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8. Time Response

8.1. Time Response of Conventional Pressure Sensitive Paint

8.1.1. Solutions of Diffusion Equation

The fast time response of PSP is required for measurements in unsteady flows, which is related to two characteristic timescales of PSP.  One is the luminescent lifetime of PSP that represents an intrinsic physical limit for an achievable temporal resolution of PSP.  Another is the timescale of oxygen diffusion across a PSP layer.  Because the timescale of oxygen diffusion across a homogenous polymer layer is usually much larger than the luminescent lifetime, the time response of PSP is mainly determined by oxygen diffusion.  In a thin homogenous polymer layer, when diffusion is Fickian, the oxygen concentration [O2] can be described by the one-dimension diffusion equation 
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where 
[image: image2.wmf]m

D

 is the diffusivity of oxygen mass transfer, t is time, and z is the coordinate directing from the wall to the polymer layer.  The boundary conditions at the solid wall and the air-paint interface for Eq. (8.1) are 
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where the non-dimensional function 
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Introducing the non-dimensional variables 
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we have the non-dimensional diffusion equation 


[image: image11.wmf]2

2

'

z

n

'

t

n

¶

¶

=

¶

¶

,
(8.5)
with the boundary and initial conditions 
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where the function 
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Applying the Laplace transform to Eq. (8.5) and the boundary and initial conditions Eq. (8.6), we obtain a general convolution-type solution for the normalized oxygen concentration 
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In Eq. (8.7), the function 
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 is the differentiation of g(t) with respect to t and the function 
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The derivation of Eq. (8.7) uses the following expansion in negative exponentials 
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, where s is the complex variable of the Laplace transform.  In particular, for a step change of the oxygen concentration at the air-paint interface, after 
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 is substituted into Eq. (8.7), the oxygen concentration distribution in a paint layer is simply 
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, a classical solution given by Crank (1995) and Carslaw and Jaeger (2000).  

Instead of using the Laplace transform, Winslow et al. (2001) studied the solution of the diffusion equation using an approach of linear system dynamics.  The special solutions for a step change and a sinusoidal change of oxygen were used for PSP dynamical analysis by a number of researchers (Winslow et al. 1996, 2001; Carroll et al. 1995, 1996; Mosharov et al. 1997; Fonov et al. 1998).  The trigonometrical-series-type solution for a step change of oxygen given by Carroll et al. (1996) is 
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where 
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.  Similarly, Winslow et al. (1996) used the trigonometrical-series-type solution for a sinusoidal change of oxygen 
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where 
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The constants 
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Mosharov et al. (1997) also presented the trigonometrical-series-type solution of the diffusion equation in a similar form to Eq. (8.9) for a step change at a surface.  Note that they defined a coordinate system in such a way that the air-paint interface was at 
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 at the air-paint interface, they gave a solution composed of two harmonic terms, i.e., 
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where 
[image: image41.wmf]2

/

1

m

2

)

D

/

h

(

w

g

=

 is a non-dimensional frequency and 
[image: image42.wmf]h

/

z

'

z

=

 is a non-dimensional coordinate normal to the wall.  The coefficients in Eq. (8.11) are 
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(8.12)

These trigonometrical-series-type solutions, which are often obtained using the method of separation of variables, should be equivalent to the general convolution-type solution Eq. (8.7) that is reduced in these special cases.  

The solutions of the diffusion equation give a classical square-law estimate for the diffusion timescale (diff through a homogenous PSP layer, 
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The square-law estimate is actually a phenomenological manifestation of the statistical theory of the Brownian motion.  Interestingly, this estimate is still valid even when the diffusivity of a homogeneous polymer is concentration-dependent.  The 1D diffusion equation with the concentration-dependent diffusivity can be reduced to an ordinary differential equation by using the Boltzmann’s transformation 
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; hence, the solution for the concentration distribution can be expressed by this similarity variable (Crank 1995).  Clearly, the Boltzmann’s scaling indicates that the timescale for any point to reach a given concentration is proportional to the square of the distance (or thickness).  

Using the solution of the diffusion equation for a step change of pressure, Carroll et al. (1997) estimated the mass diffusivity 
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 for the pure polymer Poly(dimethyl Siloxane) (PDMS) and 
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 for PDMS with 10% filler were also reported (Cox and Dunn 1986; Pualy 1989).  For a 10 (m thick polymer layer having the diffusivity 
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, the diffusion timescale is in the order of 0.1-1 s.  Therefore, a conventional non-porous polymer PSP has slow time response, and it is not suitable to unsteady pressure measurements.  

8.1.2. Pressure Response and Optimum Thickness

Schairer (2002) studied the pressure response of PSP based on the solution Eq. (8.11) of the diffusion equation given by Mosharov et al. (1997).  In a simpler notation, the luminescent intensity integrated over a paint layer is expressed as 
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where 
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 is the extinction coefficient for the excitation light, C is a proportional constant, and a and k are the coefficients.  In the quasi-steady case, the indicated pressure by PSP is 
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where the Stern-Volmer coefficients are determined from steady-state calibration of PSP.  As shown in Eq. (8.15) coupled with Eqs. (8.11), (8.12) and (8.14), the indicated pressure 
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where 
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The quantity 
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 represents the optical thickness of the paint layer.  The unsteady amplitude ratio and phase shift are given by 
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Figure 8.1 shows the attenuated amplitude ratio 
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The paint thickness affects both the frequency response and the signal-to-noise ratio (SNR) of PSP.  As the thickness increases, the luminescent signal from PSP and thus the SNR increase, whereas the frequency response of PSP decreases as a result of the attenuation of the unsteady amplitude ratio.  Hence, there exists an optimum thickness that balances the two conflicting requirements to achieve both high frequency response and SNR.  Considering the unsteady luminescent signal 
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, Schairer (2002) introduced the unsteady signal amplitude 
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 decreases with the unsteady pressure frequency for a given diffusivity and relative optical thickness.  Figure 8.3 indicates that the optimum thickness is less than 5 (m for 
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 when the pressure frequency is 100 Hz.  For such a thin paint layer, the absolute SNR (
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When an unsteady pressure variation is no longer small, the non-linear effect of PSP response is appreciable, and the waveform of the PSP signal is distorted.  In this case, recovery of the true unsteady pressure from the distorted signal is non-trivial.  Assuming that the oxygen concentration is uniform across a thin paint layer, we substitute 
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where 
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 is the initial pressure amplitude.  In principle, after Eq. (8.19) is solved for 
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, recovery of the true unsteady pressure is affected by the local paint thickness unlike steady-state PSP measurements where the effect of the thickness is at least theoretically eliminated by the intensity ratio procedure.  
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Fig. 8.1. The unsteady amplitude ratio as a function of the paint thickness for 
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Fig. 8.2. The normalized SNR’ as a function of the relative paint thickness for 
[image: image95.wmf]1

μm

-

=

0.01

h

/

d

 and 
[image: image96.wmf]s

/

10

D

3

m

2

μm

=

.  From Schairer (2002)

[image: image97.png]Thickness for -1.25 dB (microns)

3

(Y]
(=]

[}
(=

D /1000
Vo e

\ I‘- - Lt
.\ \‘ \ §/h = 0.01 um

l‘. \
. AU
.“ \ .\ \ \
." LN “‘ \

10F r
~
L NS
O al 1 ST .i-}
0.1 1.0 10.0 100.0 1000.0
Frequency (Hz)




Fig. 8.3. The optimum thickness as a function of the unsteady pressure frequency for 
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8.2. Time Response of Porous Pressure Sensitive Paint

8.2.1. Deviation from the Square-Law

Compared to a conventional homogeneous PSP, a porous PSP has a much shorter diffusion time ranging from 18 (s to 500 (s due to enlarged air-polymer interface (Sakaue and Sullivan 2001; Sakaue et al. 2002a).  Interestingly, recent measurements of the response time for three polymers, GP197, GP197/BaSO4 mixture and Poly(TMSP), show that the classical square-law estimate Eq. (8.13) does not hold for a porous PSP (Teduka 2001; Asai et al. 2001).  As shown in Fig. 8.4, measurements gave the power-law relations for the diffusion timescale 
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 for Poly(TMSP) at 313.1 K.  For a porous anodized aluminum (AA) surface, the power-law relation is 
[image: image102.wmf]573

.

0

diff

h

µ

t

 (Sakaue 1999; Sakaue and Sullivan 2001).  For the GP197 silicone polymer, the power-law exponent is close to 2 as predicted by the classical estimate for a homogenous polymer film.  However, the power-law exponent for the porous materials GP197/BaSO4 mixture, Poly(TMSP), and AA-PSP is significantly smaller than 2.  In addition, Figure 8.5 shows that the power-law exponent for the polymer Poly(TMSP) linearly increases with temperature over a temperature range of 293.1-323.1 K.  In order to understand the time response of a porous PSP, from a standpoint of phenomenology, Liu et al. (2001b) derived the expressions for the effective diffusivity and diffusion timescale of a porous layer.  
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Fig. 8.4. The power-law relationship between the response time and coating thickness for three polymers GP197, GP197/BaSO4 mixture and Poly(TMSP) at 313.1 K, and AA surface at about 300K.  Experimental data are from Teduka (2001), Asai et al. (2001), and Sakaue (1999)
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Fig. 8.5. The exponent of the power-law relation between time-scale and coating thickness for the polymer Poly(TMSP) as a function of temperature.  Experimental data are from Teduka (2001) and Asai et al. (2001)

8.2.2. Effective Diffusivity

Diffusion in a porous material can be considered as a diffusion problem in a two-phase system made up of one disperse phase and one continuous polymer or other material.  In PSP, the disperse phase is composed of numerous pores filled with air.  Figure 8.6 shows a typical scanning electron microscopic (SEM) image of an anodized aluminum (AA) surface for PSP.  Consider an element of a porous polymer layer of the length l, width l, and thickness h, as shown in Fig. 8.7.  The coordinate z is normally directed to the polymer layer from the upper surface of the layer.  First, we assume that many cylindrical (tube-like) pores are distributed and oriented in the z-direction in the element.  The effective radius and depth of a pore are denoted by 
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, respectively.  The radius of a pore is much larger than the size of a molecule of oxygen.  In general, the depth of a pore is smaller than or equal to the layer thickness, i.e., 
[image: image107.wmf]h

h

pore

£

.  For simplicity of expression, the normal directional derivative of the oxygen concentration 
[image: image108.wmf]]

[O

2

 at the air-polymer interface is denoted by 


[image: image109.wmf]n

]

[O

(z)

v

2

n

¶

¶

=

.
(8.20)
[image: image110.wmf]100 

nm

20

nm ~ 100nm micropore

(

a): SEM picture.

(

b): Schematic.

100 

nm

100 

nm

100 

nm

20

nm ~ 100nm micropore

20

nm ~ 100nm micropore

(

a): SEM picture.

(

b): Schematic.


Fig. 8.6. SEM image and schematic of an anodized aluminum (AA) surface.  From Sakaue (1999)
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Fig. 8.7. Element of a porous binder layer

The effective diffusivity 
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 of the porous polymer layer with many cylindrical pores is given by a balance equation between the mass transfer through the apparent homogenous upper surface and the total mass transfer across the air-polymer interface, i.e., 
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where 
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 is the total number of the pores in the element and 
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 is the diffusivity of the polymer continuum.  The integral term in Eq. (8.21) is the total mass transfer across the peripheral surface of the pores in the element.  Thus, the effective diffusivity 
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In a simplified case where 
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where 
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 is the volume fraction of the cylindrical pores in the polymer layer.  Eq. (8.23) indicates that an increase of the effective diffusivity is proportional to the volume fraction of the pores and a ratio between the polymer layer thickness and the radius of the pore.  Eq. (8.23) for 
[image: image121.wmf]meff

D

 is valid only for an ideal porous polymer layer with the straight cylindrical pores oriented normally.  Nevertheless, this model can be generalized for real porous polymers where topology of the pores is often highly complicated.  

For more realistic modeling, the topological structure of a pore is considered as a highly convoluted and folded tube in a polymer layer while the cross-section of the tube remains unchanged.  The integral in Eq. (8.22) should be replaced by an integral along the path of a highly convoluted tube-like pore.  In this case, the concept of the fractal dimension should be introduced because the length of a highly convoluted tube is no longer proportional to the linear length scale of the tube in the z-direction (e.g. 
[image: image122.wmf]pore

h

) (Mandelbrot 1982).  According to the length-area relation for a fractal path, the integral along the path is proportional to 
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 is the characteristic area covering over the path.  Loosely speaking, the fractal dimension represents the degree of complexity of the pore pathway.  In order to take the fractal nature of pores into account, Eq. (8.22) is generalized using a Riemann-Liouville fractional integral of the order 
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Note that a unitary constant with the dimension 
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 is implicitly embedded in the third term in the right-hand side of Eq. (8.24) to make Eq. (8.24) dimensionally consistent.  This dimensional constant is implicitly contained in all the results derived from Eq. (8.24).  In a simplified case where 
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where 
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8.2.3. Diffusion Timescale

For a porous polymer layer where diffusion is Fickian under some microscopic assumptions (Cunningham and Williams 1980; Neogi 1996), the diffusion equation Eq. (8.1) is still a valid phenomenological model as long as the diffusivity 
[image: image142.wmf]m

D
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.  Hence, an estimate for the diffusion timescale of a porous PSP layer is 
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Eq. (8.26) as a generalized form of Eq. (8.13) clearly illustrates how the fractal dimension 
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, Eq. (8.26) naturally approaches to the classical square-law estimate Eq. (8.13) for a homogenous polymer layer.  
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The estimate Eq. (8.27) is asymptotically valid for a very porous polymer layer.  The exponent in the power-law relation between the response time 
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 due to the presence of the fractal pores in the polymer layer.  The relation Eq. (8.27) provides an explanation for the experimental finding that the exponent q in the power-law relation 
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 is less than 2 for a porous PSP.  In addition, this relation can serve as a useful tool to extract the fractal dimension of the tube-like pores in a very porous polymer layer from measurements of the diffusion response time.  For example, the fractal dimension 
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, while for GP197/BaSO4 mixture the fractal dimension 
[image: image159.wmf]fr

d

 is close to one.  In addition, based on the experimental results shown in Fig. 8.5, we know that the fractal dimension 
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 for Poly(TMSP) linearly decreases with temperature in a temperature range of 293.1-323.1 K.  This implies that the geometric structure of a pore in Poly(TMSP) may be altered by a temperature change.  Note that the diffusivity 
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 of oxygen mass transfer is also temperature-dependent, but it is independent of the coating thickness h.  Therefore, the experimental results in Fig. 8.5 mainly reflect the temperature effect on the geometric structure of pores in the polymer rather than the diffusivity.  

Table 8.1. Response times and luminescent lifetimes of PSPs

Paint
Thickness

((m)
Life-time

((s)
Response time
Comments
References

LPSF1 (pyrene)
2

5 ms
OPTROD formulation
Borovoy et al. (1995)

PSPL2 (pyrene)
20

0.2 s
OPTROD formulation
Fonov et al. (1998)

PSPL4 (pyrene)


0.172 s
OPTROD formultation
Fonov et al. (1998)

PSPF2 (pyrene)


0.1-2.6 ms
OPTROD formulation
Fonov et al. (1998)

PF2B (Ru(dpp))
13
5
0.48 s
McDonnell Douglas (MD) formulation
Carroll et al. (1996b)

PF2B (Ru(dpp))
15
5
0.88 s
MD formulation
Carroll et al. (1996b)

PF2B (Ru(dpp))
25
5
1.2 s
MD formulation
Carroll et al. (1996b)

PF2B (Ru(dpp))
35
5
2.4 s
MD formulation
Carroll et al. (1996b)

PtOEP/polymer
19
50
0.82 s
concentrated luminophore near outer surface of the binder
Carroll et al. (1996b)

PtOEP/GP197
22
50
1.4 s

Carroll et al. (1996b)

PtOEP/GP197
26
50
1.6 s

Carroll et al. (1996b)

PtOEP/GP197
32
50
2.4 s

Carroll et al. (1996b)

Ru(dpp)/RTV
6
5
22.4 ms

Winslow et al. (1996)

Ru(dpp)/RTV
11
5
58.6 ms

Winslow et al. (1996)

Ru(dpp)/RTV
16
5
148 ms

Winslow et al. (1996)

Ru(dpp)/RTV
20
5
384 ms

Winslow et al. (1996)

Ru(dpp)/PDMS
4-5
5
3-6 ms

Hubner et al. (1997)

PtOEP/GP197
-
50
2.5 s

Baron et al. (1993)

PtOEP/copolymer
-
50
0.4 s

Baron et al. (1993)

H2TFPP/silica
-

1.5-10 ms
silica with a binder 
Baron et al. (1993)

H2TFPP/TLC
-

25 (s

Baron et al. (1993)

luminophore/AA
-

18-90 (s
depended on the luminophore and anodization processes
Mosharov et al. (1997)

Ru(dpp)/FIB and alumina
-
5
<500 (s
approached the apparatus response time
Ponomarev & Gouterman (1998)

PtTFPP/FIB and alumina
-
50
<500 (s
approached the apparatus response time
Ponomarev & Gouterman (1998)

PtTFPP/porous ceramic
-
50
60 (s

Scroggin (1999)

Ru(dpp)/AA
-
5
80 (s

Sakaue et al. (2001)

Ru(dpp)/TLC
-
5
70 (s

Sakaue et al. (2001)

8.3. Measurements of Pressure Time Response

The fast time response of PSP was achieved by Baron et al. (1993) using a commercial porous silica thin-layer chromatography (TLC) plate as the binder; the observed response time of this PSP was less than 25 s.  Although this fragile PSP cannot be practically used for wind tunnel testing, Baron’s work suggest that a short response time of PSP can be obtained using a porous material as a binder.  Mosharov et al. (1997) reported that the response time of anodized aluminum (AA) PSP was in a range of 18-90 s, depending on a luminophore and on some features of an anodization process.  Asai et al. (2001, 2002) also measured the response time of an AA-PSP with Ru(dpp) as a luminophore using a pressure chamber with a solenoid type valve.  According to Jordan et al. (1999b), a sol-gel-based PSP achieved the frequency response of as high as 6 kHz.  Ponomarev and Gouterman (1998) and Scroggin et al. (1999) developed binders by mixing hard particles with polymers to increase the degree of porosity.  Ponomarev and Gouterman found that increasing the number of hard particles above a critical pigment volume concentration drastically shortened the response time.  Table 8.1 summarizes the response times of some PSP formulations along with their luminescent lifetimes. 

Solenoid valve type switching has been used to generate a step change in pressure for measurements of the response time of PSP by a number of researchers (Engler 1995; Carroll et al. 1995, 1996; Winslow et al. 1996; Mosharov et al. 1997; Fonov et al. 1998).  Figure 8.8 shows a typical pressure jump apparatus used by Asai et al. (2002) for testing the time response of PSP.  This apparatus had a small test chamber connected directly to a fast opening valve having a time constant of a few milliseconds.  Sample plates used in this apparatus were typically aluminum coupons coated with PSP.  Figure 8.9 shows the time response of the luminescent intensity for several PSP formulations using PtOEP as a probe molecule in binders GP197, AA, and Poly(TMSP) to a step change in pressure from vacuum to the atmospheric pressure.  The pressure signal from a kulite® pressure transducer was also shown in Fig. 8.9 as a reference.  The PSP based on GP197 was very slow and its time constant was in the order of seconds.  Figure 8.10 shows the thickness effect on the time response of PtOEP in GP-197 to a step change of pressure (Carroll et al. 1996).  In contrast, AA-PSP had the sub-millisecond time response, and poly(TMSP)-PSP had a comparable response time to AA-PSP since Poly(TMSP) having a very large free volume is very porous.  The time constant of Poly(TMSP)-PSP was about a few milliseconds.  Jordan et al. (1999b) conducted frequency response experiments of sol-gel-based PSP using a speaker driver producing an oscillating pressure wave, and achieved the frequency response as high as 6 kHz.  For a porphine-based PSP on a silica-gel TLC plate, Sakamura et al. (2002) utilized Cassegrain optics to detect a periodic pressure fluctuation of about 1 kHz in a chapped impinging air jet.  The aforementioned measurements indicate that a high porosity is required to achieve the high time response of PSP.  This viewpoint was examined by Asai et al. (2001) for a mixture of GP-197 with hard particles BaSO4.  Figure 8.11 shows the reduced response time to a step change of pressure with elevating the concentration of BaSO4 as a result of an increased porosity.  Asai et al (2001) also noticed that a fast-responding porous PSP usually had lower temperature sensitivity.  
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Fig. 8.8. Schematic of a pressure jump apparatus.  From Asai et al. (2002)
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Fig. 8.9. (cont.)
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Fig. 8.9. Time response of several PSPs to a step change in pressure, (a) kulite sensor (reference), (b) GP197-PSP, (c) AA-PSP, and (d) poly(TMSP)-PSP, where PtOEP is used a probe molecule.  From Asai et al. (2002)
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Fig. 8.10. Time response of PtOEP in GP197 to a step change of pressure, depending on the paint thickness.  From Carroll et al. (1996)
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Fig. 8.11. Effect of the BaSO4 particle concentration in the polymer GP-197 on the time response of BaSO4/GP197 PSP at 313.1 K.  From Asai et al (2001)

Another apparatus of creating a step pressure change is a shock tube (Sakaue et al. 2001; Teduka et al. 2000).  A shock tube can generate a pressure rise in a few microseconds, and therefore it is a good device for testing a porous PSP having a response time less than a millisecond.  Figure 8.12 shows a schematic of a simple shock tube for testing the time response of PSP (Sakaue et al. 2001).  The shock tube had a 55(40 mm cross-section, a 428 mm long driver section, and a 485 mm long driven section.  An aluminum foil diaphragm was burst by a pressure difference between the driver and driven sections, where the driver pressure was one atmospheric pressure.  A pressure transducer (PCB Piezotronics model 103A11), which was connected to a 2 mm diameter pressure tap on the shock tube wall, was used to measure the unsteady reference pressure.  Absolute pressures were measured using an Omega pressure transducer connected to the driven section.  PSP was applied to a 25.4 mm square aluminum block flush mounted to the shock tube wall.  The reference pressure transducer and PSP sample were mounted 300 mm from the diaphragm.  A 532-nm laser was used as an illumination source for PSP and the laser spot size was about 2 mm on the sample surface.  The luminescent emission from PSP was collected by a PMT through a long pass filter (> 570 nm) and the readout voltage from the PMT was acquired using a LeCroy oscilloscope.  The response time of the PMT was about 2 s.  The time resolution of the apparatus was also limited by the laser spot size.  The laser spot size 
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Fig. 8.12. Schematic of a simple shock tube setup for testing PSP time response.  From Sakaue (1999)
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Fig. 8.13. Pressure data obtained from AA-PSP with a thickness of 9 (m and pressure transducer compared with theoretical calculation.  From Sakaue (1999)

Figure 8.13 shows typical pressure signals from a Ru(dpp) AA-PSP (9 m thick) and the pressure transducer along with the theoretical pressure jumps associated with the incident and reflected normal shock waves.  This AA-PSP was able to follow the sharp pressure rises after the incident and reflected shock waves passed through the laser-illuminated spot.  Figure 8.14 shows the normalized pressure signals from the AA-PSP with different thickness values (4.3, 9.0, 13.2, and 27.2 m).  It was found that the diffusion response time of this AA-PSP followed the power-law relation 
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.  Figure 8.15 shows a comparison of the time response of four PSP formulations to a step change of pressure.  These formulations used the same probe molecule Ru(dpp) with four different binders: AA, TLC, polymer/ceramic (PC), and conventional polymer RTV.  The response times of AA-PSP and TLC-PSP were in the order of ten microseconds, whereas the conventional RTV-PSP had a much longer response time (in the order of hundred milliseconds).  In addition, it was found that PC-PSP had a longer response time (about 1 ms) than the thicker but more porous TLC-PSP.  For a very porous PSP, the porosity of a binder had more pronounced influence on the time response of PSP than the binder thickness.  This is consistent with the theoretical analysis presented in Section 8.2.  
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Fig. 8.14. Normalized pressure response of AA-PSP with different values of the paint thickness l.  From Sakaue (1999)
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Fig. 8.15. (cont.)
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Fig. 8.15. Comparison of the time response among (a) porous Ru(dpp)-based PSPs (AA-PSP, TLC-PSP, and PC-PSP) and (b) conventional polymer PSP Ru(dpp) in RTV.  From Sakaue (1999)

8.4. Time Response of Temperature Sensitive Paint

Similar to PSP, TSP has two characteristic timescales: the luminescent lifetime and the thermal diffusion timescale.  The luminescent lifetimes of EuTTA-dope and Ru(bpy)-Shellac TSPs at room temperature are about 0.5 ms and 5 (s, respectively.  The time response of EuTTA-dope TSP is intrinsically limited by its long luminescent lifetime, while Ru(bpy)-Shellac TSP has a much shorter luminescent lifetime.  Overall, the time response of TSP is strongly dependent upon the boundary conditions of heat transfer in a specific application.  Based on the transient solution of the heat conduction equation, the thermal diffusion time for a thin TSP coating is in the order of 
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 is the thermal diffusivity of TSP.  In a convection-dominated case, the thermal diffusion time can also be expressed as 
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, where k is the thermal conductivity and hc is the convective heat transfer coefficient.  In general, the thermal diffusion time is much larger than the luminescent lifetime for many TSP formulations, and therefore thermal diffusion limits the time response of TSP.  In contrast to PSP where oxygen diffusion always obeys the no-flux condition at a solid boundary, heat transfer to the substrate through a non-adiabatic wall inevitably affects the thermal time response of TSP in actual experiments.  Hence, the timescale of TSP depends on not only the thermal conductivity of the paint itself, but also the boundary conditions in a specific heat transfer problem for TSP application.  To measure the time response of TSP to a rapid change of temperature, Liu et al. (1995c) conducted experiments of pulse laser heating on a metal film and step-like jet impingement cooling.  

8.4.1. Pulse Laser Heating on Thin Metal Film

We consider short-pulse laser heating on a thin metal film to determine the thermal diffusion timescale of TSP applied to the film.  The heat conduction equation for this problem is 
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where 
[image: image182.wmf]in

T

T

-

=

q

 is a temperature change of the film from an initial temperature Tin and 
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 is the thermal diffusivity of the metal film.  The Lapalce operator in Eq. (8.28) is defined as 
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, where r is the radial distance from the center of a hot spot heated by a laser and z is the coordinate normal to the metal film directing from the heated side to other side.  The initial temperature Tin is assumed to be the ambient temperature.  After heated by a laser pulse, the film is cooled down due to natural convection on both the sides of the metal film.  When the surface temperature of the metal film decreases fast enough along the radial direction from the center of the hot spot (i.e., r( ( 0 as r ( ( ), we introduce a spatially averaging operator 
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where Aeff is the effective area of the hot spot.  Hence, applying the spatially averaging operator to Eq. (8.28), we have the unsteady 1D heat conduction equation 
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The initial and boundary conditions for Eq. (8.30) are
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(8.31)

where hc is the average heat transfer coefficient of natural convection, k is the thermal conductivity, ((t) is the Dirac-delta function, 
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 is the metal film thickness, and Plaser represents the strength of the pulse-laser heat source.  There are two physical processes involved: rapid heating of the film by the laser pulse and relatively slow cooling process due to natural convection.  At the beginning, since the film is heated in a very short time interval, the natural convection terms in the boundary conditions can be neglected; thus, the problem is simplified for the rapid heating process.  For a thin metal film (
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(8.32)

where s is the complex variable in the Laplace transform.  The inverse Laplace transform leads to an asymptotic expression for the laser heating when t is small 
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The characteristic timescale for the laser heating is 
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For the slow cooling process due to natural convection after the pulse-laser heat source ceases, we introduce an additional average operator across the metal film 
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Applying the operator Eq. (8.34) to Eq. (8.30) leads to a simple lumped model for the cooling process 
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The solution to Eq. (8.35) is 
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Eq. (8.36) describes an exponential decay of the averaged temperature, which gives the characteristic timescale 
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 for the cooling process due to natural convection.  

Obviously, for the problem of pulse laser heating on a thin film, there are the fast timescale 
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.  The time response of Ru(bpy)-Shellac TSP to a rapid temperature rise was tested by utilizing short pulse laser heating on a 25-(m thick steel film.  Figure 8.16 is a schematic of the experimental set-up.  One side of the steel film was heated by a pulse laser beam with a 8-ns duration from a Nd:YAG laser (532 nm at an 800-mJ maximum output) through a focusing lens.  The opposite side of the steel film was coated with a 10-(m thick Ru(bpy)-Shellac TSP illuminated by a 457-nm blue beam from a 1-mW Argon laser at the hot spot.  The response of the luminescent emission from TSP to pulse laser heating was detected using a PMT, and the signal was acquired using an oscilloscope (Tektronix TDS 420).  The surface temperature was calculated from the luminescent intensity using a priori calibration relation for TSP.  Figure 8.17 shows a typical transient response of the surface temperature to pulse laser heating on the steel film.  The surface temperature increases rapidly after heating at the film and then decays due to natural convection.  To estimate the response times, the asymptotic solutions Eq. (8.33) and Eq. (8.36) were used to fit the experimental data.  The response time of TSP for the laser heating process was 
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Fig. 8.16. Schematic of a pulse laser heating setup for testing TSP time response.  From Liu et al. (1997b)
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Fig. 8.17. Temperature response of Ru(bpy)-Shellac TSP to pulse laser heating on a steel foil.  From Liu et al. (1997b)

8.4.2. Step-Like Jet Impingement Cooling

Sudden fluid jet impingement to TSP coated on a hot body, which produces a rapid decrease of the surface temperature, can be used for testing the time response of TSP.  A lumped heat transfer model gives an approximate solution for a temporal evolution of the temperature on a paint layer during step jet impingement cooling 
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where 
[image: image205.wmf]in

T

 is the initial temperature of the paint and 
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 is the minimum temperature of the paint that is asymptotically reached as t ( (.  The timescale for this cooling process is 
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, where hc is the average heat transfer coefficient of the impinging jet and h is the paint thickness.  

Figure 8.18 shows an experimental setup for step jet impingement cooling.  A 475-nm blue laser beam was used for illumination at the impingement point.  The luminescent intensity was measured using a PMT and then was converted into temperature using a priori calibration relation.  To achieve a small response time, a sub-zero temperature impinging Freon jet generated by a Freeze-it( sprayer was utilized, where a mechanical camera shutter was used as a valve to control issuing of the jet.  After the shutter opened within 1 ms, the Freon jet impinged on the surface of a hot soldering iron (about 100oC) which was coated with a 19-(m thick Ru(bpy)-Shellac TSP.  Figure 8.19 shows a rapid decrease of the surface temperature on the thin paint coating to the minimum temperature of about 44oC.  The measured timescale 
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 of TSP for this cooling process was 1.4 ms.  Cool air impingement jet was also tested; the measured timescales were 16 ms and 25 ms for 19 (m and 38 (m thick Ru(bpy)-Shellac TSP coatings, respectively. 
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Fig. 8.18. Schematic of a step-like jet impingement cooling setup for testing TSP time response
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Fig. 8.19. Temperature response of Ru(bpy)-Shellac TSP to step-like Freon jet impingement cooling
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