photophysical model Eq. (2.55) describes the non-linear behavior of the Stern-Volmer plot for a porous PSP.  

2.4. Thermal Quenching

For TSP where the paint layer is not oxygen-permeable such that no oxygen quenching occurs, from Eq. (2.8), the quantum yield of luminescence is simply given by 
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The temperature dependency of the non-radiative processes 
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 can be decomposed into a temperature-independent term and a temperature-dependent term modeled by the Arrhenius relation (Bennett and McCartin 1966; Song and Fayer 1991; Schanze et al. 1997) 
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where 
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 are the rate constants for the temperature-independent and temperature-dependent processes, respectively, Enr is the activation energy for the non-radiative process, R is the universal gas constant, and T is the absolute temperature in Kelvin.  From Eqs. (2.64) and (2.65), we have 
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where 
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 is the luminescent intensity at the absolute zero temperature.  For 
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 over a certain temperature range, the relation between the luminescent intensity and temperature can be approximately written in the Arrhenius form 
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Theoretically speaking, the Arrhenius plot of 
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 versus 1/T gives a straight line of the slope Enr/R.  Experimental results indeed indicate that the simple Arrhenius relation Eq. (2.67) is able to fit data well over a certain temperature range.  However, for some TSPs, experimental data may not fully obey the simple Arrhenius relation over a wider range of temperature.  Thus, as an alternative, an empirical functional relation between the luminescent intensity and temperature is 
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where 
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 could be a polynomial, exponential or other function to fit experimental data over a working temperature range.  Either Eq. (2.67) or Eq. (2.68) can serve as an operational form of the calibration relation for TSP in practical applications.  
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