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6. Lifetime-Based Methods

Compared with the widely used intensity-based method, the greatest advantage of the lifetime-based method is that a relation between the luminescent lifetime and pressure is not dependent on the illumination intensity.  Therefore, the problem associated with non-uniform illumination in the intensity-based method becomes essentially irrelevant to the lifetime method.  Theoretically speaking, lifetime measurement is also insensitive to luminophore concentration, paint thickness, photodegradation and paint contamination; thus a wind-off reference intensity image (or signal) is not required and the troubles associated with model deformation do not exist.  The lifetime method for PSP and TSP can be applied to both a laser scanning system and an imaging system.  Davies et al. (1995) developed a pulsed laser scanning system to directly determine the luminescent lifetime and used it to measure the pressure distributions on a cylinder in subsonic flows and on a wedge at Mach 2.  Torgerson et al. (1996) developed a portable, modulated, two-dimensional laser scanning system that can simultaneously measure both the luminescent intensity and phase angle; this system was used to measure the surface pressure distributions in a low-speed impinging jet and on an airfoil in transonic flow.  The system was further refined by Lachendro et al. (1998) and used to measure the pressure distributions on a wing of a Beechjet in flight tests.  A fluorescent lifetime imaging (FLIM) system for PSP and TSP has become promising as solid-state imaging technology makes a rapid advance.  The FLIM system, originally proposed by biochemists for oxygen detection in a small area (Szmacinski and Lakowicz 1995; Hartmann and Ziegler 1996), was used for PSP measurements in wind tunnels at DERA (Holmes 1998).  DERA’s FLIM system comprised a phase-sensitive camera, modulated blue LED array, associated control hardware and computer.  This Chapter discusses the response of the luminescent emission to a time-varying excitation light and describes the luminescent lifetime measurement techniques, including the pulse method, phase method, amplitude demodulation method and gated intensity ratio method.  Although the discussion is focused on PSP, these techniques are generally applicable to TSP as well.  Measurement uncertainty of the lifetime methods is discussed in Chapter 7.  Similar analyses of the lifetime-based techniques were given by Goss et al. (2000) and Bell (2001).  

6.1. Response of Luminescence to Time-Varying Excitation Light

6.1.1. First-Order Model

The lifetime method for PSP and TSP is based on the response of luminescence to a time-varying excitation light.  The response of the luminescent emission I from a paint to an excitation light E(t) can be described as a first-order system 
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where 
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For a pulse light 
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We consider a general periodic excitation light that is expressed as a Fourier series 
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where 
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 is the circular frequency of the excitation light.  Substitution of Eq. (6.4) into Eq. (6.2) yields the luminescent response after a short transient process 
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Here, the phase angles 
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In the simplest case where the sinusoidally modulated excitation light is 
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where 
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Other waveforms of the excitation light include square and triangle.  Figure 6.1 shows the luminescent response to typical periodic excitations with the square, sine and triangle waveforms for the non-dimensional lifetime of 
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(a) Square waveform
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(b) Sine waveform
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(c) Triangle waveform

Fig. 6.1. Response of luminescence to time-varying excitations of the square, sine and triangle waveforms for 
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6.1.2. Higher-Order Model

In a micro-heterogeneous polymer matrix, the multiple-exponential luminescent emission decay can be observed in contrast to the single-exponential decay in a homogeneous medium (Carraway et al. 1991a; Sacksteder et al. 1993; Xu et al. 1994).  This is associated with the fact that the host matrix has domains that vary with respect to their interaction with the luminescent probe molecules; as a result, the excited molecules decay at different rates, depending on their environments.  Consider a paint system consisting of a number of independently emitting species with different single-exponential lifetimes 
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where 
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 is the weighting constant for the ith component.  The luminescent lifetime of each component obeys the Stern-Volmer relation 
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where 
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 is the Stern-Volmer coefficient for the ith component.  Hence, a higher-order model is needed to describe the luminescent response of an inhomogeneous PSP to a time-varying excitation light.  We consider a third-order model 
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With the initial conditions 
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The lifetimes 
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.  The weighted mean lifetime is usually expressed as 
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.  A general model for the non-exponential decay of luminescence was discussed by Ruyten (2004) and Ruyten and Sellers (2004) considering the continuous decay rate spectrum and excitation response function.

6.2. Lifetime Measurement Techniques

6.2.1. Pulse Method

Our goal is to measure the luminescent lifetime and to determine air pressure through the Stern-Volmer relation.  A variety of methods can be used to extract the lifetime from the luminescent response to a time-varying excitation light.  The pulse method is the most direct method widely used in photochemistry (Lakowicz 1991, 1999).  After PSP is excited by a pulsed illumination light, the luminescent decay is measured using a fast-responding photodetector and acquired using a PC or an oscilloscope.  The lifetime is calculated by fitting the time-resolved data with a single exponential function or a multiple-exponential function.  This direct time-domain approach was used by Davies et al. (1995) for lifetime measurements of PSP.  For certain PSP with multiple distinct lifetimes, the pulse method allows simultaneous determination of pressure and temperature if the lifetimes have sufficiently different Stern-Volmer coefficients as a function of temperature.  In this case, given the lifetimes (
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Clearly, unknown pressure and temperature can be simultaneously determined by solving Eq. (6.13).  

6.2.2. Phase Method

The phase method is a frequency-domain technique that detects a phase shift of the luminescent signal with respect to the modulated excitation light (Torgerson et al. 1996; Torgerson 1997).  Figure 6.2 shows the working principle of the phase method with a lock-in amplifier.  For the sinusoidal excitation light 
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 that is uniquely related to the lifetime for a fixed modulation frequency.  Therefore, pressure is given by 
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The sensitivity of the phase angle 
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 to pressure is defined as 
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The optimal modulation frequency to achieve the maximum sensitivity 
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It must be noted that the maximum sensitivity to pressure does not tell the whole story if the noise is not taken into account.  Besides good sensitivity to pressure, the signal-to-noise ratio (SNR) should be also considered in order to select the optimal modulation frequency.  At a higher frequency, the modulation amplitude and DC components from PSP decrease, resulting in a lower SNR.  Figure 6.3 is a Bode plot showing the response of a typical PSP, PtTFPP in polymer/ceramic composite, to the modulation frequency; the behavior of this PSP is very close to the first-order system.  
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Fig. 6.2. Block diagram of the phase method
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Fig. 6.3. The Bode plot of PSP (PtTFPP in polymer/ceramic composite) at –30(C.  From Lachendro (2000)

6.2.3. Amplitude Demodulation Method

The amplitude demodulation method was used for fluorescent lifetime measurements of tagged biological specimens in a flow cytometer (Deka et al. 1994).  For the sinusoidally modulated excitation light, the luminescent response is given by Eq. (6.7) and the effective amplitude modulation index is 
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.  Clearly, for a fixed modulation frequency, the lifetime can be obtained from measurement of the effective modulation index.  Combination of the Stern-Volmer relation Eq. (6.10) with 
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 yields an expression for pressure as a function of the effective amplitude modulation index 
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To measure the effective amplitude modulation index 
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, Deka et al. (1994) used the following expression 
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where 
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Here, as illustrated in Fig. 6.4, a simpler scheme is proposed to determine 
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by calculating the time-averaged quantities of the modulated luminescent signal.  Define the time-averaged oscillating luminescent signal 
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The mean and standard deviation of the luminescent intensity I(t) are 
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.  Therefore, taking a ratio between these quantities, we obtain a simple formula for the effective amplitude modulation index 
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It is emphasized that Eq. (6.20) is valid only for the sinusoidally modulated excitation light 
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.  Instrumentation for utilizing this methodology is particularly simple since only the mean and standard deviation of the sinusoidal luminescent intensity and excitation light intensity are required.  

The optimal modulation frequency can be obtained by maximizing the sensitivity of 
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The optimal modulation frequency for the maximum sensitivity is 
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For a typical PSP, Ru(dpp) in GE RTV 118, having the lifetime 
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 = 4.7 (s at the ambient conditions, the optimal modulation frequency is 41 kHz.  Figure 6.5 shows the effective amplitude modulation index 
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Fig. 6.4. Block diagram of the amplitude demodulation method
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Fig. 6.5. The effective amplitude modulation index 
[image: image78.wmf]eff

M

 as a function of relative pressure at different sinusoidal modulation frequencies for Ru(dpp) in GE RTV 118 for T = 20oC and pref = 1 atm

6.2.4. Gated Intensity Ratio Method

The gated intensity ratio method, as illustrated in Fig. 6.6, gates the modulated luminescent signal by applying two gain functions over two different intervals, i.e., 
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where the gain functions 
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 elsewhere.  In this case, the square waveform of 
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 serves as an ‘on-off’ gating function.  The functional form for the excitation light and gain function can be selected to meet the requirements for a specific test.  Common combinations are a pulse excitation with a square gain function (pulse-square), a sine-waveform excitation with a square gain function (sine-square), a square-waveform excitation with a square gain function (square-square), and a sine-waveform excitation with a sine-waveform gain function (sine-sine) (Goss et al. 2000).  
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Fig. 6.6. Block diagram of the gated intensity method

The modulated luminescent intensity is integrated over a gate time interval from 0 to 1/2f (0 to ( in 
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where
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Figure 6.7 shows the gated intensity ratio 
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Fig. 6.7. The gated intensity ratio as a function of the non-dimensional luminescent lifetime
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Fig. 6.8. The gated intensity ratio as a function of pressure at different modulation frequencies for Ru(dpp) in GE RTV 118 (T = 20oC and Pref = 1 atm) when the modulated excitation is sinusoidal

For the sinusoidal excitation light, the non-dimensional modulation frequency and modulation depth can be selected to achieve the greatest sensitivity of the gated intensity ratio to pressure defined as 
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The optimal modulation frequency for the maximum sensitivity is 
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For Ru(dpp) in GE RTV 118 that has the lifetime of 4.7 (s at the ambient conditions, the optimal modulation frequency is 59 kHz.  

The appropriate modulation depth H can also be selected according to certain criteria for a balance between the pressure sensitivity and SNR.  It is noted that the off-phase intensity 
[image: image111.wmf]]

)

τ

ω

(1

)

π

/

H

2

(

1

)[

f

2

/

τ

A

(

I

1

2

2

m

2

-

+

-

=

 decreases as H increases and the normalized off-phase intensity I2 at the optimal modulation frequency is 
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.  Therefore, the appropriate modulation depth H of about 0.5 is chosen to achieve both a high SNR and good pressure sensitivity.  

The gated intensity integrals I1 and I2 are taken over the intervals from 0 to 1/2f (0 to ( in 
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).  The time variable t in these integrals is relative to the modulated excitation light.  The integration is carried out immediately after the measurement system receives a trigger signal that is synchronized with the modulated excitation light.  The trigger signal can be provided by a photodiode sensing the excitation light or a driver for the modulator.  In practice, however, the trigger signal may have a time delay relative to the excitation light.  The time delay, although small, may significantly alter the relation between 
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where 
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.  For a typical PSP, Ru(dpp) in GE RTV 118, Figure 6.9 shows the relation between 
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[image: image128.wmf]Δt

ω

 and the curve is even no longer monotonous when the phase shift is large.  The similar change also occurs for the excitation light having other waveforms like the square waveform.  This change due to the trigger signal delay was observed in experiments.  
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Fig. 6.9. The gated intensity ratio 
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 for Ru(dpp) in GE RTV 118 (T = 20oC and Pref = 1 atm), where the sinusoidal modulation frequency is 25 kHz and the modulation depth H is one
Furthermore, the gated intensity ratio method can be applied to the pulse excitation light; in this case, the luminescent intensity signal is 
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For the given gating intervals, the ratio 
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 is only related to the lifetime.  This integration approach was used as an alternative to the time-resolved pulse approach, which was called the time-resolved multiple-gate method by Goss et al. (2000).  Bell (2001) discussed an optimization problem of the gating parameters 
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Although the above methods utilize two gating intervals, three gating intervals can be similarly used and therefore two gated intensity ratios like 
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 can be obtained.  If the two gated intensity ratios have sufficiently different dependencies to pressure and temperature for certain PSP, the surface pressure and temperature distributions can be determined simultaneously from the gated intensity ratio images.  

6.3. Fluorescence Lifetime Imaging

6.3.1. Intensified CCD Camera

The structure of an intensified CCD (ICCD) system is illustrated in Fig. 6.10.  After being impacted by a photon, the photocathode creates photoelectrons that are amplified by the micro channel plate (MCP); the amplified electrons are converted back into photons by a phosphor screen.  These photons are relayed to a CCD by either a fiber-optic bundle or a relay lens; the CCD creates the photoelectrons that are measured.  The biggest advantage of ICCD is its ability of gating that allows the luminescent lifetime imaging over a painted area.  Electronic shutter action can be produced by pulsing the MCP voltage and the gain can be modulated by simply changing the voltage on the intensifier.  Figure 6.11 illustrates the luminescent lifetime imaging method with an ICCD.  
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Fig. 6.10. Structure of ICCD and multiple photon-electron conversions in ICCD
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Fig. 6.11. Diagram of lifetime imaging with ICCD for modulated illumination

For the pulse excitation light, the gain function is typically a top-hat function or a square function.  The luminescent signal is gated in two different intervals during an exponential decay of luminescence and the gated intensity ratio is related to the luminescent lifetime by Eq. (6.29).  This approach was employed for PSP measurements by Goss et al. (2000), Bencic (2001), Bell (2001), Baker (2001), and Mitsuo et al. (2002).  Another approach uses the sinusoidal excitation light combined with either the square gain function (Holmes 1998) or sinusoidal gain function (Lakowicz and Berndt 1991).  Consider the sinusoidally modulated excitation light 
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.  When the gain function has a square-waveform, the gated intensity ratio is given by Eq. (6.25).  

Instead of using the square function, Lakowicz and Berndt (1991) adopted the sinusoidal gain function for modulating the intensifier.  When the MCP is sinusoidally modulated, the gain function of the detector is 
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 is the detector phase angle relative to the modulated illumination light.  The CCD collecting photons over an integration time actually serves as an integrator; thus, the signal output from the CCD is represented by a time-averaged intensity over an integration time TINT 

[image: image157.wmf]]

)

θ

φ

cos(

m

M

5

.

0

1

[

G

τ

A

dt

)

t

(

G

)

r

,

t

(

I

T

1

I

D

D

eff

0

m

T

0

INT

INT

-

+

=

=

>

<

ò

.
(6.31)
To extract the phase angle or lifetime from the CCD output 
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Once the parameters 
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.  Lakowicz and Berndt (1991) used three different detector phase angles to recover the luminescent lifetime.  One shortcoming of the intensifier CCD camera is that the SNR may be reduced due to quantum losses and additive noise in the multiple-step photon-electron transfer processes.  

6.3.2. Internally Gated CCD Camera

An internally gated CCD camera is promising for luminescent lifetime imaging.  Fisher et al. (1999) developed a phase-sensitive CCD camera system for two-dimensional imaging of radical species concentrations in reacting flows such as turbulent flames.  They modified a commercial scientific-grade CCD camera to perform phase-sensitive imaging as well as to reduce the level of integrated background light.  In fact, this internally gated CCD camera has the capability to selectively integrate the time-varying luminescent intensity either in-phase or out-of-phase with respect to the modulated excitation light.  A ratio between the out-of-phase and in-phase images is related to the luminescent lifetime, and thus a pressure field can be obtained from a luminescent lifetime image. 

Modern CCD cameras available for industrial machine vision or scientific uses possess many of the features required to construct a phase-sensitive imaging system.  Most notably, the feature commonly referred to as ‘electronic shuttering’ can be suitably modified to serve phase sensitive imaging or lifetime imaging.  The CCD array architecture employed by cameras capable of performing electronic shuttering is referred to as an interline transfer array shown in Fig. 6.12.  It consists of photodiodes separated by vertical transfer registers that are covered by an opaque metal shield that prevents direct entry of photoelectrons.  Charge accumulated in the photosensors can be transferred either to the vertical registers or discarded in the substrate by supplying a high voltage to the Read Out Gate (ROG) or the Over Flow Drain (OFD) respectively. 

In order to perform phase-sensitive imaging, charge shifting and storage in the CCD must be synchronized with the light-source modulation signal.  This requires appropriate modification of the camera controller logic, and of the camera head circuitry and logic.  Based on the modulation waveform, a suitable control signal will be generated, which raises the ROG voltage and lowers the OFD voltage during the in-phase half of the cycle.  The in-phase luminescent signal is thus integrated into the vertical register.  In the out-of-phase half of the modulation cycle, the ROG and OFD voltages are reversed, thus dumping the out-of-phase light into the substrate.  This process is repeated for a number of cycles until the full-well capacity of the vertical registers is utilized to maximize the SNR.  Finally, after the desired integration time (or the number of cycles) the accumulated charge in the vertical registers can be read out through the horizontal register using conventional frame transfer techniques.  The out-of-phase image can be similarly obtained, the only difference being the introduction of a 180o phase lag between the modulation signal and the control signal described above.  As pointed out before, a ratio between the out-of-phase and in-phase intensity images, 
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, is a function of the phase angle or the luminescent lifetime; therefore, a pressure field can be obtained from the luminescent lifetime image.  


[image: image173.png]
Fig. 6.12. Interline transfer CCD architecture and charge flow

6.4. Lifetime Experiments

Lachendro (2000) used a set-up shown in Fig. A2 in Appendix A for phase calibration of a number of PSP and TSP formulations at temperatures lower than –30(C, which was capable of holding pressures down to 0.03 psi.  In order to make phase calibrations, LED arrays were used as a modulated excitation source; a blue LED array was used for Ruthenium-based complexes and a green LED for Porphyrin-based luminophores.  Each array consisted of seven LEDs arranged in a hexagonal formation for more uniform illumination.  The light from an LED array was passed through an appropriate interference filter to eliminate unwanted emission.  A function generator was used to directly power and modulate the arrays; the TTL signal from the function generator was used as an external reference for a lock-in amplifier.  After passing through a focusing lens, the luminescent response of PSP (or TSP) was detected using a PMT fitted with an interference filter centered at 620 nm and then was sampled by the lock-in amplifier.  A PC was used to acquire calibration data from the lock-in amplifier.  Figures 6.13-6.15 show phase calibration results for three PSP formulations: Ru(dpp) in a silicone polymer with silica gel, PtTFPP in a silicone polymer with silica gel, and PtTFPP in a porous polymer/ceramic(Al2O3) composite tape casting.  Figures 6.16-6.18 show phase calibration results for three TSP formulations: PtTFPP, Ru(trpy)(C6F5-trpy)(NO3)2, and Ru(bipy)2(p-bipy)2 in DuPont ChromaClear.  
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Fig. 6.13. Phase calibration for PSP, Ru(dpp) in RTV 110 with Silica Gel.  From Lachendro (2000)
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Fig. 6.14. Phase calibration for PSP, PtTFPP in RTV 110 with Silica Gel.  From Lachendro (2000)
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Fig. 6.15. Phase calibrations for PSP, PtTFPP in a porous polymer/ceramic(Al2O3) composite tape casting.  From Lachendro (2000)
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Fig. 6.16. Phase calibration for TSP, PtTFPP in DuPont ChromaClear.  From Lachendro (2000)
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Fig. 6.17. Phase calibration for TSP, Ru(trpy)(C6F5-trpy)(NO3)2 in DuPont ChromaClear.  From Lachendro (2000)
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Fig. 6.18. Phase calibration for TSP, Ru(bipy)2(p-bipy)2 in DuPont ChromaClear.  From Lachendro (2000)

Goss et al. (2000) evaluated the lifetime techniques based on several different modulation/gating combinations such as the time-resolved multiple-gate method for the pulse excitation, sine-square method, and square-square method.  The detectors used were ICCD, phase-sensitive interline-transfer CCD, and back-lit CCD with a liquid-crystal shutter.  A xenon strobe light and a Nd:YAG laser were used as a pulse light source, while a LED array was used for the sinusoidal and square-wave excitation.  PSP tested was PtTFPP in a sol-gel binder.  The gated intensity ratio was measured as a function of pressure using the detectors with different gating strategies.  They found that the time-resolved multiple-gate method had greater sensitivity to pressure than other lifetime methods and the intensity-based (or radiometric) method.  The square-square method had the second best sensitivity to pressure.  Figure 6.19 shows calibration results of the gated intensity ratio for that PSP obtained with the ICCD employing the time-resolved multiple-gate method and square-square method.  One of the problems with the ICCD was a high noise level of the system; the rms variation of the gated intensity ratio was as high as 3-5% even after binning.  
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Fig. 6.19. Calibration of the gated intensity ratio for PtTFPP-sol-gel PSP with ICCD using the time-resolved multiple-gate method and square-square method.  From Goss et al. (2000)

Bell (2001) studied the time-resolved multiple-gate method for the pulse excitation to optimize the gating parameters.  He found that the gated intensity ratio was not constant over a PSP-coated surface even at constant pressure and temperature, and the variation was 0.5-3% depending on homogeneity of the paint.  This indicated that the lifetime was different at different locations even when pressure and temperature are invariant over a surface.  Earlier, in laser-scanning PSP measurements, Torgerson et al. (1996) observed a variation of about 0.5o in the phase angle (related to the lifetime) across a measurement domain in the flow-off case where pressure and temperature were constant.  Similar to Bell’s observation on the gated intensity ratio, the spatial phase pattern was repeatable, dependent on the location.  Hartmann et al. (1995) also observed similar results and attributed this phenomenon to microheterogeneity of the polymer environment.  The small lifetime or phase variation may not significantly affect PSP measurements at higher Mach numbers, whereas it can introduce a considerable error in low-speed PSP measurements.  To correct this intrinsic spatial variation of the lifetime, Torgerson et al. (1996) and Bell (2001) used raw lifetime or phase distributions in the flow-off conditions as a reference, and took a ratio between the wind-on and reference lifetime images (signals).  Unfortunately, this correction method defeats to certain degree the original purpose of using the lifetime method.  Bencic (2001) compared the lifetime method with the intensity-based method for PSP measurements at high viewing polar angles and in a shadowed region, and found that the lifetime-based measurements achieved better results in these cases.  

Mitsuo et al. (2002) studied the luminescent decay of a PtTFPP-based PSP using a streak camera and found that the multiple-exponential decay of the paint was sensitively dependent on pressure and temperature.  This characteristic allowed simultaneous determination of pressure and temperature from three gated intensities obtained by an ICCD camera since two ratios between three gated intensities had sufficiently different dependencies on pressure and temperature.  They selected the first and third gating intervals 
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 with the temperature-dependent coefficients.  Using the calibration relations, they were able to obtain simultaneously the surface pressure and temperature fields in a sonic impinging jet from the two gated intensity ratio images.  Recent tests by Watkins et al. (2003) used a new internally gated interline transfer CCD camera to alleviate noise sources associated with ICCD.  
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