
JOURNAL OF SPACECRAFT AND ROCKETS

Vol. 42, No. 4, July–August 2005

Toward a Standard Nomenclature for Earth–Mars
Cycler Trajectories

T. Troy McConaghy∗

Purdue University, West Lafayette, Indiana 47907-2023
Ryan P. Russell†

University of Texas at Austin, Austin, Texas 78712-1085
and

James M. Longuski‡

Purdue University, West Lafayette, Indiana 47907-2023

Many Earth–Mars cycler trajectories are now known and their numbers continue to grow. Unfortunately, the
literature on Earth–Mars cycler trajectories uses many different systems for naming the various cyclers being
investigated. A nomenclature is proposed as a remedy to standardize the naming system for near-ballistic Earth–
Mars cycler trajectories. Modeling assumptions are given and the proposed nomenclature is explained. All known
near-ballistic cyclers fall within the scope of the described nomenclature. Examples are presented of how several
well-known cyclers are denoted. The syntax of the nomenclature is formally specified using the extended Backus–
Naur form. Criteria for evaluating Earth–Mars cycler trajectories are summarized.

Nomenclature
a = orbit semimajor axis, km
c = chord length in the Lambert problem, km
h = angular momentum, kg · km2/s
i ′ = orientation angle of half-revolution transfer plane, rad
K = number of Earth–Earth transfers per repeat interval
M = whole number of Earth revolutions on a transfer
N = whole number of spacecraft revolutions on a transfer
n = cycler repeat time in synodic periods
r = position vector, km
r = distance from the sun, km
S = Earth–Mars synodic period, years
s = semiperimeter of space triangle in Lambert problem, km
t f = transfer time of flight, years
v = velocity, km/s
v = speed, km/s
v∞ = spacecraft hyperbolic excess velocity, km/s
v∞ = spacecraft hyperbolic excess speed, km/s
γ = flight-path angle, rad
ε = Lambert solution type (U , L , Ll or Ls)
θ = transfer angle, rad
λ = longitude angle of vout on full-revolution transfers, rad
µ = gravitational parameter of the sun, km3/s2

ϕ = latitude angle of vout on full-revolution transfers, rad

Subscripts

E = Earth
i = i th transfer leg
in = incoming (upon arrival at Earth)
out = outgoing (upon departure from Earth)
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1 = spacecraft at the beginning of a transfer
2 = spacecraft at the end of a transfer

Introduction

E ARTH–MARS cycler trajectories (cyclers) are trajectories that
periodically have gravity-assist encounters with both Earth and

Mars. A cycler vehicle (on these trajectories) carries people back
and forth between Earth and Mars and could be massive because
it would never stop at either Earth or Mars. (Small taxi spacecraft
could ferry people from Earth up to the cycler vehicle or from the
vehicle down to Mars and vice versa.)

Cyclers were first investigated by Rall1 and Rall and Hollister.2

Examples include the Aldrin cycler3−5 and the Versatile Interna-
tional Station for Interplanetary Transport (VISIT) cyclers.4,6−9 A
recently renewed interest in cyclers led to the discovery of many
new cyclers.10−14 Landau and Longuski15 have shown that Earth–
Mars transportation systems using cyclers often compare favorably
to other mission architectures (in terms of propellant required to
deliver a given payload to Mars’ surface).

Unfortunately, the various investigators used different naming
systems (nomenclatures) for the Earth–Mars cyclers that they con-
sidered. Moreover, each nomenclature was tailored to the special
subset of cyclers under consideration.

A common nomenclature facilitates scientific communication.
Because there are many cyclers known today, by giving the known
cyclers standard names, we are better able to see their similari-
ties and their differences. A nomenclature could help organize the
known cyclers into groups or patterns that are easier to conceptual-
ize. Finally, by constructing a general nomenclature for Earth–Mars
cyclers, we may reveal the existence of cyclers that have not yet been
investigated. (Often, one does not think of something until there is
a name for it. Language and thought are closely coupled.)

In this paper, we propose a fairly general nomenclature for Earth–
Mars cycler trajectories. We have designed the proposed nomen-
clature so that the cyclers described by it can be constructed and
analyzed easily without having to solve a more general problem
first. We give examples of how some well-known cyclers are la-
beled within our proposed nomenclature and we conclude with a
discussion of criteria for evaluating cyclers.

Modeling Assumptions
Our proposed nomenclature for Earth–Mars cyclers is based on

simplified models for the trajectories of Earth, Mars, and the space-
craft. We make the following modeling assumptions:
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1) To simplify the repeatability conditions for cyclers, we assume
that the orbits of the planets are circular and coplanar.

2) The only significant gravitating bodies are Earth and the sun
(for example, Mars may be encountered on a leg, but the encounter
does not change the orbit of the spacecraft).

3) All transfer legs are conic sections; that is, they are solutions
to the sun–spacecraft two-body problem.

4) Gravity-assist maneuvers occur instantaneously. Equivalently,
gravity-assist maneuvers are modeled with an impulsive �v.

5) All transfer legs travel around the sun in the same direction
as the planets; that is, all transfers are direct. We neglect retrograde
transfers (including hyperbolic transfers) which are not useful in
constructing practical cyclers due to their high v∞ at Earth.

6) Propulsive maneuvers never occur in deep space, but they may
occur at Earth encounters.

We note that we do not assume that the Earth–Mars synodic pe-
riod S is exactly 2 1

7 years (or any other approximation). Also, we
allow the spacecraft to make out-of-plane transfers. Our approach to
constructing cyclers is identical to Poincaré’s method of construct-
ing “second species” periodic solutions to the circular restricted
three-body problem when the mass of the secondary body (e.g., the
mass of Earth) is zero.16−18

The model could be made more accurate, for example, by al-
lowing for gravity-assist maneuvers at Mars or by using ephemeris
data for the planets. We have found that cyclers that exist within
the simplified model often correspond to cyclers in a more accurate
model.5,14 In this paper, we use the simplified model only.

At the end of this paper, we show how the proposed nomenclature
can be modified to allow for non-Earth–Earth transfers and gravity-
assist maneuvers at bodies other than Earth. (In other words, we
show how our nomenclature can be extended to allow for the removal
of assumption 2.) For this reason, all equations will be given for the
general case where the initial and final radii of the spacecraft (r1 and
r2) are not necessarily equal.

Proposed Nomenclature
As explained by McConaghy et al.,10 all Earth–Mars cyclers re-

peat after an integer number of Earth–Mars synodic periods. We
will use the letter n to denote the repeat time in synodic periods, and
so n can have the values 1, 2, 3, and so on.

Once the repeat time is given, the specification of the cycler is
completed by describing each Earth–Earth transfer leg. Therefore,
we propose giving all cyclers (constructed within the assumptions
of our model) a “cycler label” of the following form:

nd1d2 · · · dK

where di is a description string for the i th Earth–Earth transfer leg
and K is the number of Earth–Earth transfer legs that occur every
nS years (the repeat time of the cycler). We will refer to the di as
“leg descriptors.”

Each Earth–Earth transfer leg can be one of three different types,
depending on the transfer angle θ (which can be greater than 2π
rad for multiple-revolution transfers). A “half-revolution transfer”
takes the spacecraft to the opposite side of the sun (in possibly more
than one revolution of the sun). A “full-revolution transfer” takes the
spacecraft back to where it started (in one or more revolutions of the
sun). All other transfers are “generic transfers.” The leg descriptors
for these three different types of transfer are now explained.

Generic Transfers
If a leg is a generic transfer, then we use a leg descriptor (di )

of the form g(t f , θ, ε) where the g stands for “generic.” The first
parameter, t f , is the transfer time of flight, in years. For Earth–Earth
transfers, t f is also equal to the number of revolutions Earth makes
around the sun during the transfer. The second parameter, θ , is the
transfer angle. For multiple-revolution transfers, θ > 2π rad.

The third parameter, ε, requires a bit more explanation. The de-
termination of the transfer orbit’s semimajor axis a from t f and
θ is a Lambert problem. [We note that, for Earth–Earth transfers,
r1 = r2 = rE = 1 astronomical unit (AU).] If the transfer angle θ is

Fig. 1 Earth–Earth transfers with θ =π/2 + 2πN rad.

Fig. 2 Four possible values of ε.

greater than 2π rad, then there are two different possible transfers
with the same t f and θ , but with a different a. (There are also ret-
rograde transfers, but we ignore them.) Figure 1 illustrates some
specific examples. Each point on Fig. 1 corresponds to an Earth–
Earth transfer with a transfer angle of θ = π/2 + 2π N rad (where
N is the whole number of spacecraft revolutions). For example, the
N = 2 curve corresponds to transfers with θ = 9π/2 rad. We see
that, if t f = 2.5 years and θ = 9π/2 rad, there are two different pos-
sible values of a. The ε parameter is required to indicate which of
the two possible a values is actually used.

Because ε indicates which of the two a values actually gets used,
it only needs to have two possible values. For example, ε might be L
on the left solution and R on the right solution. Shen and Tsiotras19

used this approach.
However, there are several different ways to formulate and solve

a multiple-revolution Lambert problem. To allow for the use of the
classical Lagrange formulation, we let ε take four possible values:
U , L , Ls , and Ll . The meanings of these values are illustrated in
Fig. 2, which zooms in on the N = 2 curve of Fig. 1. We note that the
minimum-energy transfer corresponds to the point where the ε = U
curve meets the ε = Ls curve. Similarly, the minimum time-of-flight
transfer corresponds to the point where the ε = Ls curve meets the
ε = Ll curve.

If one uses the Lagrange formulation of Lambert’s problem, then
the equation to solve for a is20

√
µt f = a

3
2 [2π N + α − β − sin(α) + sin(β)] (1)
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where µ is the gravitational parameter of the sun, N is the number
of spacecraft revolutions, rounded down to the nearest integer, that
is,

N = floor(θ/2π) (2)

α =
{

α0 if ε = L , Ll , or Ls

2π − α0 if ε = U
(3)

β =
{

β0 if 0 < [θ (mod 2π)] < π

−β0 if π < [θ (mod 2π)] < 2π
(4)

α0 = 2 arcsin
√

s/(2a) (5)

β0 = 2 arcsin
√

(s − c)/(2a) (6)

s = (r1 + r2 + c)/2 (7)

c =
√

r 2
1 + r 2

2 − 2r1r2 cos θ (8)

In Eq. (3), we see that ε is used to determine the value of α. If ε = U ,
then the solution is on the upper curve and α = 2π − α0. If ε = L ,
Ll , or Ls , then the solution is on the lower curve and α = α0.

Sometimes there are two solutions on the lower curve that have
the same t f but different a. In these special cases, the extra subscript
l on Ll indicates that the long-period solution should be used and the
subscript s on Ls indicates that the short-period solution should be
used. Prussing20 explains how to handle this case in greater detail.

One may choose to use other methods to determine a (such as
Battin’s method19,21 or Lancaster’s method22). For those methods,
if ε = U or Ls , the transfer is the left-hand, short-period solution,
and if ε = L or Ll , then the transfer is the right-hand, long-period
solution.

Once a has been determined, the outgoing velocity of the space-
craft at Earth departure, vout, can be calculated using23

vout = [(B + A)/c](r2 − r1) + [(B − A)/r1]r1 (9)

where

A =
√

µ/4a cot(α/2) (10)

B =
√

µ/4a cot(β/2) (11)

The incoming velocity of the spacecraft upon return to Earth, vin,
can also be calculated23:

vin = [(B + A)/c](r2 − r1) − [(B − A)/r2]r2 (12)

Full-Revolution Transfers
If a leg is a full-revolution transfer, then we use a leg descriptor (di )

of the form f (M : N , ϕ, λ) where the f stands for “full-revolution.”
The first parameter, M , is the number of Earth revolutions, and so
for Earth–Earth transfers, M also equals the transfer time of flight
in years. The second parameter, N , is the number of spacecraft
revolutions made during the transfer. (We note that the ratio M/N
conveniently provides the spacecraft orbit period in Earth years.)
Both M and N are integers. Because the transfer time is M Earth-
orbit periods and N spacecraft-orbit periods,

M · 2π

√
a3

E

/
µ = N · 2π

√
a3/µ (13)

where aE is the semimajor axis of Earth’s orbit (1 AU). Because
of this resonance property, full-revolution transfers are also known
as resonant transfers. For example, if Earth makes three revolu-
tions while the spacecraft makes two revolutions, then the transfer
is known as a 3:2 resonant transfer (and the spacecraft has an orbit
period of 1 1

2 years). Equation (13) can be solved for a:

a = aE (M/N )
2
3 (14)

Fig. 3 Definition of the angles ϕ and λ for Earth departure.

We note that M and N are constrained because the distance from
the transfer orbit’s aphelion to its perihelion (2a) must be greater
than the distance between Earth and the sun (aE ). Hence, a > aE/2.
The magnitude of the spacecraft’s outgoing velocity, vout, can be
determined from a using the vis viva equation:

vout =
√

µ(2/rE − 1/a) (15)

where rE is the orbital radius of Earth (1 AU). The spacecraft’s
outgoing velocity after the Earth encounter, vout, can lie anywhere
on the surface of a sphere of radius vout. The angles ϕ and λ are used
to indicate the direction of vout with respect to a rotating reference
frame as shown in Fig. 3. The unit vector v̂E is in the direction of the
Earth’s velocity vector (vE ) and ĥE is a unit vector in the direction of
Earth’s orbital angular momentum vector (hE ). The third direction,
v̂E × ĥE , completes the right-handed reference frame. When Earth
is assumed to be in a circular orbit, v̂E × ĥE is in the direction from
the sun to Earth; that is, v̂E × ĥE = r̂E .

We see that ϕ is a latitude angle (between −90 and 90 deg) and λ is
a longitude angle (unconstrained). These two angles are convenient
for expressing the degrees of freedom because the v∞, an important
metric for cyclers, is a function of ϕ (using the law of cosines) and
is independent of λ. The vector vout can be written as

vout = vout[(cos ϕ cos λ)(v̂E × ĥE ) − (cos ϕ sin λ)ĥE + (sin ϕ)v̂E ]

(16)

For a full-revolution transfer to be posigrade, ϕ must be between
0 and 90 deg. We note that vout is above the ecliptic plane if λ is
between −180 and 0 deg, and below the ecliptic plane if λ is between
0 and 180 deg.

Half-Revolution Transfers
If a leg is a half-revolution transfer, then we use a leg descriptor

(di ) of the form h(t f , N , ε, i ′). The h stands for “half-revolution,”
and t f , N , and ε mean the same as in the leg descriptor of a generic
transfer.

The fourth parameter, i ′, is needed to specify the orientation of the
transfer orbit plane (which is free because the Earth departure point,
the sun, and the Earth arrival point all lie on a line). Specifically, i ′

is the signed angle between the transfer orbit’s angular momentum,
h = rE ×vout, and Earth’s orbital angular momentum (hE ). The sign
of i ′ is always the same as the sign of (vout · ĥE ). For the transfer to
be posigrade, i ′ must be between −90 and 90 deg. We note that i ′ is
not the same as the inclination i of the transfer orbit although i ′ = i
when i ′ is between 0 and 180 deg (hence the need for the prime on
i ′). When a half-revolution transfer with N = 0 follows a gravity-
assist maneuver, it is called a backflip.24 A backflip with i ′ > 0 deg
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is known as a northern backflip and a backflip with i ′ < 0 deg is
known as a southern backflip.

To determine a from t f , N , and ε, one uses the same procedure as
with generic transfers. The spacecraft’s outgoing velocity can then
be calculated using13,21

vout = (ṙout)r̂E + (κout sin i ′)ĥE + (κout cos i ′)θ̂E (17)

where

ṙout =
√

µ

[
2

(r1 + r2)
− 1

a

]
·
{−1 if ε = L , Ll , or Ls

+1 if ε = U

}

(18)

κout =
√

2µr2

/(
r 2

1 + r1r2) (19)

r̂E = (cos γE )(v̂E × ĥE ) + (sin γE )v̂E (20)

θ̂E = (− sin γE )(v̂E × ĥE ) + (cos γE )v̂E (21)

and γE is Earth’s flight-path angle. The spacecraft’s incoming ve-
locity at the end of the half-revolution transfer can be calculated
using

vin = (ṙin)r̂E2 − (κin sin i ′)ĥE2 + (κin cos i ′)θ̂E2 (22)

where

ṙin = −ṙout (23)

κin =
√

2µr1

/(
r 2

2 + r1r2

)
(24)

r̂E2 = −r̂E (25)

ĥE2 = ĥE (26)

θ̂E2 = ĥE2 × r̂E2 (27)

The leg descriptors for the three types of transfer have now been
explained. Table 1 gives a summary.

Discussion and Examples
To be consistent, the sum of the transfer leg durations in a cycler

label must equal the repeat time (n times the Earth–Mars synodic
period S); that is,

t f 1 + t f 2 + · · · + t f K = nS (28)

where t f i is the time of flight on the i th transfer leg.

Table 1 Transfer leg descriptors

Transfer type Leg descriptor

Generic g(t f , θ , ε)
Full-revolution f (M : N , ϕ, λ)
Half-revolution h(t f , N , ε, i ′)

Table 2 Some well-known cyclers

Common name References Cycler labela

Aldrin cycler 3–5 1g(2 1
7 , 1 1

7 rev, L)
VISIT 1 cycler 4, 6–9 7 f (5:4, ϕ, 0 deg)3 or 7 f (5:4, ϕ, 180 deg)3

VISIT 2 cycler 4, 6–9 7 f (3:2, ϕ, 0 deg)5 or 7 f (3:2, ϕ, 180 deg)5

Ballistic S1L1 cycler 10, 14 2g(2.8277, 657.97 deg, U ) g(1.4508, 522.29 deg, L)
Byrnes’ case 3 cycler 11 2g(2 11

14 , 1 11
14 rev, U ) f (1:1, 79.612 deg, λ). . .

h(0.5, 0, U, ±10.388 deg)
Cycler 2.5.1.+0 12 2g(1 11

14 , 11
14 rev, U ) f (1:1, 74.919 deg, ∓144.069 deg). . .

h(0.5, 0, U, ±15.081 deg). . .
f (1:1, 74.919 deg, ±35.931 deg)

Cycler 4.3.1.−5 12 4g(7 1
14 , 5 1

14 rev, L) f (1:1, 84.039 deg, ∓90.0 deg). . .
h(0.5, 0, U , ±5.961 deg)

aWhenever a variable like ϕ or λ appears instead of a value, it is a free design variable.

One might think that if there are K transfer legs then there are
(K − 1) intermediate Earth encounters, but that is not necessar-
ily true. For example, suppose that a half-revolution transfer leg
takes 1.5 years and has a period of 1 year. Then the spacecraft will
encounter the Earth every half-year (assuming the transfer leg is
inclined and the spacecraft doesn’t use the intermediate Earth en-
counters for gravity-assist maneuvers). If Earth encounters at the
beginning and the end of the leg are counted, then the leg has four
Earth encounters. In cases like this, where a leg has hidden interme-
diate Earth encounters, we recommend breaking the leg into separate
Earth–Earth transfers.

We note that, in our nomenclature, every cycler with K transfer
legs can have up to K different cycler labels (because each of the
K legs could be chosen as the first leg). Much of this repetition can
be removed if the longest generic leg is selected to appear first.

Sometimes a transfer leg is repeated k times in a row. Rather than
repeating its leg descriptor k times, we put a superscript k after the
leg descriptor. For example, the superscript 3 in g (0.493, 121 deg,
U )3 means the leg is repeated three times. Table 2 shows the cycler
labels of some well-known cyclers.

Figure 4 shows a plot of Cycler 2.5.1.+0 in an inertial frame.
Cycler 2.5.1.+0 repeats every two synodic periods and uses all three
kinds of transfer (generic, full-revolution, and half-revolution).

So far, we have only considered cyclers constructed out of Earth–
Earth transfers. Other transfers such as Earth–Mars transfers or
Venus–Venus transfers were not considered. Our proposed nomen-
clature is designed so that it also works for such non-Earth–Earth
transfers. All that needs to be added is some indication of the plan-
ets visited during the cycle. For example, if a cycler leaves Earth
and then encounters Mars, Venus, Venus, and Earth in that order,
one could add the string EMVVE at the front of cycler label. All
equations in this paper are given in a form general enough to make
calculations for transfers between planets at different radii.

Although our proposed nomenclature is designed for Earth–Mars
cycler trajectories, the leg descriptors could be used to describe
almost any ballistic transfer, even if the leg is not part of a cycler

Fig. 4 Cycler 2.5.1.+0 (out-of-plane component expanded to make in-
clinations easier to see).
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Table 3 Constructing cycler labels

Label elementa Formb

〈cycler label〉 [(〈body sequence〉)]n〈leg sequence〉
〈leg sequence〉 〈leg descriptor〉|〈leg descriptor〉〈leg sequence〉
〈leg descriptor〉 g(t f , θ , ε)[k]| f (M : N , ϕ, λ)[k]| h(t f , N , ε, i ′)[k]

〈body sequence〉 〈body abbreviation〉〈body sequence〉
|〈body abbreviation〉〈body abbreviation〉

〈body abbreviation〉 E|M|V| · · ·
aAlso called a nonterminal.
bAlso called a production rule. The pipe, |, means “or,” and items in square brackets
are optional.

trajectory. Extensions would have to be made to allow for retrograde,
parabolic, hyperbolic, or rectilinear transfers (which never occur in
cyclers).

Formal Specification of the Proposed Nomenclature
Cycler labels within the proposed nomenclature have a very

specific syntax. A syntax can be formally specified using the ex-
tended Backus–Naur form (EBNF), a metalanguage commonly used
for specifying the syntax of computer programming languages.25

The EBNF specification of the proposed nomenclature is given in
Table 3.

For example, the first row in Table 3 says that a 〈cycler label〉 may
(optionally) begin with a 〈body sequence〉 in parentheses. That is
followed by n (the repeat time in synodic periods), which is followed
by a 〈leg sequence〉. The second row says (recursively) that a 〈leg
sequence〉 is a sequence of one or more 〈leg descriptor〉 elements.
Similarly, the fourth row says (recursively) that a 〈body sequence〉
is a sequence of two of more 〈body abbreviation〉 elements.

Evaluating Cyclers
When using the nomenclature described in this paper, the cy-

cler label completely determines all characteristics of the cycler.
If at least one of the Earth–Earth transfer legs crosses the orbit of
Mars, then there are a number of important cycler characteristics
that should be evaluated: 1) the number of vehicles needed to pro-
vide a short Earth–Mars and short Mars–Earth leg every synodic
period should be as small as possible, 2) for each of the short tran-
sit legs between Earth and Mars (or between Mars and Earth), the
transit time and the v∞ at the two encounters should be as small as
possible, and 3) the total required �v should be zero, ideally. That
is, the cycler should be a ballistic cycler. If some �v is required to
make up for insufficient gravity assist, for example, then it should be
as small as possible. (Cyclers that require a nonzero �v are known
as powered cyclers.) Detailed explanations of these characteristics
and the reasons for calculating them are given in other papers.5,10−14

These characteristics (number of vehicles, transit duration, v∞,
and �v) can be combined in various ways to form a single cost
function. Many different cost functions are possible. Alternatively,
one might examine the tradeoffs between competing objectives (like
short transfer time and low arrival v∞).

Conclusions
We propose a nomenclature that is general enough to cover broad

classes of Earth–Mars cyclers. The proposed system is designed to
be complete, in the sense that a cycler’s label determines all of its
characteristics. The system is also designed so that the calculation of
other characteristics (such as the semimajor axis) is relatively easy.
Our hope is that future research on cyclers will use the proposed
nomenclature (or a suitable generalization) to facilitate scientific
communication and comparisons between different cyclers. We also
hope that cyclers that have not been investigated, but which now
have names within the nomenclature, will be investigated in the
near future.
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