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5. Image and Data Analysis Techniques
This Chapter describes image and data analysis techniques used in various processing steps for PSP and TSP.  For quantitative PSP and TSP measurements, cameras should be geometrically calibrated to establish the accurate relationship between the image plane and the 3D object space and map data in images onto a surface grid in the object space.  Analytical camera calibration techniques, especially the Direct Linear Transformation (DLT) and the optimization camera calibration method, are discussed.  Since PSP and TSP are based on radiometric measurements, an ideal camera should have a linear response to the luminescent radiance.  For a camera having a non-linear response, radiometric camera calibration is required to determine the radiometric response function of the camera for correcting the image intensity before taking a ratio between the wind-on and wind-off images.  A simple but effective technique is described here for radiometric camera calibration.  The self-illumination of PSP and TSP may cause a significant error near a conjuncture of surfaces when a strong exchange of the radiative energy occurs between neighboring surfaces.  The numerical methods for correcting the self-illumination are generally described and the errors associated with the self-illumination are estimated for a typical case.  The self-illumination correction is usually made on a surface grid in the object space since it highly depends on surface geometry.  

A standard procedure in the intensity-based method for PSP and TSP is to take a ratio between the wind-on and wind-off images to eliminate the effects of non-homogenous illumination intensity, dye concentration, and paint thickness.  However, since a model deforms due to aerodynamic loads, the wind-on image does not align with the wind-off image.  The image registration technique based on a mathematical transformation between the wind-on and wind-off images is described to re-align these images.  A crucial step for PSP is to accurately convert the luminescent intensity to pressure; cautious use of calibration relations with a correction of the temperature effect of PSP is discussed.  PSP measurements in low-speed flows are particularly difficult since a very small pressure change has to be sufficiently resolved by PSP.  The pressure-correction method is described as an alternative to extrapolate the incompressible pressure coefficient from PSP measurements at suitably higher Mach numbers by removing the compressibility effect.  The final processing step for PSP and TSP is to map results in images onto a model surface grid in the object space.  When a model has a large deformation produced by aerodynamic loads, a deformed surface grid should be generated for more accurate PSP and TSP mapping.  A methodology for generating a deformed wing grid is proposed based on videogrammetric aeroelastic deformation measurements conducted simultaneously with PSP and TSP.  

5.1. Geometric Calibration of Camera

5.1.1. Collinearity Equations

After results are extracted from images of PSP and TSP, it is necessary to map the data onto a surface grid in the 3D object space (or physical space) to make the results more useful for design engineers and researchers.  The collinearity equations in photogrammetry provide the perspective relationship between the 3D coordinates in the object space and corresponding 2D coordinates in the image plane (Wong 1980; McGlone 1989; Mikhail et al. 2001; Cooper and Robson 2001; Liu 2002).  A key problem in quantitative image-based measurements is camera calibration to determine the camera interior and exterior orientation parameters, and lens distortion parameters in the collinearity equations.  Simpler resection methods have often been used in PSP and TSP systems to determine the camera exterior orientation parameters under an assumption that the interior orientation and lens distortion parameters are known (Donovan et al. 1993; Le Sant and Merienne 1995).  The standard Direct Linear Transformation (DLT) was also used to obtain the interior orientation parameters in addition to the exterior orientation parameters (Bell and McLachlan 1993, 1996).  An optimization method for comprehensive camera calibration was developed by Liu et al. (2000), which can determine the exterior orientation, interior orientation and lens distortion parameters (as well as the pixel aspect ratio for a CCD array) from a single image of a 3D target field.  The optimization method, combined with the DLT, allows automatic camera calibration without an initial guess of the orientation parameters; this feature particularly facilitates PSP and TSP measurements in wind tunnels.  Besides the DLT, a closed-form resection solution given by Zeng and Wang (1992) is also useful for initial estimation of the exterior orientation parameters of a camera based on three known targets.  

Figure 5.1 illustrates the perspective relationship between the 3D coordinates 
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.  Likewise, the orientation of the camera is characterized by three Euler orientation angles.  The orientation angles and location of the perspective center are referred to in photogrammetry as the exterior orientation parameters.  On the other hand, the relationship between the perspective center and the image coordinate system is defined by the camera interior orientation parameters, namely, the camera principal distance c and the photogrammetric principal-point location 
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.  The principal distance, which equals the camera focal length for a camera focused at infinity, is the perpendicular distance from the perspective center to the image plane, whereas the photogrammetric principal-point is where a perpendicular line from the perspective center intersects the image plane.  Due to lens distortion, however, perturbation to the imaging process leads to departure from collinearity that can be represented by the shifts dx and dy of the image point from its ‘ideal’ position on the image plane.  The shifts dx and dy are modeled and characterized by the lens distortion parameters.  
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Fig. 5.1. Camera imaging process and the interior orientation parameters

The perspective relationship is described by the collinearity equations 


[image: image6.wmf]W

V

c

)

Z

Z

(

m

)

Y

Y

(

m

)

X

X

(

m

)

Z

Z

(

m

)

Y

Y

(

m

)

X

X

(

m

c

y

d

y

y

W

U

c

)

Z

Z

(

m

)

Y

Y

(

m

)

X

X

(

m

)

Z

Z

(

m

)

Y

Y

(

m

)

X

X

(

m

c

x

d

x

x

c

33

c

32

c

31

c

23

c

22

c

21

p

c

33

c

32

c

31

c

13

c

12

c

11

p

-

=

-

+

-

+

-

-

+

-

+

-

-

=

+

-

-

=

-

+

-

+

-

-

+

-

+

-

-

=

+

-

,
(5.1)
where mij (i, j = 1, 2, 3) are the elements of the rotation matrix that are functions of the Euler orientation angles 
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The orientation angles 
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 are essentially the pitch, yaw, and roll angles of a camera in an established coordinate system.  The terms dx and dy are the image coordinate shifts induced by lens distortion, which can be modeled by a sum of the radial distortion and decentering distortion (Fraser 1992; Fryer1989) 
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where 
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Here, K1 and K2 are the radial distortion parameters, P1 and P2 are the decentering distortion parameters, and x’ and y’ are the undistorted coordinates in the image plane.  When lens distortion is small, the unknown undistorted coordinates can be approximated by the known distorted coordinates, i.e., 
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.  For large lens distortion, an iterative procedure can be employed to determine the appropriate undistorted coordinates to improve the accuracy of estimation.  The following iterative relations can be used: 
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The collinearity equations Eq. (5.1) contain a set of the camera parameters to be determined by camera calibration; the parameter sets 
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 in Eq. (5.1) are the exterior orientation, interior orientation, and lens distortion parameters of a camera, respectively.  Analytical camera calibration techniques have been used to solve the collinearity equations with the lens distortion model for the camera exterior and interior parameters (Rüther 1989; Tsai 1987).  Since Eq. (5.1) is non-linear, iterative methods of least-squares estimation have been used as a standard technique for the solution of the collinearity equations in photogrammetry (Wong 1980; McGlone 1989).  However, direct recovery of the interior orientation parameters is often impeded by inversion of a nearly singular normal-equation-matrix in least-squares estimation.  The singularity of the normal-equation-matrix mainly results from strong correlation between the exterior and interior orientation parameters.  In order to reduce the correlation between these parameters and enhance the determinability of 
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, Fraser (1992) suggested the use of multiple camera stations, varying image scales, different camera roll angles and a well-distributed target field in three dimensions.  These schemes for selecting suitable calibration geometry improve the properties of the normal equation matrix.  In general, iterative least-squares methods require a good initial guess to obtain a convergent solution.  Mathematically, the singularity problem can be treated using the singular value decomposition that produces the best solution in a least-squares sense.  Also, the Levenberg-Marquardt method can stay away to some extent from zero pivots (Marquardt 1963).  

Nevertheless, multiple-station, multiple-image methods for camera calibration are not easy to use in a wind tunnel environment where only a limited number of windows are available for cameras and the positions of cameras are fixed.  Thus, it is highly desirable for PSP and TSP to have a single-image, easy-to-use calibration method devoid of the singularity problem and an initial guess.  In the computer vision community, Tsai’s two-step method is particularly popular.  Instead of directly solving the standard collinearity equations Eq. (5.1), Tsai (1987) used a radial alignment constraint to obtain a linear least-squares solution for a subset of the calibration parameters, whereas the rest of the parameters including the radial distortion parameter are estimated by an iterative scheme.  Tsai’s method is fast, but less accurate than the standard photogrammetric methods.  In addition, the radial alignment constraint prevents this method from incorporating a more general model of lens distortion.  Here, we first discuss the DLT that can automatically provide initial values of the camera parameters and then describe an optimization method for more comprehensive calibration of a camera.  

5.1.2. Direct Linear Transformation

The Direct Linear Transformation (DLT), originally proposed by Abdel-Aziz and Karara (1971), can be very useful to determine approximate values of the camera parameters.  Rearranging the terms in the collinearity equations leads to the DLT equations 
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The DLT parameters 
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 are related to the camera exterior and interior orientation parameters 
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 (McGlone 1989).  Unlike the standard collinearity equations Eq. (5.1), Eq. (5.5) is linear for the DLT parameters when the lens distortion terms dx and dy are neglected.  In fact, the DLT is a linear treatment of what is essentially a non-linear problem at the cost of introducing two additional parameters.  The matrix form of the linear DLT equations for M targets is 
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Because of its simplicity, the DLT is widely used in both non-topographic photogrammetry and computer vision.  When dx and dy cannot be ignored, however, iterative solution methods are still needed and the DLT loses its simplicity.  In general, the DLT can be used to obtain fairly good values of the exterior orientation parameter and the principal distance, although it gives a poor estimate for the principal-point location 
[image: image46.wmf])

y

,

(x

p

p

 (Cattafesta and Moore 1996).  Therefore, the DLT is valuable since it can provide initial approximations for more accurate methods like the following optimization method discussed below for comprehensive camera calibration.  

5.1.3. Optimization Method

In order to develop a simple and robust method for comprehensive camera calibration, the singularity problem must be dealt with to solve the collinearity equations.  Liu et al. (2000) proposed an optimization method based on the following insight.  Strong correlation between the interior and exterior orientation parameters leads to the singularity of the normal-equation-matrix in least-squares estimation for a complete set of the camera parameters.  Therefore, to eliminate the singularity, least-squares estimation is used for the exterior orientation parameters only, while the interior orientation and lens distortion parameters are calculated separately using an optimization scheme.  This optimization method contains two separate, but interacting procedures: resection for the exterior orientation parameters and optimization for the interior orientation and lens distortion parameters. 

When the image coordinates 
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 are given in pixels, we express the collinearity equations Eq. (5.1) as 
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where Sh and Sv are the horizontal and vertical pixel spacings (mm/pixel) of a CCD array, respectively.  In general, the vertical pixel spacing is fixed and known for a CCD camera, but the effective horizontal spacing may be variable.  Thus, an additional parameter, the pixel-spacing-aspect-ratio 
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 for the interior orientation and lens distortion parameters in addition to the pixel-spacing-aspect-ratio.  For given values of 
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 in Eq. (5.6) can be found using an iterative least-squares method, referred to as resection in photogrammetry.  The linearized collinearity equations for targets (n = 1, 2, (, M) are written as 
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 is the correction term for the exterior orientation parameters, V is the 2M(1 residual vector, A is the 2M(6 configuration matrix, and l is the 2M(1 observation vector.  The configuration matrix A and observation vector l in the linearized collinearity equations are 
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where the operator 
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A least-squares solution to minimize the residuals V for the correction term is 
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.  Combined with the DLT, the optimization method allows rapid and comprehensive automatic camera calibration to obtain a total of 14 camera parameters from a single image without requiring a guess of the initial values.  
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Fig. 5.2. Step target plate for camera calibration

The optimization method was used for calibrating a Hitachi CCD camera with a Sony zoom lens (12.5 to 75 mm focal length) and an 8 mm Cosmicar television.  As shown in Fig. 5.2, a three-step target plate with a 2-in step height provided a 3D target field for camera calibration, on which 54 circular retro-reflective targets of a 0.5-in diameter spaced out 2 inches apart are placed.  Figure 5.3 shows the principal distance given by the optimization method versus zoom setting for the Sony zoom lens.  Figures 5.4 and 5.5 show, respectively, the principal-point location and radial distortion coefficient K1 as a function of the principal distance for the Sony zoom lens.  The results given by the optimization method are in reasonable agreement with measurements for the same lens using optical equipment in laboratory (Burner 1995).  The optimization method was also used to calibrate the same Hitachi CCD camera with an 8 mm Cosmicar television lens.  Table 5.1 lists the calibration results given by the optimization method compared well with those obtained using optical equipment.  

In order to determine accurately the interior orientation parameters, a target field should fill up an image for camera calibration.  In large wind tunnels, however, a camera is often located far from a model such that the target field looks small in the image plane.  In this case, a two-step approach is suggested that determines the interior and exterior orientation parameters separately.  First, placing a target plate near the camera to produce a sufficiently large target field in the image plane, we can determine accurately the interior orientation parameters using the optimization method.  Next, assuming that the determined interior orientation parameters are fixed for locked camera setting, we obtain the exterior orientation parameters using a resection scheme from the target field in a given wind-tunnel coordinate system.  
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Fig. 5.3. Principal distance vs. zoom setting for a Sony zoom lens.  From Liu et al. (2000)
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Fig. 5.4. Principal-point location as a function of the principal distance for a Sony zoom lens connected to a Hitachi camera.  From Liu et al. (2000)
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Fig. 5.5. The radial distortion coefficient as a function of the principal distance for a Sony zoom lens connected to a Hitachi camera.  From Liu et al. (2000)

Table 5.1. Calibration for Hitachi CCD camera with 8 mm Cosmicar TV lens

Interior orientation
c (mm)
xp (mm)
yp (mm)
Sh /Sv
K1 (mm-2)
K2 (mm-4)
P1 (mm-1)
P2 (mm-1)

Optimization
8.133
-0.156
0.2014
0.99238
0.0026
3.3(10-5
1.8(10-4
3(10-5

Optical techniques
8.137
-0.168
0.2010
0.99244
0.0027
4.5(10-5
1.7(10-4
7(10-5

5.2. Radiometric Calibration of Camera

Since PSP and TSP are based on radiometric measurements, a CCD camera used for measurements should have a good linear response of the electrical output to the scene radiance.  However, there are many stages of image acquisition that may introduce non-linearity; for example, video cameras often include some form of ‘gamma’ mapping.  When the radiometric response function of a camera is known, the non-linearity can be corrected.  Here, a simple algorithm is described to determine the radiometric response function of a camera from a scene image taken at different exposures.  First, we define 
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Two images of a scene are taken at two different exposures.  According to the camera formula (Holst 1998), 
[image: image144.wmf])

(

I

x

 is proportional to the integration time 
[image: image145.wmf]INT

t

 and inversely proportional to the square of the f-number F.  Thus, we have the following functional equation for 
[image: image146.wmf](

)

x

f

, 


[image: image147.wmf](

)

12

2

1

R

)

(

f

/

f

=

x

x

,
(5.9)

where the subscripts 1 and 2 denote the image 1 and image 2, and the factor 
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Since 
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where the base functions 
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 are the Chebyshev functions although other orthogonal functions and non-orthogonal functions like polynomials can also be used.  Substitution of Eq. (5.11) to Eq. (5.9) leads to the following equations for the coefficients 
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For selected M pixels in a scene image, Eq. (5.12) constitutes a system of M+1 equations for the N+1 unknowns 
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An iteration scheme can be used to give an improved value of 
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.  Figure 5.6 shows two images taken by a Cannon digital still camera (EOS D30) at two different f-numbers of F = 4.0 and F = 5.6, where Ansel Adams’ photograph of Mirror Lake of Yosemite was used as a test scene providing a broad range of the gray level for radiometric calibration.  Figure 5.7 shows the radiometric response function of the camera retrieved from the two images, where six terms of the Chebyshev functions in Eq. (5.11) were used.  The response function of the Cannon digital still camera exhibits a non-linear behavior; it is also different for red, green and blue (RGB) color channels.  
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Fig. 5.6. Two images of Mirror Lake of Yosemite (Ansel Adams 1935) taken by a Cannon digital still camera (EOS D30) at different F-numbers (a) F = 4.0 and (b) F = 5.6 for radiometric calibration of the camera
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Fig. 5.7. Response functions of a Cannon digital still camera (EOS D30) for R, G, and B color channels obtained from radiometric calibration

5.3. Correction for Self-Illumination

The self-illumination of PSP and TSP results from the luminescent contribution to a point on a surface from all visible neighboring points; it becomes appreciable near a conjuncture of two surfaces and on a concave surface (Ruyten 1997a, 1997b, 2001a; Ruyten and Fisher 2001; Le Sant 2001b).  Although the self-illumination can be to certain extent suppressed by taking a ratio between a wind-on image and a wind-off image, it cannot be eliminated without considering an exchange of the radiative energy between neighboring surfaces, which may produce an error in data reduction of PSP and TSP.  Therefore, we need to know how much radiative energy leaves from an area element and travels toward another element.  The geometric relations for this inter-surface process are known as view factors, configuration factors, shape factors, or angle factors (Modest 1993).  We consider diffuse surfaces that absorb and emit diffusely, and also reflect the radiative energy diffusely.  The view factor 
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where 
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 (Modest 1993).  The law of reciprocity 
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 is valid for these view factors.  The view factor is a function of the geometric parameters.  Methods for evaluating the view factors were discussed by Modest (1993) and a large collection of the view factors for simple geometric configurations was complied by Howell (1982).  For partially specular surfaces, the determination of the view factors is more complicated since the bidirectional reflectance distribution function (BRDF) of the paint must be known (Nicodemus et al. 1977; Asmail 1991).  
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Fig. 5.8. Radiative exchange between two surface elements

The self-illumination correction is applied to an image intensity (or brightness intensity) field denoted by I in this sub-section after it is mapped onto a model surface grid in the object space.  Because the image intensity is proportional to the luminescent energy flow rate, the image intensity 
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where 
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 is the reflectivity of the wall-paint interface at the luminescent wavelength.  In simulations, given a set of the intrinsic intensities 
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The more efficient Gauss-Seidel iteration scheme was used by Ruyten and Fisher (2001).  In measurements, since the image intensity 
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 is known in PSP and TSP images, an explicit relation is used to correct the self-illumination and recover the intrinsic intensity 
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(5.16)
The steps for correcting the self-illumination are: (1) measuring the reflectivity 
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; (2) defining a surface grid consisting of N surface elements 
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; (4) mapping the image intensity 
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 onto the surface grid; (5) calculating the intrinsic (corrected) intensity 
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 using Eq. (5.16); and (6) calculating a ratio of the intrinsic (self-illumination-corrected) intensities and converting it to pressure or temperature.  Ruyten and Fisher (2001) conducted a numerical simulation of correcting the self-illumination for a PSP test of the Alpha jet and found that the error associated with the self-illumination in PSP measurements could reach several percents of actual pressure.  
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Fig. 5.9. Wedge-shaped conjunction of two plates

Here, we consider a simple but representative geometric configuration, a wedge-shaped conjunction of two infinitely large plates, as shown in Fig. 5.9; this case allows an analytical estimate of the error induced by the self-illumination.  The image intensity at a location on the plate 1 is 


[image: image216.wmf]ò

-

+

=

2

plate

2

dA

dA

2

wp

)

0

(

1

1

dA

dF

I

I

I

1

2

2

l

r

.
(5.17)
Assuming that the image intensity at the plate 2 is homogenous, by integrating the view factor for this configuration (Modest 1993), we obtain the image intensity at the plate1 affected by the plate 2 
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where the parameter 
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When the parameter 
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 is small, the image intensity ratio at the plate 1 is 
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The parameter 
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 reflects the difference of the relative influence of the plate 2 on the pate 1 between the wind-off reference and wind-on conditions.  Using the Stern-Volmer relation for PSP, we obtain an estimate for the pressure error associated with the self-illumination for the wedge configuration 
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where A and B are the Stern-Volmer coefficients, and 
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 are, respectively, the intrinsic PSP-derived pressures in the wind-on and wind-off reference conditions that are not affected by the self-illumination.  Similarly, using the Arrhenius relation for TSP, we have an estimate for the temperature error associated with the self-illumination for the wedge configuration 
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where 
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 is the universal gas constant, 
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[image: image231.wmf])

0

(

T

 is the intrinsic TSP-derived temperature that is not affected by the self-illumination.  

The above discussion is based on an assumption that the luminescent paint surface is a diffuse surface or Lambertian surface.  Nevertheless, a real paint surface is neither Lambertian nor specular.  To characterize reflection on a general surface, the bidirectional reflectance distribution function (BRDF) was introduced by Nicodemus et al. (1977).  As shown in Fig. 5.10, the incident radiance is generally a function of the incident direction defined by the incident polar angle and azimuthal angle 
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The reflection radiance 
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 is quantitatively characterized by the BRDF 
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where 
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The BRDF has a unit of steradian-1.  Here, the conventional radiometric notations 
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 and 
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 are used for radiance and irradiance, which are also applicable to the luminescent emission.  

The BRDF depends on a surface roughness distribution.  For a perfectly diffuse surface where the reflection radiance is isotropic, i.e., 
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 (Horn and Sjoberg 1979).  For a general surface, the BRDF can be derived based on either the wave equation for electromagnetic waves or geometrical optics models (Beckmann and Spizzichino 1963; Torrance and Sparrow 1967; Nayar et al. 1991).  Asmail (1991) gave a bibliographical review on the BRDF.  From a viewpoint of application, empirical expressions for the scattered radiance from a rough surface are very useful due to their simplicity (Cook and Torrance 1981; Haussecker 1999).  An empirical model for a single light source is 
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where the first, second and third terms are, respectively, the contributions from the ambient reflection, diffuse reflection, and specular reflection.  In Eq. (5.26), 
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Le Sant (2001b) measured the BRDF for the B1 PSP paint with talc using a BRDF calibration rig.  As illustrated in Fig. 5.11, the BRDF calibration rig included a lamp for illumination and a spectrometer to measure the reflected light from a sample.  The lamp emitted white light, enabling the calibration of the BRDF in the visible range; the lamp moved from 0o at the vertical position to 60o.  The zenith (or polar) angle of the spectrometer moved from 0o to 60o and the azimuth angle moved from 0o to 180o, where 180o was in the opposite direction of the emission.  Figure 5.12 shows the measured BRDF for the B1 paint, which was nearly Lambertian when the zenith (or polar) angle of illumination was 10°, while specular reflection occurred when the zenith angle increased further.  The maximum value was always achieved in the specular direction.  The low value obtained at the azimuth angle of 0° was incorrect since the spectrometer was in the front of the lamp and thus the PSP sample was no longer illuminated.  The measured BRDF showed a superposition of diffuse reflection and specular reflection.  A specular peak was observed at the zenith angle of 60° as well as a secondary peak at the azimuth angle of 90°.  The value of the diffuse reflection factor depended on the zenith angle of illumination.  Le Sant (2001b) was able achieve a good fit to the measured BRDF using the modified Phong model (Phong 1975), as shown in Fig. 5.13, and the modeled BRDF captures the main features of the measured BRDF except the secondary specular peaks.  
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Fig. 5.10. Vectors of incident, reflecting, and viewing directions
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Fig. 5.11. The zenith (or polar) and azimuth angles in the BRDF calibration rig.  From Le Sant (2001b)
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Fig. 5.12. The measured BRDF of the B1 paint at the illumination zenith angles of 10, 20, 30, 40, 50 and 60 degrees.  From Le Sant (2001b)
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Fig. 5.13. The modeled BRDF of the B1 paint at the illumination zenith angles of 10, 20, 30, 40, 50 and 60 degrees using the modified Phong model.  From Le Sant (2001b)

Le Sant (2001b) also studied the self-illumination in a corner to validate a correction algorithm.  The corner was painted with a Pyrene-based paint providing an image significantly affected by the self-illumination near the junction of the two plates, as shown in Fig. 5.14.  Then, the left plate was covered with a black sheet, removing the effect of the self-illumination on the right plate, as shown in the right image in Fig. 5.14.  Figure 5.15 shows results before and after correcting the self-illumination based on the diffuse surface model and the Phong model.  The self-illumination correction was effective; the effect of the self-illumination was reduced to 15% from about 40% near the junction.  This paint behaved mostly like a diffuse paint such that the Phong model did not exhibit a significant improvement.  Although the Phong model might improve the accuracy of correction for a surface with strong specular reflection, the computation time for the Phong model was much longer than that for the diffuse surface model.  
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Fig. 5.14. Self-illumination in a corner coated with PSP.  From Le Sant (2001b)
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Fig. 5.15. Self-illumination correction using the diffuse and Phong models.  From Le Sant (2001b)

5.4. Image Registration

The intensity-based method for PSP and TSP requires a ratio between the wind-on and wind-off images of a painted model.  Since a model deforms due to aerodynamic loads, the wind-on image does not align with the wind-off image; therefore these images have to be re-aligned before taking a ratio between the images.  The image registration technique, developed by Bell and McLachlan (1993, 1996) and Donovan et al. (1993), is based on an ad-hoc transformation that maps the deformed wind-on image coordinates 
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.  In order to register the images, some black fiducial targets are placed on a model.  When the correspondence between the targets in the wind-off and wind-on images is established, a transformation between the wind-off and wind-on image coordinates of the targets can be expressed as 


[image: image269.wmf]å

å

=

=

)

y

(

)

x

(

b

y

)

y

(

)

x

(

a

x

on

j

on

i

ij

off

on

j

on

i

ij

off

f

f

f

f

.
(5.27)
The base functions 
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 are either the orthogonal functions like the Chebyshev functions or the non-orthogonal power functions 
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 used by Bell and McLachlan (1993, 1996) and Donovan et al. (1993).  Given the image coordinates of the targets placed on a model, the unknown coefficients aij and bij can be determined using least-squares method to match the targets between the wind-on and wind-off images.  For image warping, one can also use a 2D perspective transform (Jähne 1999) 
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Although the perspective transform is non-linear, it can be reduced to a linear transform using the homogeneous coordinates.  The perspective transform is collinear that maps a line into another line and a rectangle into a quadrilateral.  Therefore, Eq. (5.28) is more restricted than Eq. (5.27) for PSP and TSP applications.  

Before the image registration technique is applied, the targets must be identified and their centroid locations in images must be determined.  The target centroid 
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where 
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 is the gray level on an image.  When a target contains only a few pixels and the target contrast is not high, the centroid calculation using the definition Eq. (5.29) may not be accurate.  Another method for determining the target location is to maximize the correlation between a template 
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For the continuous functions 
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.  However, it is found that for small targets in images, sub-pixel misalignment between the template and the scene can significantly reduce the value of 
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 even when the scene contains a perfect replica of the template.  To enhance the robustness of a localization scheme, Ruyten (2001b) proposed an augmented template 
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 allowed more robust and accurate determination of the target locations.  

In PSP and TSP measurements, operators can manually select the targets and determine the correspondence between the wind-off and wind-on images.  However, PSP and TSP measurements with multiple cameras in production wind tunnels may produce hundreds of images in a given test; thus, image registration becomes very labor-intensive and time-consuming.  It is non-trivial to automatically establish the point-correspondence between images taken by cameras at different viewing angles and positions.  This problem is generally related to the epipolar geometry in which a point on an image corresponds to a line on another image (Faugeras 1993).  Ruyten (1999) discussed the methodologies of automatic image registration including searching targets, labeling targets and rejecting false targets.  Unlike ad-hoc techniques, the searching technique based on photogrammetric mapping is more rigorous.  Once cameras are calibrated and the position and attitude of a test model are approximately given by other techniques (such as accelerators and videogrammetric techniques), the targets in the images can be found using photogrammetric mapping from the 3D object space to the image plane (see Section 5.1).  

The aforementioned methods of using a single transformation for the whole image is a global approach for image registration.  A local approach proposed by Shanmugasundaram and Samareh-Abolhassani (1995) divides an image domain into triangles connecting a set of targets based on the Delaunay triangulation (de Berg et al. 1998).  For a triangle defined by the vertex vectors 
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 are referred to as the parametric (barocentric) coordinates and a constraint 
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 is imposed.  When a wind-on pixel is identified inside a triangle and its parametric coordinates is given, the corresponding wind-off pixel can be determined by using the same parametric coordinates in the vertex vectors of the corresponding triangle in the wind-off image.  Finally, the image intensity at that pixel is mapped from the wind-on image to the wind-off image.  This approach is basically a linear interpolation assuming that the relative position of a point inside a triangle to the vertices is invariant under a transformation from the wind-on image to the wind-off image.  Weaver et al. (1999) proposed a so-called Quantum Pixel Energy Distribution (QPED) algorithm that utilizes local surface features to calculate a pixel shift vector using a spatial correlation method.  The local surface features could be targets, pressure taps, and dots formed from aerosol mists in spraying on a basecoat.  Similar to particle image velocimetry (PIV), the QPED algorithm can give a field of the displacement vectors when the registration marks or features are dense enough.  Based on the shift vector field, the wind-on image can be registered.  Although the QPED algorithm is computationally intensive, it can provide the local displacement vectors at certain locations to complement the global image registration techniques.  

5.5. Conversion to Pressure

In PSP measurements, conversion of the luminescent intensity to pressure is complicated by the temperature effect of PSP especially when the surface temperature distribution is not known.  Empirically, a priori calibration relation between air pressure and the relative luminescent intensity is expressed by a polynomial 
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The experimentally determined coefficients 
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 in Eq. (5.31) can be expressed as a polynomial function of temperature.  If a distribution of the surface temperature is not given and the thermal conditions in a priori laboratory calibrations are different from those in wind tunnel tests, a priori relation Eq. (5.31) cannot be directly applied to conversion to pressure.  To deal with this problem, a short-cut approach is in-situ PSP calibration that directly correlates the luminescent intensity to pressure data from taps distributed on a model surface.  In this case, the constant coefficients 
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 in Eq. (5.31) are determined using least-squares method to achieve the best fit to the pressure tap data over a certain range of pressure.  Through in-situ calibration, the effect of a non-uniform surface temperature distribution is actually absorbed into a precision error of least-squares estimation.  When the temperature effect of PSP overwhelms a change of the luminescent intensity produced by pressure, in-situ calibration has a large precision error.  In addition, when the pressure tap data do not cover the full range of pressure on a surface, in-situ PSP conversion may lead to a large bias error in data extrapolation outside the calibration range of pressure.  

A hybrid method between in-situ and a priori methods is the so-called K-fit method originally suggested by M. Morris and recapitulated by Woodmansee and Dutton (1998).  Eq. (5.31) is re-written as 
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where 
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 are called the K-factors.  The reference conditions under which a priori calibration is made in laboratory are generally different from the wind-off conditions in wind tunnels.  While the factor 
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 is generally not known and has to be determined since illumination conditions and photodetectors used in laboratory may be different from those in wind tunnels.  Given the coefficients 
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Bencic (1999) used a similarity variable of the luminescent intensity to scale the temperature effect of certain PSP 
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where 
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 was a function of temperature to be determined by a priori calibration.  Under this similarity transformation, the calibration curves for the paint at different temperatures collapsed onto a single curve with the temperature-independent coefficients, i.e., 
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In this case, instead of using a two-parameter calibration surface in the parametric space, only a single one-parameter relation Eq. (5.34) was used to convert the luminescent intensity ratio to pressure.  Bencic (1999) found that this similarity was valid for a Ruthenium-based PSP used at NASA Glenn.  In fact, as pointed out in Section 3.6, this similarity is a property of the so-called ‘ideal’ PSPs that enjoy the following relations (Puklin et al. 1998; Coyle et al. 1999) 
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Puklin et al. (1998) found that PtTFPP in FIB polymer was an ‘ideal’ PSP over a certain range of temperature.  Note that this similarity (or invariance) is not the universal property of a general PSP.  

5.6. Pressure Correction for Extrapolation to Low-Speed Data

PSP is particularly effective in high subsonic, transonic and supersonic flow regimes.  However, in low-speed flows where the Mach number is typically less than 0.3, PSP measurement is a challenging problem since a very small pressure change may not be sufficiently resolved by PSP.  The major error sources, notably the temperature effect, image misalignment and CCD camera noise, must be minimized to obtain acceptable quantitative pressure results at low speeds.  The resolution of PSP measurements is eventually limited by the photon shot noise of a CCD camera.  Liu (2003) proposed a pressure-correction method as an alterative to extrapolate low-speed pressure data without directly attacking the intrinsic difficulty of PSP instrumentation for low-speed flows.  This method is able to obtain the incompressible pressure coefficient from PSP measurements at suitably higher Mach numbers (typically Mach 0.3-0.6) by removing the compressibility effect.  

It is noticed that there is a significant difference between the responses of the absolute pressure p and the pressure coefficient 
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In contrast, the sensitivity of pressure to the Mach number is approximately 
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For 
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.  Clearly, PSP can take the advantage of the relative insensitivity of 
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 to the Mach number to obtain the approximate incompressible pressure coefficient distribution at suitably higher Mach numbers.  Furthermore, the compressibility effect can be corrected using the pressure-correction methods.  

Historically, the pressure-correction formulas were derived in order to extrapolate the pressure coefficient in subsonic compressible flows from the incompressible flow theory and low-speed pressure measurements.  In contrast, for PSP applications, the pressure-correction formulas are used to transform the compressible 
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.  The theoretical foundation for pressure correction in 2D potential flows is well established.  The linearized theory for subsonic compressible flows gives the Prandtl-Glauert rule (Anderson 1990) 
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The use of a hodograph solution of the non-linear potential equation gives the Karman-Tsien rule (Anderson 1990) 
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For PSP measurements on 2D airfoils at suitably high Mach numbers, both the Prandtl-Glauert rule and Karman-Tsien rule can be used to recover the incompressible pressure coefficient.  Bell and Hand (1998) used the Prandtl-Glauert rule for the purpose of improving the image ratioing procedure of PSP to obtain a pseudo wind-off pressure coefficient at a suitably low velocity.  For complex 3D viscous flows such as separated flows, however, a general pressure-correction method is required.  

Liu (2003) developed an iterative pressure-correction method for 3D flows.  For 
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Eq. (5.40) is valid for not only potential flows, but also complex viscous flows over a 3D body.  Because 
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Eq. (5.41) indicates that the pressure correction in 3D flows depends on not only 
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, but also one space coordinate Y.  Note that the functional form of Eq. (5.41) remains valid after the coordinate Y is switched to another coordinate X.  When 
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[image: image352.wmf])

Y

,

C

(

F

pinc

 as a polynomial function, Eq. (5.41) becomes 


[image: image353.wmf]å

=

¥

+

»

N

0

n

n

pinc

n

2

pinc

p

C

)

Y

(

a

M

C

C

.
(5.42)

When the distributions of 
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 can be determined using least-squares method.  In wind tunnel measurements, pressure tap data in subsonic flow and the corresponding low-speed flow can be used to establish the relationship between 
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An iteration scheme for solving Eq. (5.43) is described below.  

(1) Give the initial distribution 
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After processing for a large set of intersections, we can recover the distribution of 
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 on the whole surface.  Unlike the classical pressure-correction formulas for 2D flows, this iterative method is a non-local approach that has to be done along an intersection.  The selection of the order N of the polynomial in Eq. (5.43) depends on the complexity of the Mach number effect on the pressure distribution along the intersection.  For 2D flows and near-2D flows, N = 2 is sufficient; for more complex flows, the order of the polynomial could be higher.  The number of available data points on an intersection eventually limits the order of the polynomial.  

For PSP, data processing is typically done in the image plane rather than in the object space.  Therefore, for convenience, the pressure-correction method should be used in the image plane.  The aforementioned analysis is made in an arbitrary object-space coordinate system 
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, the iterative pressure correction method can be directly applied to rows or columns in PSP images.  

There are limitation conditions for application of the iterative pressure-correction method (actually for any pressure-correction method).  First, the two Mach numbers 
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 should be lower than the critical Mach number at which flow becomes sonic at certain point on a surface.  Secondly, the pressure-correction method relies on an assumption that the pressure distribution does not have a drastic change due to the Reynolds number effect as the Mach number increases from 
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.  When the Reynolds number effect on pressure overwhelms the effect of the Mach number, the pressure-correction method cannot produce correct results because the flow pattern has been qualitatively changed.  This situation may happen on a high-lift model under certain testing conditions in certain flow separation regions that are particularly sensitive to the Reynolds number effect.  Fortunately, there is a large class of flows in which the Reynolds number does not significantly affect the surface pressure distribution, such as attached flows and certain separated flows whose separation and re-attachment lines are fixed.  For these flows, the pressure-correction method is applicable.  

The iterative pressure-correction method was validated for flows over a circular cylinder, sphere, prolate spheroid, transonic body and delta wing (Liu 2003).  Figure 5.16 shows the incompressible 
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 distribution on a circular cylinder recovered by the iterative pressure-correction method along with the results obtained using the Prandtl-Glauert rule and Karman-Tsien rule.  The iterative method produced excellent recovery of 
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 given by the incompressible solution of potential flow over a cylinder (Lighthill 1954).  The Karman-Tsien rule also gave a good correction while the Prandtl-Glauert rule was not accurate in the low-pressure region 
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.  Figure 5.17 shows the pressure correction for a prolate spheroid of a fineness ratio of 6 at the angle of attack of 5.6o and zero ellipsoidal coordinate (Matthews 1953).  The iterative method used 
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.  Even though these Mach numbers are quite high, the iterative method still produced good results since the Mach numbers were less than the critical Mach number of 0.904 in this case.  To examine the capability of the iterative pressure-correction method for complex vortical separated flows, it was also used to recover 
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Fig. 5.16. Pressure correction for a circular cylinder to recover the incompressible pressure coefficient.  From Liu (2003)
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Fig. 5.17. Pressure correction for a prolate spheroid to recover the incompressible pressure coefficient.  From Liu (2003)

5.7. Generation of Deformed Surface Grid

For a more accurate representation of data, PSP and TSP results in images should be mapped onto a deformed surface grid of a model rather than a rigid surface grid when the model undergoes a large deformation in wind tunnel tests.  Aeroelastic deformation data for a model can be obtained using videogrammetric model deformation (VMD) measurement technique (Burner and Liu 2001).  Hence, PSP and TSP systems should be integrated with a VMD system for a fusion of pressure and temperature data with deformation data (Bell and Burner 1998; Liu et al. 1999).  There are two approaches for integration of PSP/TSP with VMD.  The first approach uses PSP/TSP simultaneously with VMD as a separate and independent system, while VMD operated under the PSP/TSP lighting and surface conditions provides deformation data for generating a deformed surface grid.  The advantage of this approach is that the structure of a PSP/TSP system is not changed and PSP/TSP operation suffers no interference from VMD operation in large production wind tunnels.  In contrast, the second approach uses the same camera for both PSP/TSP and VMD measurements at the same time; VMD software is integrated as an additional part of the PSP/TSP software package.  Instead of a nearly normal view of a camera for pure PSP/TSP application, the combined system requires an oblique viewing angle of a camera to achieve good position sensitivity for VMD measurements.  

Usually, VMD gives wing deformation characterized by twist and bending of a wing.  When the local translation and twist are measured by VMD at different spanwise locations of a wing, a transformation of translation and rotation can be used to generate a deformed surface grid of the wing.  At a spanwise location Y, the deformed coordinate 
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The translation vector at a spanwise location Y of the wing is 
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where the twist 
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 is a function of the spanwise location Y.  When the bending relative to the wingspan is small, the spanwise location does not change much, i.e., 
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, and the wing airfoil section remains the same.  For illustration, we consider a fictional wing with a NACA0012 airfoil section and assume that the spanwise distributions of twist and bending are given by 
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, where b is the semi-span of the wing.  Figure 5.18 shows a deformed surface grid generated using a transformation of translation and rotation.  
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Fig. 5.18. Generation of a deformed surface grid of a wing based on videogrammetric deformation measurements.  From Liu et al. (1999)
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