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Six-Degree-of-Freedom Modeling of Semi-Autonomous
Attitude Control During Aerobraking
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The automation of a Mars aerobraking vehicle that uses reaction wheels for attitude and angular momentum
control during atmospheric flythrough is investigated. In a previous study, single-axis control laws were developed
for minimum onboard instrumentation to compensate for large variations in entry time and atmospheric density.
Modifications of those control laws to provide two-axis control in high-fidelity simulations that include six degrees
of freedom, nearly ideal reaction wheels, spherical harmonics, and oblate atmosphere are now tested. Preliminary
results indicate that our approach may be highly practical for an autonomous aerobraking mission at Mars.

Nomenclature
A = reaction wheel orientation matrix, or system matrix
B = input matrix
C = fully normalized tesseral coefficient, or output matrix
CD = coefficient of drag
CMx = partial of moment coefficient with respect to sideslip

angle, deg−1

CMy = partial of moment coefficient with respect to angle of
attack, deg−1

D = direction cosine matrix
E = relative Euler angles, rad
e = eccentricity
F = affine term in equations of motion, rad/s
f = reaction wheel friction torque coefficient
H = total angular momentum, kg · m2/s
I = spacecraft (with reaction wheels) inertia matrix, kg · m2

Ĩ = spacecraft (without reaction wheels) inertial matrix,
kg · m2

J = diagonal matrix of reaction wheel moments
of inertia, kg · m2

K = feedback gain matrix
L = reference length, m
M = external moment acting on spacecraft, N · m
P = fully normalized associated Legendre function
q = dynamic pressure, N/m2

q = inertial attitude quaternion
r = inertial position vector of spacecraft, km
S = fully normalized sectoral coefficient,

or reference area, m2

U = gravity potential, km2/s2

u = reaction wheel control torques, N · m
V = inertial velocity vector of spacecraft, km/s
x = state vector
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α = angle of attack, deg
β = sideslip angle, deg
γ = flight path angle, deg
∆V = change in velocity vector, m/s
θ = true anomaly plus argument of periapsis, deg
λ = International Astronomical Union (IAU) longitude, ◦

µ = gravitational parameter, km3/s2

ρ = atmospheric density, kg/km3

φ = IAU latitude, ◦

χ = θ–γ , deg
ψ = roll angle, deg
Ω = reaction wheel angular rates, deg/s
ω = spacecraft angular rates, deg/s

Subscripts

atm = atmospheric
p = periapsis
Q = quaternion kinematical matrix
rel = relative motion

Superscripts

cm = center of mass
e = equilibrium
i = inertial
×× = cross product matrix

Introduction

A EROBRAKING saved the Mars Global Surveyor (MGS)
(Fig. 1) 1200 m/s of propulsive 
V (about 380 kg of propel-

lant) in placing a spacecraft into a low-energy orbit around Mars.1−5

Similar aeroassisted techniques in the literature also provide reduc-
tion in propulsive maneuvers.6−8

An aerobraking spacecraft uses the atmosphere to reduce the en-
ergy of the orbit (Fig. 2). The atmospheric drag force provides the
desirable 
V to effect the orbit change. During each orbit, the space-
craft also accumulates angular momentum from several external
torques, for example, aerodynamic, gravity gradient, and solar radi-
ation pressure. Traditionally, the spacecraft reaction wheels absorb
this angular momentum, allowing the spacecraft itself to remain in
an inertial attitude. As the reaction wheels become saturated, pro-
pellant is used to eliminate the acquired angular momentum.9

In our scenario, we use the atmospheric torque to our
advantage.10,11 Instead of acquiring additional momentum during
the drag pass, the spacecraft obtains a free desaturation of the re-
action wheels by torquing against the atmosphere. Our goal is to
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Table 1 Reference spacecraft parameters

Parameter Reference value

Mass 1000 kg
CD 1.9
CMx −0.01 deg−1

CMy −0.00366 deg−1

S 17.44 m2

L 8.73 m
Maximum RW torque 0.18 N · m
RW capacity 27.0 N · m · s
Ixx 814 kg · m2

Iyy 410 kg · m2

Izz 695 kg · m2

J 0.0645 kg · m2

f 1 · 10−6 N · m · s

Fig. 1 MGS spacecraft.

Fig. 2 Orbit decay using aerobraking.

devise a control law for the reaction wheels such that the net space-
craft momentum after each flythrough is driven to zero. Ideally,
the spacecraft would have sufficient instrumentation available to
measure every state variable. Unfortunately, such instrumentation
comes at the expense of additional hardware cost and mass to the
mission. We, therefore, choose to find a controller that will only rely
on angular rate feedback.

Modeling Assumptions
Throughout the paper, we make the following modeling as-

sumptions: 1) The only measurable states are spacecraft and re-
action wheel angular rates and the inertial quaternion vector. 2) The
Martian gravity field is evaluated up to 10th order and degree from
a spherical harmonic model. 3) The spacecraft has three reaction
wheels, which span R3. 4) The reaction wheels are aligned in arbi-
trary (possibly nonorthogonal) orientation, subject to the R3 con-
straint. 5) The reaction wheels are nearly ideal.12 (No nonlinearities
are present in reaction-wheel modeling.) 6) The reaction wheels
are located at the spacecraft center of mass. 7) The atmosphere
rotates as a rigid body along with Mars. 8) The atmosphere is mod-
eled as oblate and locally exponential (using MarsGRAM COSPAR
data13,14). 9) The controller provides control about the two aerody-
namically stable axes only (pitch and yaw), that is, no attempt is
made to control rotation about the roll axis. 10) The reference space-
craft properties are given in Table 1. 11) The equations of motion
are integrated using an adaptive stepsize Runge–Kutta 4,5 method
with a relative tolerance of 10−12.

Equations of Motion
Orbital

The inertial position of the spacecraft is described in Cartesian
coordinates by the International Astronomical Union convention.15

The inertial X–Y plane is fixed in the equatorial plane of Mars, with
the X direction defined by the intersection of the ecliptic and the
equator. The Z direction is along the Martian north pole.

The three position equations of motion (EOMs) are simply

ṙ = V (1)

The three velocity EOMs may be written as

V̇ = −∇U + (ρSCD/2m)‖ωatm × r − V‖(ωatm × r − V) (2)

where ωatm is the rotation rate of Mars and U is the gravity potential
given by

U = −µ

r

{
1 +

∞∑
n = 1

n∑
m = 0

(
R

r

)n

Pnm(sin φ) · [Cnm cos mλ

+ Snm sin mλ]

}
(3)

During each aeropass, the atmospheric drag forces dominate over
the gravity perturbations. However, Olympus Mons (a 24-km-high
volcano) can cause detectable changes to a spacecraft’s orbit. For
this reason, we evaluate the gravity potential up to 10th order and
degree, which is needed to resolve Olympus Mons.

Attitude
We can express the spacecraft’s attitude either inertially (using

quaternions), or in terms of relative wind angles (such as angle of
attack and sideslip angle). The spacecraft itself will not be able to
measure these relative wind angles, but they are important from an
analytical point of view, because the momentum EOMs are coupled
with the relative wind angle EOMs.

Both sets of attitude EOMs require angular rate information,
which is obtained from the momentum EOM. The total system an-
gular momentum consists of two components: one due to the angular
rate of the spacecraft relative to the inertial frame and the other due
to the reaction wheels rotating relative to the spacecraft frame. The
total momentum is, thus,

i Hcm = Iω + AJΩ (4)

Because the reaction wheels can only spin about one principal
axis, only a single moment of inertia is needed to describe a reaction
wheel. The J matrix is a 3 × 3 diagonal matrix of reaction wheel
moments of inertia. The reaction wheel orientation matrix A maps
unit vectors from the individual reaction wheel spin axes to the
body-fixed frame. Because the reaction wheel spin axis directions
are linearly independent, A is invertible.

To continue developing the attitude EOMs, we apply Euler’s law
to the entire system and then to the reaction wheels. For the space-
craft system, the momentum vector in Eq. (4) is differentiated with
respect to the inertial frame to yield

i Ḣcm = Mcm = I ω̇ + AJΩ̇ + ω×(Iω + AJΩ) (5)

where Mcm is the external moment relative to the spacecraft center
of mass and the matrix ω× is the cross product matrix, which is
given by

ω× ≡


 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 (6)

Application of Euler’s law to the reaction wheels (with compo-
nents in the reaction wheel frames) results in

J A−1ω̇ + JΩ̇= u − f Ω (7)
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Now we decouple Eqs. (5) and (7) to recover the desired EOMs:

Ĩ ω̇= Mcm − ω× Iω − ω× AJΩ − Au + A f Ω (8)

Ĩ AΩ̇= I AJ −1u − I AJ −1 f � + ω× Iω + ω× AJ� − Mcm (9)

where

Ĩ ≡ I − AJ A−1 (10)

In this study, the external moment Mcm is simply the atmospheric
torque. For the MGS model,5 the+X axis has a moment proportional
to β, and the +Y axis has a moment proportional to α. Thus, the
atmospheric torque term is

Mcm = 1
2 ρV 2

rel SL
[
CMX (β) CMY (α) 0

]T
(11)

Inertial EOMs
The spacecraft’s inertial attitude is determined from the quater-

nion kinematic equation

q̇ = 1
2 ωQq (12)

where

ωQ =




0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0


 (13)

Relative EOMs
Because the momentum EOMs are a function of the aerody-

namic angles α and β [from Eqs. (8) and (11)], we need to de-
rive EOMs for these angles to analyze the behavior of the system
conveniently. The EOMs we derive are not actually integrated in
the simulation because the inertial attitude and position are suffi-
cient to calculate the α and β. The motivation for this analysis is to
linearize the relative attitude EOMs for use in our linear feedback
controller.

We note that the relative wind angles α and β can be thought of as
two Euler angles. These angles are measured relative to the relative
wind vector. When α = β = 0, the spacecraft points directly into
the wind. The third Euler angle needed to complete the sequence
is roll (ψ , about the +Z spacecraft axis), which must be the first
rotation in the sequence. By choosing the second and third rotations
as angle of attack α and sideslip β, respectively, we find that the
aerodynamic properties of α and β are preserved. This 321 Euler
sequence is oriented with respect to the relative wind, that is, the
velocity vector, which is not inertially fixed. Thus, we must include
another rotation, χ , to transform inertial unit vectors into relative
wind vectors. The inertial velocity vector orientation in the orbit
plane is given by the angle χ ≡ θ − γ .

The inertial frame directions are chosen to match the spacecraft
attitude when α = β = ψ = 0. Thus, x̂1 points to the ascending node
of the orbit, ŷ1 points away from the orbital momentum vector, and
ẑ1 completes a right-handed sequence by pointing to a location in
the orbital plane 90 deg ahead of the ascending node. With this
definition χ̇= −χ̇ ŷ1.

The direction cosine matrix mapping from inertial coordinates to
body-fixed coordinates is

D = Dβ Dα Dψ Dχ (14)

where

Dχ =


 cos χ 0 sin χ

0 1 0

− sin χ 0 cos χ


 (15)

Dψ =


 cos ψ sin ψ 0

− sin ψ cos ψ 0

0 0 1


 (16)

Dα =


cos α 0 − sin α

0 1 0

sin α 0 cos α


 (17)

Dβ =


1 0 0

0 cos β sin β

0 − sin β cos β


 (18)

The expression for the angular rates is given by

ω= β̇ + α̇ + ψ̇ + χ̇ (19)

ω =


β̇

0

0


 + Dβ


0

α̇

0


 + Dβ Dα


0

0

ψ̇


 − Dβ Dα Dψ


0

χ̇

0


 (20)


ωx

ωy

ωz


 =


1 0 −sα

0 cβ cαsβ

0 −sβ cαcβ





β̇

α̇

ψ̇


 −


 cαsψ

sαsβsψ + cβcψ

sαcβsψ − sβcψ


χ̇ (21)

where sα ≡ sin α, cα ≡ cos α, etc.
This system is then solved for the Euler angular rates to yield the

relative attitude EOMs in Eq. (22):
β̇

α̇

ψ̇


 =


1 sβ tan α cβ tan α

0 cβ −sβ

0 sβ/cα cβ/cα








ωx

ωy

ωz




+ χ̇


 cαsψ

sαsβsψ + cβcψ

sαcβsψ − sβcψ





 (22)

From Vinh et al.,16 we deduce that

χ̇ = µ cos γ /r 2V (23)

We can compute the relative wind angles by performing the in-
verse operation of Eq. (14). The direction cosine matrix D is ob-
tained from the inertial attitude quaternion q using the standard
transformation:

Drel = DD−1
χ (24)

Drel =


 cαcψ cαsψ −sα

sαsβcψ − cβsψ sαsβsψ + cβcψ cαsβ

sαcβcψ + sβsψ sαcβsψ − sβcψ cαcβ


 (25)

Thus, the Euler wind angles are given by

tan ψ = drel[1, 2]

drel[1, 1]
(26)

tan α = −drel[1, 3]√
d2

rel[1, 1] + d2
rel[1, 2]

(27)

tan β = drel[2, 3]

drel[3, 3]
(28)

The natural motion of the relative wind angles can be examined
by setting ω to 0 and setting the sideslip angle β and roll angle ψ
to 0 as well. Equations (22) and (23) collapse to

β̇ = ψ̇ = 0 (29)

α̇ = χ̇ (30)

We note from Eq. (23) that χ̇ > 0 during the drag pass. Thus,
the angle of attack will naturally increase as the spacecraft orbits
the planet. This increase is because the spacecraft attitude tends to



800 JOHNSON, LONGUSKI, AND LYONS

remain fixed with respect to an inertial reference frame. The exact
solution to the attitude EOMs will have an oscillating component,
but without any control along the pitch axis, the angle of attack would
be biased in the positive direction. From Eq. (11), we conclude that,
with an uncontrolled attitude, momentum will tend to accumulate
along the pitch axis during each drag pass. An attitude control is
necessary to prevent the buildup of momentum.

Reaction Wheel Control Laws
The reaction wheel control laws can be divided into two types:

exoatmospheric and atmospheric. In exoatmospheric flight, the re-
action wheels are commanded to maintain an inertial attitude. For
atmospheric flight, we investigate three control laws: spin down,
affine partial state, and two stage.

Inertial Attitude Hold Controller
In normal spacecraft operation, the spacecraft is held in an iner-

tially fixed attitude to either conduct science experiments or com-
municate with Earth. In our scheme, the spacecraft prepares for a
drag pass by slewing into a new inertially fixed attitude such that
the spacecraft is pointing into the relative wind on entry. As the
spacecraft descends toward periapsis, the angle of attack increases,
and the total system angular momentum changes as it is subjected
to a growing aerodynamic torque. Because the reaction wheels are
commanded to maintain an inertial attitude, the change in momen-
tum is transferred to the reaction wheels. Thus, the spacecraft senses
atmospheric entry when the commanded torque magnitude exceeds
some threshold. (In our simulations, we use a threshold of 5% max-
imum torque.) After this threshold is exceeded, the reaction wheel
switches to an atmospheric control mode. (Here we note again that
the only instrumentation assumed are gyros to measure the angu-
lar velocities. It seems clear, however, that an accelerometer would
significantly aid in the detection of atmospheric entry.)

Once atmospheric entry is detected, an onboard timer is started.
This timer’s purpose is to countdown the time until the spacecraft
should reach periapsis (which is needed for some control laws)
and also to countdown the time until the spacecraft should exit
the atmosphere. On atmospheric exit, the reaction wheels once
again switches modes, this time, back to the inertial attitude hold
mode.

Spin-Down Controller
This control law despins the yaw and pitch reaction wheels dur-

ing the atmospheric flythrough. When zero-spin rate is reached, the
applied reaction wheel torques are shut off. After exiting the atmo-
sphere, all residual spacecraft momentum is transferred back to the
reaction wheels.

This mechanism works because the spacecraft can torque against
the atmosphere. The atmosphere tends to keep the spacecraft in
place (the angle of attack and sideslip angles oscillating about zero)
while the wheels are desaturated. This control law works best if
started near periapsis, where the atmosphere is densest. Before the
spacecraft reaches its estimated periapsis, the commanded torque is
zero, thus allowing the spacecraft to weathervane (undamped) back
and forth into the relative wind. Shortly before periapsis, the pitch
and yaw axis reaction wheels are despun at maximum available
torque. Afterward, the commanded torque is again set to zero until
exit. To ensure the reaction wheels have enough time to despin, each
reaction wheel begins its momentum dump such that the dump will
be half completed during the estimated periapsis passage.

Because the roll axis has no opposing external moment to torque
against, any change in momentum along that axis will not be altered
by the atmosphere. Any momentum storage along the roll axis will
either have to be removed propulsively, or by creating an external
moment by rotating the solar panels.

This control law has the advantage of being simple to implement
and being independent of spacecraft and planetary parameters. It is
also one of the best performing control laws for the six-degree-of-
freedom case.

Affine Partial-State Controller
For this approach, we devise a linear state-feedback controller to

drive the total system momentum to zero. We first need to linearize
the attitude EOMs and pick a feedback gain matrix K to produce
a stable closed-loop system, using only the measurable states (ω,
Ω) as feedback. The derivation of this controller is presented in the
next section.

Linearization of Equations of Motion

The angular momentum from Eq. (4) is a linear combination of
the spacecraft and reaction wheel angular rates. The EOMs for the
spacecraft angular rates [Eq. (8)] is a function of the Euler wind
angles. Thus, we need to linearize Eqs. (8–10).

The first step in linearization is to choose the desired equilibrium
conditions and to redefine the state variables as appropriate. One
such set of equilibrium conditions is

αe = βe = ψ e = 0 (31)

ωe = [0 −χ̇ 0]T (32)

Ωe = J −1 A−1 I [0 χ̇ 0]T (33)

ue = f Ωe (34)

Let E be the column vector of Euler angles

E = [β α ψ]T (35)

The state variables are then redefined by subtracting out their
equilibrium values. Let x be the column vector of state variables,
and δx ≡ x − xe, where x ≡ [E,ω,Ω]T .

The linearized system of equations can be written as

δẋ = A(ρ)δx + Bδu (36)

H = Cδx (37)

Alternatively, we can write the system in affine form using the orig-
inal state variables as

ẋ = A(ρ)x + Bu + F (38)

H = Cx (39)

where

A =


−ω×e
1 0

Ĩ −1 ∂M
∂E

− Ĩ −1ω×e
I Ĩ −1(A f − ω×e

AJ )

−A−1 Ĩ −1 ∂M
∂E

A−1 Ĩ −1ω×e
I A−1 Ĩ −1(ω×e

AJ − I AJ −1 f )




(40)

B = [0 − Ĩ −1 A A−1 Ĩ −1 I AJ −1]T (41)

C = [0 I AJ ] (42)

F = [−ωe 0 0]T (43)

The control law is in the form of δu = K δx, or in terms of original
state/control variables,

u = K x − K xe + ue (44)

where K is the feedback control gain of the form

K = [KE Kω KΩ] (45)

We have 9 states, 3 controls, and, thus, 27 feedback gains to
choose. Because we cannot measure the (noninertial) Euler angles,



JOHNSON, LONGUSKI, AND LYONS 801

we set the nine parameters from KE to zero. We need a method to
select the remaining 18 feedback gains to stabilize the closed-loop
system. Because momentum cannot be removed from the roll axis,
we set those coefficients to zero. Also, because the pitch and yaw
axes are uncoupled in the linearized model, we set the cross terms
to zero as well. This leaves us with four gains to choose (two for the
pitch axis and two for the yaw axis).

Because our A matrix is time varying, negative instantaneous
eigenvalues are insufficient for stability. To achieve stability in
the nonlinear time-varying system, we take a minimax approach,
where we pick the gain matrix such that the maximum real part
of the closed-loop eigenvalues is a minimum. We note that the
equilibrium conditions in Eqs. (32) and (33) are functions of χ̇ ,
which is itself a function of the orbit. Of course, the orbital pa-
rameters will change during the aerobraking process. To avoid on-
board updates of the parameter χ̇ after every drag pass, we tune
the equilibrium point to the particular orbit corresponding to an
eccentricity of 0.4. We find this approach to be robust even con-
sidering the large changes in eccentricity throughout aerobraking.
Alternatively, the equilibrium point could be retuned each orbit,
but results indicate that a statically tuned equilibrium point works
sufficiently well.

For the special case where the reaction wheels are aligned with
the spacecraft principal axes (which are identical to the yaw, pitch,
and roll axes), the minimax problem has the analytic solution

Kω,x =
(

3 Ĩx − 1

3
Ix

)√−qp SLCMX

3 Ĩx

(46)

Kω,y =
(

3 Ĩy − 1

3
Iy

)√
−qp SLCMY

3 Ĩy

(47)

K�,x = f − Jy

3

√−qp SLCMX

3 Ĩx

(48)

K�,y = f − Jy

3

√
−qp SLCMY

3 Ĩy

(49)

Theorem
In the aforementioned special case, the body-fixed axes are de-

coupled in the linearized system and can be treated individually. For
both of the controllable axes, the affine partial-state controller uses
feedback from the two measurable state variables, ω and �. Without
being able to measure the third state variable α, the closed-loop sys-
tem poles cannot be arbitrarily placed. For any monic polynomial
with exactly one specified coefficient, the minimax solution occurs
when the roots are real and identical.

Proof by Contradiction
Consider the monic polynomial (cn = 1) given by

p(s) =
n∑

k = 0

(
n
k

)
cn − k

k sk (50)

If the j th term is the only specified term, then the minimax solution
is given by ck = c j for all k, which yields

p j (s) =
n∑

k = 0

(
n
k

)
cn − k

j sk (51)

so that

p j (s) = (s + c j )
n (52)

Let us assume that p j (s) is not the minimax solution; in other words,
every root of p(s) has a real part smaller than c j . We will call this
better polynomial q(s),

q(s) =
n∑

k = 0

(
n
k

)
dn − k

k sk (53)

or

q(s) =
n∏

i = 1

(s + c j + εi ) (54)

Our constraints are that d j = c j (fixed j th term) and �{εi } > 0 for
all i . [We need every root of q(s) to be smaller than c j .] Expansion
of Eq. (54) reveals that

(
n
j

)
dn − j

j =

(
n
j

)
∑
k = 1

n − j∏
i = 1

(c j + εki ) (55)

but (
n
j

)
dn − j

j >

(
n
j

)
cn − j

j (56)

so that

d j > c j (57)

However, our original assumption was that d j = c j , that is, the
j th term was fixed, and so we have a contradiction. Therefore, if
a polynomial has exactly one coefficient that is fixed, with the rest
arbitrary, then the polynomial that minimizes the maximum real part
of the roots is the polynomial with n repeated real roots.

Application to the Affine Partial-State Controller
The characteristic polynomial (for the pitch axis) for the closed-

loop system is

s3 + s2

(
Iy f

Ĩy Jy

− Iy K�

Ĩy Jy

+ Kω

Ĩy

)
− s

(
qp SLCMY

Ĩy

)

+
(

qp SLCM,Y

Ĩy

)(
K� − f

Jy

)
= 0 (58)

(We note that the yaw-axis characteristic polynomial is identical but
with X -axis parameters instead of the Y -axis ones.)

In Eq. (58), the s coefficient is fixed (no feedback available).
Because the s term is the only such term, we know the minimax
solution occurs when all roots are real and identical. From Eq. (58),
we deduce the (triple-root) closed-loop eigenvalue to be

s = −
√

−qp SLCMY

3 Ĩy

(59)

The required feedback coefficients are, thus, given by Eqs. (46–49).

Two-Stage Controller
The affine partial-state controller performs nearly all of its work

by the time the spacecraft reaches periapsis. In thick atmospheres,
the controller quickly drives the system to the equilibrium condition.
In thin atmospheres, the affine partial-state controller is too sluggish
to fully desaturate the reaction wheels. However, the spin-down con-
troller can rapidly despin the wheels. Furthermore, the spin-down
controller performs best when activated near periapsis. The advan-
tages of these two controllers inspire us to define a two-stage control
law, which is a combination of the two laws. The first stage uses
the affine partial-state control law and is activated on atmospheric
entry. The second stage uses the spin-down logic and is activated at
estimated periapsis.

In the cases where the first stage is able to remove completely
the system momentum, the spacecraft and reaction wheels have a
nonzero equilibrium angular rate [Eqs. (32) and (33)]. We modify the
spin-down stage to spin down to the affine partial-state equilibrium
point. Thus, in the nominal cases, the two-stage controller performs
as well as the affine partial-state controller.
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Table 2 Reference simulation parameters

Parameter Reference value

Eccentricity 0.4
Dynamic pressure at periapsis 0.5 N/m2

Stored momentuma 13.5 kg · m2/s
Atmospheric density 100% nominal
Entry angle of attack 0 deg
Entry sideslip angle 0 deg

aAlong pitch (+Y ) axis at 50% capacity.

Fig. 3 Fractional momentum remaining after a drag pass for the spin-
down controller where the indepedent variables are relative density and
eccentricity.

Fig. 4 Fractional momentum remaining using the affine partial-state
controller.

Results
Overview

We judge the effectiveness of a particular control law by the an-
gular momentum reduction achieved during the drag pass. There
are several parameters that influence the performance of our control
laws. As we consider the variations in the most influential parame-
ters, we find it convenient to establish a set of reference parameters
listed in Table 2.

Single Pass
The most important parameters that affect our control laws are

the atmospheric density and the orbit eccentricity. Figures 3–5 il-
lustrate the performance of the three control laws. The height of the
mesh represents the fractional momentum remaining after a drag
pass, where the initial stored momentum is at 50% capacity. The
spin-down case (Fig. 3) usually removes about 90% of the stored
momentum. It is somewhat less effective in a thin atmosphere. In this
case, the spacecraft does not sense atmospheric entry until relatively

Fig. 5 Fractional momentum remaining using the two-stage
controller.

Fig. 6 Fractional momentum remaining using the spin-down con-
troller where initial stored momentum is along the pitch (+Y) axis at
27 kg · m2/s (100% capacity).

late in the drag pass. As a result, the periapsis timer is started late,
and the spin-down controller barely has enough time to complete
its momentum dump. However, if the controller is started too early
in the nominal or thick atmosphere cases, there will not be enough
external torque to oppose the spacecraft’s angular momentum. This
condition will result in high-amplitude oscillations about the pitch
and yaw axes, which will cause the spacecraft to gain momentum
instead of to lose it.

The affine partial-state control law (Fig. 4) is able to remove
nearly 100% of the total momentum in most cases. It has trouble in
the low-density case but still works better than the spin down. In the
worst case (log10 ρ/ρ0 = −1, e = 0.9), spin down removes only 20%
of the stored momentum, whereas the affine partial state removes
about 65% of the momentum. The tuning of the affine partial state
about an eccentricity of 0.4 is also evident in Fig. 4 as a slight upward
slope in the mesh surface away from the line e = 0.4.

Finally, the two-stage control law (Fig. 5) demonstrates the best
of both preceding controllers. The mesh is flat like the affine partial
state, but without the slope. In the worst case, the controller removes
over 80% of the stored momentum.

We present an extreme case in Figs. 6–8. Figures 6–8 show the
fractional momentum remaining for the three control laws when the
initial momentum wheel (along the pitch axis) is 100% saturated.
All three control laws are able to reduce substantially the momentum
for every eccentricity and atmospheric density considered.

All three control laws perform well under a variety of atmospheric
uncertainties. Table 3 summarizes the average and worst-case per-
formance of the three laws. The spin-down and affine partial-state
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Table 3 Performance summary of control laws in terms of initial
and final saturation

Final saturation, %

Initial, % Statistic Spin down Affine Two stage

0 Mean 0.9 1.1 0.3
Maximum 3.1 2.6 1.4

25 Mean 2.9 2.0 1.1
Maximum 11.1 12.1 6.8

50 Mean 2.5 2.0 0.8
Maximum 12.2 16.4 8.8

75 Mean 2.6 1.8 1.3
Maximum 12.6 7.9 9.0

100 Mean 3.6 3.2 2.0
Maximum 28.2 26.5 15.6

Fig. 7 Fractional momentum remaining using the affine partial-state
controller.

Fig. 8 Fractional momentum remaining using the two-stage
controller.

controllers have similar performance for low saturations, whereas
the affine partial state is usually better for higher initial satura-
tions. The two-stage controller is uniformly the best control law
in almost all test cases, making it the most robust control law of the
three.

We note that other spacecraft parameters, for example, the ref-
erence length, area, moment coefficient, moment of inertia, are dy-
namically equivalent to the atmospheric density.17 Thus, the control
law behavior with spacecraft parameter uncertainties is identical to
the behavior with a proportionately scaled atmospheric density.

Multiple Passes
A controller may work well over a single drag pass but fail over the

duration of the entire aerobraking phase. Thus, we simulate an entire

Fig. 9 Momentum of the spacecraft after each drag pass using the
spin-down controller with an initial orbit period of 48 h and a final
orbit period of 2 h.

Fig. 10 Momentum of the spacecraft after each drag pass using the
affine partial-state controller.

aerobraking mission using each of the controllers. The spacecraft is
assumed to capture into an initial 48-h orbit and then to aerobrake
into a 2-h final orbit. Outside the atmosphere, space environmental
torques are applied to the spacecraft (at a rate of 5 × 10−6 N · m)
along all three axes.

Figures 9–11 illustrate the stored angular momentum along each
axis after each atmospheric-flythrough orbit. From the linearized
EOM (38–40), we see that the yaw, X , and roll, Z , axes are coupled.
Even though the roll axis is not directly controlled, any control in-
puts or disturbances that affects one of these axes will also affect the
other. Furthermore, after each drag pass, the spacecraft must slew to
a new inertial attitude. The pitch axis will tend to remain inertially
fixed from orbit to orbit (because the orbital angular momentum
vector tends to remain inertially fixed). Thus, the net effect of the
spacecraft’s reorientation is that a component of the stored momen-
tum is swapped between the yaw and roll axes. The effect becomes
more pronounced as the orbit decays (and thus, the atmospheric turn
angle increases). This result is beneficial (and fortuitous) because
the roll-axis momentum can be passively controlled through the yaw
axis.

In Fig. 9, we observe that the disturbance torques on the roll axis
accumulate beyond the reaction wheel’s capacity to store it. Thus,
a propulsive desaturation of the roll-axis reaction wheel (RW) is
required.

The affine partial-state controller (Fig. 10) and the two-stage con-
troller (Fig. 11) are able to control the yaw-axis momentum much
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Fig. 11 Momentum of the spacecraft after each drag pass using the
two-stage controller.

better than the spin-down controller. As expected, the roll axis does
not suffer as much. During the slewing maneuver after a drag pass,
the yaw axis does not have any appreciable component to be mapped
into the roll axis, and the roll axis is able to lose some momentum
by its component that is mapped to the yaw axis.

Roll Axis
Even with passive roll-momentum management, the roll-axis re-

action wheel may easily saturate if the space environmental torques
are sufficiently large. We would, therefore, like to manage more
actively the roll-axis momentum during each drag pass.

If the solar panels are attached at an angle relative to the Y –Z
plane, the relative wind can induce a propeller torque on the body
+Z axis (the roll axis). Because the torque on the roll axis will
always be in same direction, the angular momentum buildup will be
secular.

The current practice is to use propellant to manage the spacecraft’s
momentum. With our two-axis control laws, propellant would only
be needed to manage the roll-axis momentum. Another scheme
to manage the roll-axis momentum is to articulate the solar pan-
els to control the rolling moment. This controller would con-
trol the pitch angle of the propellor blades (solar panels) to first
annihilate the roll-axis momentum and then null out the rolling
moment.

Conclusions
All three of the considered control laws are capable of managing

the spacecraft angular momentum. The spin-down case is concep-
tually the simplest of these three control laws and has the advan-
tage of being independent of spacecraft properties. However, the
spin-down controller does require timing information on periapsis,
which is particularly critical for high-eccentricity orbits and high
initial stored momentum. The affine partial-state controller is the
easiest to implement, needing only five constant parameters to de-
scribe it fully. These parameters are functions of spacecraft inertia,
aerodynamic moment coefficients, and projected atmospheric den-
sity. Because this controller does not require any timing information,
it is the least memory-intensive controller of the three. Finally, the

two-stage controller provides performance superior to its two com-
ponent laws, but at the combined complexity of the two.
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