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Shape-Based Algorithm for Automated Design
of Low-Thrust, Gravity-Assist Trajectories

Anastassios E. Petropoulos∗ and James M. Longuski†

Purdue University, West Lafayette, Indiana 47907-1282

Given the benefits of coupling low-thrust propulsion with gravity assists, techniques for easily identifying candi-
date trajectories would be extremely useful to mission designers. The computational implementation of an analytic,
shape-based method for the design of low-thrust, gravity-assist trajectories is described. Two-body motion (cen-
tral body and spacecraft) is assumed between the flybys, and the gravity-assists are modeled as discontinuities in
velocity arising from an instantaneous turning of the spacecraft’s hyperbolic excess velocity vector with respect to
the flyby body. The method is augmented by allowing coast arcs to be patched with thrust arcs on the transfers
between bodies. The shape-based approach permits not only rapid, broad searches over the design space, but also
provides initial estimates for use in trajectory optimization. Numerical examples computed with the shape-based
method, using an exponential sinusoid shape, are presented for an Earth–Mars–Ceres rendezvous trajectory and
an Earth–Venus–Earth–Mars–Jupiter flyby trajectory. Selected trajectories from the shape-based method are
successfully used as initial estimates in an optimization program employing direct methods.

Nomenclature
a = thrust acceleration normalized by local

gravitational acceleration
a0P = zeroth-order constant coefficient for out-of-plane a
b0 = first-order constant coefficient for out-of-plane a
di = difference in inverse radii, m−1

F = thrust acceleration, ms−2

fh = thrust acceleration along spacecraft’s orbital
angular momentum, ms−2

hx = spacecraft specific orbital angular momentum,
x component, m2s−2

hy = spacecraft specific orbital angular momentum,
y component, m2s−2

Isp = specific impulse, s
i = inclination, rad
k0 = scale parameter for the exponential sinusoid, m
k1 = dynamic range parameter for the

exponential sinusoid
k2 = winding parameter for the exponential sinusoid
k12s = k1k2

2s
ṁ = propellant mass flow rate, mg/s
n = integer
P = power, kW
p = semilatus rectum, m
r = radial distance from the central body, m
rB = radial distance of flyby body (or switch point)

from central body at time of flyby (or thrust
switch on/off), m

s = sin(k2θ + φ)
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T = thrust, mN
vz = out-of-plane velocity, m/s
v∞ = hyperbolic excess velocity, m/s
α = thrust angle, rad
γ = flight-path angle, rad
�V = velocity change, m/s
θ = polar angle, rad
µ = gravitational parameter of central body, m3s−2

ρ = projected radius on the low-thrust
reference plane, m

ρn = lower bound for ρ, m
ρx = upper bound for ρ, m
φ = phase angle for exponential sinusoid, rad;

out-of-plane position angle, rad
ω = argument of periapsis, rad

Subscripts

A, B, . . . = value at points A, B, . . .
max = maximum value over the independent variable
min = minimum value over the independent variable

Superscript

· = derivative with respect to time

Introduction

I T is well known that efficient, continuous-thrust propulsion and
gravity assist each provide significant benefits in trajectory de-

sign. Furthermore, each has been demonstrated in practice: NASA’s
Deep Space 1 spacecraft1,2 has recently provided the first validation
of interplanetary use of solar electric propulsion, whereas gravity
assists have been repeatedly used in the exploration of the solar sys-
tem, perhaps most notably by Voyager II,3 which was launched in
1977. The coupling of high-specific-impulse, low-thrust propulsion
with gravity assists is a natural next step in the development of tra-
jectory design techniques for deep space missions. In the literature,
the design of such trajectories is typically treated as an optimiza-
tion problem, which can be solved by a variety of techniques.4−14

However, all of these techniques need some sort of initial guess for
at least part of the solution, and even with such a guess, experience
has shown that convergence to an optimal solution, particularly in
the case of multiple gravity assists, is a formidable challenge. In this
paper, rather than addressing the optimization of particular initial
guesses, we present a shape-based method15,16 for efficiently gen-
erating initial estimates for low-thrust, gravity-assist trajectories.
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These initial estimates serve a twofold purpose: They provide mis-
sion designers with rapid, broad overviews of the trajectory design
space16 (hence the use of the word estimate rather than guess), and
they provide a starting point for trajectory optimization.

In the shape-based approach, the powered spacecraft trajectory
is assumed to be of a certain shape, with the requisite thrust profile
determined therefrom. With the correct choice of shape, not only
can we add to the small family of analytic solutions to the equations
of motion (for example, Refs. 17–22), but we can also obtain trajec-
tories with satisfactory performance and feasible, or near-feasible,
thrust profiles. Here we consider cases where multibody effects are
not significant, allowing the use of the simpler two-body equations of
motion, with the gravity assists treated as discontinuities in velocity.
In addition, we make the assumption that the spacecraft trajectory
between gravity assists is roughly planar. Having studied a number
of planar shapes,15,16,18,23 we select the exponential sinusoid15,16,23

as the most promising of these for representing the powered portion
of flight between gravity-assist bodies. The out-of-plane motion re-
quired to encounter a gravity-assist or destination body is assumed
to be small and is approximated through an analysis of the orbital
angular momentum vector. We describe a computational method of
solution of the resulting equations and the implementation of this
method in a new software. Two examples of trajectory searches
using the new software are presented for one-gravity-assist, Ceres-
rendezvous trajectories, and for three-gravity-assist, Jupiter-flyby
trajectories, both over broad ranges in launch date and launch en-
ergy. The searches are automated in the sense that the software
can find potentially thousands of trajectories over a large param-
eter space, based on a simple input file. In addition to the broad
searches, we also present two sample trajectories computed with
this method and use the two trajectories as initial estimates in a
direct-optimization program, comparing one of them to an existing
trajectory in the literature.

Methodology
Overview

In this section, we describe how exponential-sinusoid-based
thrust arcs are incorporated into the Satellite Tour Design
Program24−26 (STOUR), to form a new program, STOUR-LTGA,
which automatically searches for low-thrust, gravity-assist (LTGA)
trajectories. As in STOUR, the user specifies a sequence of gravity-
assist bodies, a range of launch dates, and a range of launch v∞
for trajectories, subject to various constraints, such as time of flight
(TOF) and propellant consumption constraints. In STOUR-LTGA,
as in STOUR, the positions and velocities of the solar system bod-
ies are modeled by polynomial representations, or, if the user so
requests, by more accurate ephemeris data.

Previous papers15,16 present an analysis of various thrust profiles
that can be used to produce a trajectory of exponential sinusoid
shape, given in polar coordinates (r, θ ) by

r = k0 exp[k1 sin(k2θ + φ)] (1)

where k0, k1, k2, andφ are constants. Two examples of an exponential
sinusoid, demonstrating the effect of the winding parameter k2, are
shown in Fig. 1. The dynamic range parameter k1 controls the ratio
of the apoapsis distance to the periapsis distance. The parameter

a) k2 = 2/3 b) k2 = 2/11

Fig. 1 Sample exponential sinusoid shapes, shown from periapsis to
apoapsis, for k1 = 0.5.

k0 is simply a scaling factor, and the phase angle φ controls the
orientation of the exponential sinusoid in the plane.

By thrust profile, we mean thrust direction and magnitude of
the acceleration due to thrust as functions of position on the tra-
jectory. Of the thrust profiles considered, we choose the tangential
thrust case because this case 1) is the simplest analytic case, 2) is
less prone to singularities, and 3) has tolerable thrust-acceleration
levels and attractive velocity profiles for both flyby missions and
rendezvous missions. By tangential thrust, we mean thrust along or
against the velocity vector. Noteworthy is that the shape assumption
with the tangential thrust assumption together dictate the magnitude
of the thrust acceleration as a function of the shape parameters and
the position on the shape. The familiar two-body equations of mo-
tion in polar coordinates are

r̈ − r θ̇2 + µ

r 2
= F sin α (2)

1

r

d

dt
(r 2θ̇ ) = F cos α (3)

where the overdot denotes differentiation with respect to time, µ is
the gravitational parameter of the central body–spacecraft system,
F is the magnitude of the thrust acceleration, and α is the thrust
angle with respect to the local horizon. It is convenient to normalize
F by the local gravitational acceleration:

a ≡ F/(µ/r 2) (4)

The normalized thrust acceleration a will thus be a small constant
if F is small and drops off with 1/r 2, as is roughly the case with
power-limited solar electric propulsion.13 The flight-path angle γ ,
namely the angle of the velocity vector with respect to the local
horizon, given geometrically by tan γ = (dr/dθ)/r , is easily seen
from the shape equation (1) to be

tan γ = k1k2 cos(k2θ + φ) (5)

Then, the shape equation (1), the equations of motion (2) and (3)
and the tangential thrust assumption yield the following analytic
expressions for angular rate θ̇ and normalized thrust acceleration:

θ̇ 2 =
(

µ

r 3

)
1

tan2 γ + k1k2
2s + 1

(6)

a = (−1)n tan γ

2 cos γ

[
1

tan2 γ + k1k2
2s + 1

− k2
2(1 − 2k1s)(

tan2 γ + k1k2
2s + 1

)2

]

(7)

where

s ≡ sin(k2θ + φ) (8)

Last, the thrust angle is given by

α = γ + nπ (9)

where n is an integer chosen so that the right-hand side of Eq. (7)
is positive. When n = 0, we have thrust along the velocity vector;
when n = 1, we have thrust against the velocity vector.

Equations (6) and (5), or equivalently Eq. (1), provide the cir-
cumferential and radial speeds as functions solely of position on
the exponential sinusoid. Equation (7) similarly provides the nor-
malized thrust acceleration as a function of position. Equation (6)
permits retrograde motion because one need simply take the nega-
tive square root of the right-hand side to obtain θ̇ < 0. However, for
purposes of convenience in discussion, we examine only prograde
motion here.

Considering only positive values for k1 and k2, without loss of
generality, we see from Eqs. (6) and (7) that as k1k2

2 approaches unity
from below, θ̇ and the normalized thrust acceleration both approach
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infinity at periapsis (where s = −1). For k1k2
2 > 1, θ̇2 will be less

than zero in a region centered around periapsis, meaning that, in
this region, the exponential sinusoid shape cannot be followed using
tangential thrust. Thus, such regions of the exponential sinusoid
must necessarily be avoided. Regions of high a and θ̇ can also be
avoided if desired, where high is to be determined by the mission
designer, who should bear in mind, of course, that this is a heuristic
method and so some leeway should be given for thrust-acceleration
levels to exceed the capabilities of the intended thruster. The mission
designer’s specification of what a and θ̇ are considered high will
translate into a cap on the value of k1k2

2 .
The effects on the exponential sinusoid of a cap on the value of

k1k2
2 are most easily understood by looking at two extremes. First,

we consider the effect on the geometry. When k1 is large, that is,
apoapsis is much greater than periapsis (large dynamic range), k2

must be small, meaning that many revolutions around the central
body are required between periapsis and apoapsis. Conversely, when
k2 is large, meaning that few, if any, revolutions are required between
periapsis and apoapsis, k1 must be small, that is, apoapsis is not much
greater than periapsis (small dynamic range).

Second we look at the effect of the k1k2
2 cap on the velocity profile.

An intuitive way to assess the effect is to compare the velocity
on the exponential sinusoid with the circular orbit velocity at the
local radius. In the many revolution case (small k2), the velocity
on the exponential sinusoid is not much different from the local
circular orbit velocity, particularly so at periapsis and apoapsis of
the exponential sinusoid. Launching from, or effecting rendezvous
at, a body in circular orbit would, thus, be most effective at periapsis
or apoapsis of the many-revolution exponential sinusoid, while a
gravity assist at a body in circular orbit would be most effective
somewhere between periapsis and apoapsis, where the exponential
sinusoid velocity is most different from the circular velocity. In the
few-, or no-, revolution case (large k2), the exponential sinusoid
velocity is significantly noncircular, making this case attractive for
gravity assists at bodies in circular orbits. For a body in an orbit of
medium to high eccentricity, low v∞ values can be achieved only
in the few-, or no-, revolution case, meaning that the exponential
sinusoid must have a small dynamic range; high v∞ values are easily
achievable in both the few- and the many-revolution case. Further
details are described by Petropoulos.23

We turn now to the matter of incorporating the exponential
sinusoid with tangential thrust into a computational program. For
simplicity in discussion, we consider the sun as the central body
and the planets as flyby bodies, although of course the methodology
applies to other central body systems, such as Jupiter and its moons.
The motion of the spacecraft between planets, that is, on each leg,
is permitted either to be purely conic (coasting), or to involve some
degree of thrusting. The purely conic legs are computed using the
previously existing capabilities of STOUR for analytic, two-body
motion. The remainder of this section describes how thrust legs are
computed.

In STOUR-LTGA, legs can include thrust arcs in three ways:
Either the entire leg is a thrust arc, or a thrust arc is succeeded or
preceded by a coast arc. In other words, the legs may be described
as thrust, thrust–coast, or coast–thrust. The motion on thrusting arcs
is considered in two separate parts, the in-plane motion and the
out-of-plane motion. The in-plane thrusting motion is assumed to
follow an exponential sinusoid [Eq. (1)] with tangential-thrust. The
gravity assist is modeled as an instantaneous change in heliocentric
spacecraft velocity without change in heliocentric position.

The out-of-plane motion is based on an analysis of the orbital
angular momentum vector, where the out-of-plane position angle
and speed are approximated from the in-plane angular momentum
and velocity components. These approximations are increasingly
better, the smaller the out-of-plane angles. The in- and out-of-plane
motions are described in the following two subsections.

In-Plane Motion
Thrust Legs

The STOUR-LTGA program steps through discrete values of the
launch dates and the launch hyberbolic excess velocity v∞ magni-

tudes specified by the user and for each value computes trajectories
that reach the next body. The launch v∞ is assumed to lie in the
body’s orbit plane but may point in any direction. In the case of a
flyby, a B-plane angle27 of 0 or 180 deg is assumed (the fundamen-
tal plane being taken as the flyby body’s orbit plane), and the v∞
turn angle is constrained by altitude. The low-thrust reference plane,
that is, where the planar motion occurs, for the next leg is taken as
normal to the spacecraft’s initial angular momentum vector. The
program steps through the full range of in-plane orientations for the
outgoing v∞. For each outgoing v∞, there corresponds a heliocen-
tric flight-path angle and speed, which means that tan γ and θ̇ are
known. Hence, the quantity

k12s ≡ k1k2
2s (10)

can be determined from Eq. (6). Then, together with the trigono-
metric identity sin2 θ + cos2 θ ≡ 1 and Eq. (5), there results the con-
straint relationship

k2
1k4

2 − k2
2 tan2 γ − k2

12s = 0 (11)

between the as yet undetermined shape parameters k1 and k2. Thus,
there remains one free-shape parameter, taken as k2, which is used
to target the next body.

The search over k2 to meet the target body is narrowed in several
ways. Without loss of generality, only positive values are considered
for k1 and k2. To avoid singularities around periapsis, we require

1 − k1k2
2 > 0 (12)

which ensures that the denominator in Eq. (6) is always positive.
(When zero or negative, the exponential sinusoid cannot be followed
using tangential thrust.) For practical purposes, upper limits of one
and two are imposed on k2 and k1, respectively, because the required
thrust levels become untenably high when (1 − k1k2

2) approaches
zero. However, in the case of k1, the user may impose a different
upper limit, typically a higher one, to allow greater excursions in
radial distance on legs where this may be warranted. The lower limit
on k2 is taken as 0.01, as this permits up to 50 revolutions around
the sun between periapsis and apoapsis, a number not likely to be
exceeded in practice. Last, a range of k2 values can be determined for
which the resulting exponential sinusoid will intersect the projection
onto the low-thrust reference plane of the target body’s orbit. For
outbound targets, that is, those whose minimum projected radius
ρmin is greater than the current radius rB , we obtain, after some
algebraic manipulations based on Eqs. (1) and (11),

k2
2 ≤ tan2 γ − 2k12s ln (ρmin/rB)

[ln (ρmin/rB)]2
(13)

For inbound targets, that is, those whose maximum projected radius
ρmax is less than the current radius, we similarly obtain

k2
2 ≤ tan2 γ + 2k12s ln (rB/ρmax)

[ln (rB/ρmax)]2
(14)

For all other targets, no additional constraints can be imposed on k2.
In all cases, the limits on k2 are adjusted, if necessary, based on the
limits for k1 and the constraint relationship Eq. (11).

Thus, for each turn angle we establish a range of k2 values that
yield intersections of the exponential sinusoid and the projected or-
bit of the target. All that remains is to solve for the specific value
of k2, if any, which yields the correct TOF to the intersection. This
value is found by stepping through the range of k2 values and at
each step computing the location of the intersection point. Because
no analytic solution is available, the intersection point is computed
using a step-size and search-direction-controlled Newton method,
with a suitable initial guess, as explained in subsection “Finding
Intersections with the Target Body’s Orbit.” The TOF to the inter-
section is then computed by quadrature, allowing a miss angle to be
found, that is, the spacecraft–sun–target angle when the spacecraft
reaches the intersection point (with the target projected onto the
plane). Thus, as to be explained, we search for a zero miss angle in
the turn angle vs k2 space. There is a one-dimensional continuum of
such solutions, which we sample at intervals according to the turn
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angle and k2 step sizes. Of course, each exponential sinusoid will
usually intersect the target’s orbit more than once. We only keep
track of up to two outbound intersections and up to two inbound
intersections. We ignore subsequent intersections because they will
often require inordinate amounts of propellant, or because their ge-
ometry will be similar to that of the first intersections. Thus, there
is no reason to expend computation time for these intersections.

Thrust–Coast and Coast–Thrust Legs
For thrust–coast or coast–thrust legs, which might be termed

mixed legs, the point at which the thrust is turned off or on is called
the switch point. The user specifies the heliocentric radial distance
of the switch point (the switch radius) and may optionally specify
whether the spacecraft is to be heliocentrically inbound or outbound
at the switch point (the switch direction). The default switch direc-
tion is inbound for targets that are inbound from the switch radius
and is outbound for outbound targets. If the switch radius is between
the target’s projected apoapsis and periapsis, then both switch direc-
tions are considered by default. Multiple coast revolutions around
the sun may be optionally specified.

The search for encounters with the target body is accomplished
in an analogous way to the thrust-only legs, using a turn angle vs
k2 search grid. For the thrusting arcs of mixed legs, the constraint
relation (11) is still valid, of course. In the case of thrust–coast legs,
for each turn angle in the permitted range, the upper limit on k2 is
provided by Eq. (13) or Eq. (14), where the switch radius takes the
place of ρmin when the switch radius is greater than rB , or takes the
place of ρmax when the switch radius is less than rB . Intersection
points and miss angles are computed as with thrust legs, except
that the exponential sinusoid is replaced by a conic in seeking the
intersection with the projection of the target’s orbit. In the case of
coast–thrust legs, for each turn angle, the spacecraft coasts to the
switch point, where its state may be easily calculated, yielding a
flight-path angle and speed, which are used as in the thrust-only
case for determining the upper limit on k2. Intersection points and
miss angles are then computed exactly as with the thrust-only case.

Finding Intersections with the Target Body’s Orbit
For each turn angle, the target body’s orbit, assumed conic with

semilatus rectum p and eccentricity e, is projected onto the low-
thrust reference plane. The projected radius ρ, after a short deriva-
tion, is found to be

ρ = p| cos i |/{ +
√

1 − sin2 i cos2 θ + e[| cos i | cos ω cos θ

+ sgn(cos i) sin ω sin θ ]
}

(15)

where i is the inclination with respect to the low-thrust reference
plane and θ is the polar angle in the low-thrust reference plane. The
angles θ and ω are measured from the positive x axis, taken as the
direction of the ascending node from the sun.

To find the intersection point(s) (r, θ) of the spacecraft trajectory
with the target’s projected orbit, Eq. (15) must be solved with the
equation for the shape of the trajectory. The shape is either the
exponential sinusoid [Eq. (1)] for thrusting arcs, or the conic for
coasting arcs. In both cases, the equations are transcendental in θ ,
with no analytic solution readily available. Thus, the intersection
point must be found by a numerical root-finding technique. A step-
size- and step-direction-controlled Newton method is used to solve
for the roots of the difference di in the inverses of the radii:

di (θ) = 1/ρ(θ) − 1/r(θ) = 0 (16)

where r(θ) is the shape of the trajectory arc. The inverse radius
is used to simplify the expression for the derivative required by the
Newton method, thus, speeding up computations, convergence rates
aside.

The root-finding method is best described by means of an ex-
ample. We consider the intersection of an exponential sinusoid in
the ecliptic plane, having periapsis at 0.8 astronomical units (AU),
apoapsis at 3.1 AU, and k2 = 0.1, with the projected orbit of the

Fig. 2 Intersections of an exponential sinusoid arc in the ecliptic with
the projection of Ceres’s orbit.

Fig. 3 Root finding for the intersections of an exponential sinusoid
with the projection of a conic section.

asteroid Ceres (semimajor axis 2.77 AU, eccentricity 0.077, and in-
clination 10.6 deg). For the exponential sinusoid and the projected
orbit, the radius as a function of θ is shown in Fig. 2. The difference
in inverse radius di is shown as a function of θ in Fig. 3. Let us
assume that the spacecraft’s initial position is below Ceres’s orbit,
that is, Ceres is outbound from the spacecraft. The sequential in-
tersection points with Ceres’s projected orbit are points B, C, D,
and G in Figs. 2 and 3. The goal is to find up to two outbound and
two inbound intersections, namely, points B, C, and G, respectively.
(There is only one inbound intersection.)

A lower bound on the projected radius ρn is conservatively taken
as Ceres’s periapsis radius multiplied by |cos i |. A conservative
upper bound on the projected radius ρx is taken as Ceres’s apoapsis
radius itself. For the first outbound intersection (point B), the initial
guess for the value of θ solving Eq. (16) is taken as θA, the easily
determined value of θ where the exponential sinusoid radius is equal
to ρn . We note that the root is guaranteed to be beyond θA. The
Newton method then quickly converges to θB , without any need
for exercising step control. For the first inbound intersection (point
G), point F, with polar angle θF , is used as the initial guess. (If the
exponential sinusoid’s apoapsis radius is below ρx , then the θ of
apoapsis is used as the initial guess.) Clearly, the first step would
take us away from G, and so step control is invoked, setting the
next initial guess just over π/2 beyond θF . Decreases in θ are only
allowed after the first step and then only if a root of di is straddled.
The largest permitted decrease is just under π/2. Thus, convergence
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to the first outbound and the first inbound intersections is relatively
robust.

The second outbound intersection (point C) is computed with less
certainty of convergence. The initial guess is taken as the lesser of
(θB + 0.1 rad) and (4θB + θG)/5. Except in rare circumstances, the
former value will normally be the lesser of the two. The same step
controls as for the first intersections are still imposed. With these
step controls and initial guess, if point C is too close to point B, it
is skipped, with the algorithm converging to the next intersection
(point D) if any. In a sense, this skipping weeds out intersections that
have similar characteristics due to proximity. The second inbound
intersection, which in the depicted case does not exist, is found by
using (θG + 0.1 rad) as the initial guess. The sampling of up to a total
of four intersections, with their differing characteristics, is deemed
to be sufficiently representative of the available solutions.

Although the root-finding example concerns an outbound target
body, the root finding for inbound targets is entirely analogous.
Also, the case where the spacecraft is on a conic arc, rather than an
exponential sinusoid arc, is treated similarly, although the problem
is somewhat simpler because the angular period of the spacecraft
is equal to the angular period of the target body (2π ), whereas
on an exponential sinusoid, the spacecraft’s angular period can be
significantly greater than the target’s.

Grid Search for Encounters with the Target Body
Once the intersection points between the trajectory and the tar-

get’s orbit have been computed for a given turn angle (TA) and k2,
the TOF to these intersections is computed by quadrature. Thus,
when the spacecraft arrives at an intersection, the projected position
of the target body is known, making it possible to compute the angle
subtended at the sun by the spacecraft and the projected position.
This miss angle is taken as positive when the target leads the space-
craft, negative when it lags. An encounter occurs when the miss
angle is zero.

The process by which encounters are found may be depicted
graphically, by plotting the miss angle vs k2, with contours for dif-
ferent turn angles. Of course, the miss angles on any one plot should
come from the same type of intersection, for example, the first out-
bound intersection, or the first inbound intersection. Figure 4 shows
such a plot for the first outbound intersection of a Mars–Ceres leg
of an Earth–Mars–Ceres trajectory with thrust-only legs. Only a
representative sample of TA contours is shown.

The miss angles are computed for points on each TA contour
in turn, starting at the lower end of the available k2 range for the
contour. Extrapolation for zero miss angle is done both across TA
contours and along TA contours. If two points on a contour strad-
dle a zero miss angle (such as points D and E in Fig. 4), then a

Fig. 4 Miss angle as a function of k2 with TA contours at 0.572-deg
increments for exponential sinusoid arcs originating at Mars and inter-
secting Ceres’s projected orbit.

linear extrapolation is made over k2. The miss angle for the extrapo-
lated value is then computed; it is retained if it falls within a certain
tolerance of zero. When the next TA contour is computed, extrapo-
lations are made between it and the previous contour, if warranted.
For example, point F is closest in k2 value to point B on the previous
TA contour, and the two points straddle a zero miss angle, war-
ranting extrapolation. First a linearly extrapolated value is obtained
for the turn angle, ignoring differences in k2. The second linear ex-
trapolation is between the k2 values of points B and F, but for the
extrapolated TA value. The actual miss angle for the extrapolated
TA and k2 is again checked against the tolerance. The remaining
points on the contours are similarly evaluated for root straddling.

To reduce the computational memory requirements, at any one
time, information is only stored for up to two TA contours. For
example, the third TA contour will overwrite the first because the
first is no longer needed. We note that separate miss-angle calcula-
tions must be made for the separate cases of different intersections,
different switch directions, and different full coast revolutions.

Out-of-Plane Motion
Two cases must be distinguished. The spacecraft may encounter

the target body while either on a thrust arc or on a coast arc. In both
cases, the target’s out-of-plane position at the time of the in-plane
encounter is matched by using an additional thrust acceleration fh

acting along or against the spacecraft’s angular momentum vector
for some final portion of the leg’s thrust arc. This out-of-plane thrust
is assumed to have the form

fh = [a0P + b0(rmin/r)](µ/r 2) (17)

where a0P and b0 are constants and rmin is the periapsis radius of
the exponential sinusoid being followed. The positive fh direction
is taken to be along the angular momentum vector. The functional
form of Eq. (17) is chosen so that fh drops off at least as fast as
1/r 2, conforming to the rate at which solar power drops off.

Because both the in- and out-of-plane thrust will be much smaller
than the gravitational attraction of the central body, the in-plane
components of the specific angular momentum, hx and hy , behave
according to

dhx

dθ
≈ r fh sin θ

θ̇
(18)

dhy

dθ
≈ −r fh cos θ

θ̇
(19)

where the x direction is taken as lying along θ = 0. We note that
to first order, the in-plane thrust does not affect the in-plane angular
momentum components. Now, hx and hy remain small, so that the
total angular momentum is approximately equal to just the out-of-
plane component, r 2θ̇ , computed as if fh were zero. Thus, at any
point on an out-of-plane thrust arc, the out-of-plane angle φ and the
speed normal to the plane, vz , can be approximated as

tan φ ≈ −(hx cos θ + hy sin θ)/r 2θ̇ (20)

vz ≈ [hx (sin θ − tan γ cos θ) − hy(cos θ + tan γ sin θ)]/r (21)

For the thrust-to-encounter case, only the target’s out-of-plane
position is matched, which means that only Eq. (20) need be satisfied
and not Eq. (21). Setting b0 = 0 and keeping only the unknown
constant a0P in the expression for fh is sufficient to do so uniquely.
For the coast-to-encounter case, both an out-of-plane speed and
position must be matched at the end of the preceding thrust arc, if
the spacecraft is to match the target’s out-of-plane position at the
end of its coast arc. Thus, in this case, both a0P and b0 are needed
in the expression for fh because two equations, Eqs. (20) and (21),
must be satisfied.

Because the integrals hx and hy in Eqs. (20) and (21) must be
computed numerically, they are evaluated backward from the in-
plane intersection with the target, to permit, at each integration step,
the evaluation of the required fh . The best fh is the one used. In the
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case of thrust-to-encounter best means the fh with the lowest a0P .
For the coast-to-encounter case, best means the fh with the lowest
average value of | fhr 2/µ|, with the average computed over θ .

The effect of the out-of-plane motion on the TOF is ignored. This
approximate method permits rapid computations and is increasingly
accurate for smaller out-of-plane excursions. Although this method
is incorporated into STOUR-LTGA, we generally give little consid-
eration to the out-of-plane thrust and associated propellant because,
other than a simple selection process for the out-of-plane thrust, this
method is developed with regard neither for attaining the most satis-
factory thrust profile nor for the benefits to be had by using different
B-plane angles, that is, values other than 0 or 180 deg.

Propellant Consumption
An estimate of the propellant consumption is made by assuming

a constant specific impulse Isp for the low-thrust engines. This sim-
plification permits the required propellant mass to be expressed as
a fraction of the initial spacecraft mass, based on the time integral
(computed by quadrature) of the thrust acceleration and the rocket
equation. In addition, we compute separately the propellant frac-
tions required for the in-plane and out-of-plane thrust; from these
we then compute a single, overall fraction. Because our approach
directly determines only the shape of the trajectory, the required
thrust may fall outside the range of more accurate thruster models,
such as those used by Sauer.13 This fact, together with the additional
computational burden required by more accurate thruster models,
prompt the constant Isp assumption. More sophisticated models can
be employed in the optimization of specific trajectories selected
from the broad searches permitted by our method.

Automated Leg Selection and Recording of Results
At any body, with a given incoming trajectory, there exists for

the next leg a whole continuum of trajectory solutions in the TA
vs k2 space. STOUR-LTGA samples this continuum at intervals.
From each of these sampled solutions, there again arises a contin-
uum of solutions to the next body. Thus, STOUR-LTGA limits the
selection of solutions based on various criteria, to avoid a geometric
increase in the number of trajectories that reach the final body. Solu-
tions for a given leg are stored and propagated if, for example, they
have the lowest TOF, the lowest propellant mass fraction, the lowest
thrust levels, the lowest arrival v∞, the highest arrival v∞, and so on.
Currently, the program uses 18 criteria, which can be activated or
deactivated individually for each leg. Once all solution branches are
propagated for one launch date and launch v∞ pair, STOUR-LTGA
begins searching for trajectories for the next pair according to the
ranges and step sizes specified in the input file.

Any trajectories found by STOUR-LTGA are printed chronolog-
ically by launch date to a computer file with a one- or two-line
listing for each leg of the trajectory. The listing includes, amongst
other things, the shape parameters for the leg, the flyby altitude
and v∞, the propellant mass fraction consumed, information on the
thrust-acceleration levels, and flight times. The user may request
that partial trajectories be printed also. In this case, for launch date
and launch v∞ values where the final body in the path could not be
reached, leg data are printed up to the last body reached. The output
file for a broad search often contains thousands of trajectories.

At the request of the user, for every trajectory found, STOUR-
LTGA can divide the legs into segments of equal duration (where the
user can select how many for each leg) and list the �V accumulated
on each segment due to the thrust, if any. Such output is useful as
input for trajectory optimization software that uses direct methods.

Results
The new STOUR-LTGA program can be applied23 to a variety

of mission design problems. As representative missions, we present
here a rendezvous mission from Earth (E) via Mars (M) to the as-
teroid Ceres (C), and a flyby mission from E to Jupiter (J) after
flybys of Venus (V), E, and M. For ease of reference, Table 1 lists
the semimajor axis, eccentricity, and inclination for the heliocentric
orbit of each body.

Table 1 Orbital elements for selected bodies

Semimajor Inclination,
Body axis, AU Eccentricity deg

Venus 0.72 0.007 3.4
Earth 1.00 0.017 0.0
Mars 1.52 0.093 1.8
Jupiter 5.20 0.049 1.3
Ceres 2.77 0.077 10.6

A propellant-optimal instance of the EMC mission type is pre-
sented by Sauer.13 However, our EVEMJ mission type appears to
be new as a low-thrust trajectory utilizing gravity assist at three dis-
tinct bodies. Selected EMC and EVEMJ trajectories from the broad
searches conducted with STOUR-LTGA are used as initial estimates
in optimization of the propellant consumption. We use an optimiza-
tion program that is based on the direct method described by Sims
and Flanagan of the Jet Propulsion Laboratory,14 who made their
prototype program available to Purdue. The program was rewrit-
ten at Purdue and is called the Gravity-Assist, Low-Thrust, Local
Optimization Program (GALLOP).28

Optimization Procedure in GALLOP
In the Sims–Flanagan method14 used by GALLOP, the low-thrust

arc is modeled as a series of segments, each one having a�V impulse
at its midpoint, with conic motion assumed between the impulses.
Each impulse is constrained in magnitude by the flight time spent
on the segment, the spacecraft mass, the thruster characteristics, and
the power available to the thruster. For the GALLOP runs presented
here, we assume that the thrust T and propellant mass flow rate ṁ
are functions of power P ,

T = −1.9137 + 36.242P (22)

ṁ = 0.47556 + 0.90209P (23)

The power, assumed to come from solar panels, is in turn given as a
function of distance from the sun r (measured here in astronomical
units),

P = P0

r 2

(
1.1063 + 0.1495/r − 0.299/r 2

1 − 0.0432r

)
(24)

where P0 is the reference power for the solar array, roughly equal to
the power produced at 1 AU. The thruster is assumed to need at least
0.649 kW of power to operate, while not being able to use power in
excess of 2.6 kW. The thruster and array parameters of Eqs. (22–24)
are the same as those used by Williams and Coverstone-Carroll29 in
modeling the engine used on Deep Space 1 and a conventional solar
array. Sauer13 uses similar values for the parameters.

To commence optimization on a given trajectory, GALLOP
clearly requires an initial guess for the magnitude and direction
of each �V impulse, for the launch, flyby, and arrival dates and for
the spacecraft mass and velocity at each body. All of these are avail-
able from STOUR-LTGA. Normally, STOUR-LTGA is first run in
“terse” mode, where only a few details are listed for each trajectory
that is found. The trajectories of the broad search are screened, and
the most promising ones are rerun in STOUR-LTGA’s “verbose”
mode, to produce all of the quantities needed as input to GALLOP.
We emphasize that STOUR-LTGA pays no heed to actual thruster
and array characteristics in computing trajectories because the thrust
acceleration level is fully determined by the shape parameters and
the out-of-plane approximations. It is the selection of a suitable
shape and the selection of suitable parameters for that shape that
permit the shape-based approach to provide approximations to low-
thrust trajectories employing real electric thrusters or other low-
thrust devices. Recall also, that to quantify easily the propellant
expended, STOUR-LTGA assumes a constant Isp, allowing the pro-
pellant mass to be expressed as a fraction of the initial spacecraft
mass. In other words, apart from optimization, it is also GALLOP’s
role to eliminate any violations by the initial guess of the constraints
imposed by the thruster and solar array models of Eqs. (22–24).



PETROPOULOS AND LONGUSKI 793

Table 2 STOUR-LTGA and optimal EMC trajectories

Parameter STOUR-LTGA GALLOP SEPTOP Sauer13

Launch date 6 May 2003 6 May 2003 6 May 2003 8 June 2003
Launch v∞, km/s 1.60 1.60 1.60 1.37
M flyby v∞, km/s 1.435 1.919 1.920 N/A
M flyby altitude, km 5432 200 200 N/A
M flyby B-plane angle,a deg 2.3 82.3 80.9 N/A
Ecliptic arrival v∞, km/s 0.237 0.000 0.000 0.000
Propellant mass fraction 0.256 0.2335 0.2336 0.275
TOF EM, days 271 271 271 250
TOF MC, days 862 862b 862c 845
TOF total, days 1133 1133b 1133c 1095

aFundamental plane taken as the ecliptic.
bArrival at C actually occurs 1010 days after launch.
cArrival at C actually occurs 970 days after launch.

Fig. 5 Ecliptic arrival v∞ below 1 km/s for EMC trajectories launch-
ing between 1990 and 2049.

Earth–Mars–Ceres (EMC) Test Case
A broad, STOUR-LTGA search over the launch years 1990–2049,

with launch v∞ between 0.75 and 2.00 km/s, reveals that the year
2003, the month of April in particular, has one of the higher concen-
trations of low ecliptic arrival v∞ trajectories. Both legs are assumed
to be thrust-only legs. About 2500 trajectories are found in the broad
search. Roughly 300 of these have ecliptic arrival v∞ below 1 km/s
and are shown in Fig. 5 as a scatter plot of the ecliptic arrival v∞
against the launch date. (The ecliptic arrival v∞ is the magnitude of
the projection of the v∞ onto the ecliptic.) The April launch date is
close to that of an EMC rendezvous trajectory optimized by Sauer.13

Thus, a more focused search is performed over the months of April
and May 2003, with launch v∞ between 1.0 and 1.7 km/s. From the
more than 1000 trajectories found in the refined search, we select
the trajectory with the lowest ecliptic arrival v∞, but with flight time
not exceeding about 3 years. In particular, whereas the broad search
produced trajectories with ecliptic arrival v∞ values below 0.1 km/s
(Fig. 5), these and similar trajectories in the refined search had flight
times considerably longer than 3 years. Pertinent data are shown in
Table 2 for the selected STOUR-LTGA trajectory; a trajectory plot
is shown in Fig. 6. An Isp of 3000 s is assumed for the propellant
mass fraction.

The selected trajectory from STOUR-LTGA is used as an initial
estimate in optimization using GALLOP. The optimization seeks to
maximize final spacecraft mass at the rendezvous with Ceres, while
keeping launch v∞, and launch, arrival, and flyby dates fixed at the
STOUR-LTGA values. The solar array reference power P0 is taken
as 10 kW, and the spacecraft initial mass as 568 kg. GALLOP con-
verged easily to the solution summarized in Table 2. As independent
verification of the optimality of the GALLOP solution, the same op-

Fig. 6 Ecliptic projection of an STOUR-LTGA EMC trajectory.

timization problem was solved using the Solar Electric Propulsion
Trajectory Optimization Program (SEPTOP) developed by Sauer13

and based on the calculus of variations. The initial guesses for the
costate values in SEPTOP were made by trial and error because nei-
ther STOUR-LTGA nor GALLOP are able to provide the costate val-
ues. The SEPTOP solution, summarized in Table 2, is seen to be very
close to the GALLOP solution. Of note is that both the GALLOP
solution and the SEPTOP solution rendezvous with Ceres earlier
than the requested, STOUR-LTGA time of 1133 days, as indicated
in Table 2. Because the gravity of Ceres is ignored, the spacecraft
remains at Ceres as they move around the sun, which means that, at
the requested flight time of 1133 days, the spacecraft’s position and
velocity continue to match those of Ceres.

For the STOUR-LTGA trajectory and for the SEPTOP trajectory,
the thrust acceleration is shown in Fig. 7 as a function of time. The
out-of-ecliptic angle of the thrust direction is shown in Fig. 8. (No
angle is shown where there is no thrust.) The first obvious difference
in thrust profile is that the STOUR-LTGA solution has continuous
thrust, whereas the SEPTOP solution has periods of coasting. The
SEPTOP thrust acceleration is either at the maximum attainable by
the thruster or at zero. The second main difference is that the thrust
acceleration required by the STOUR-LTGA trajectory is mostly
below the maximum level attainable by the thruster used in SEPTOP,
but briefly above this level after the 100-day mark. The third main
difference is in the profile for the out-of-plane angle.

In addition to the differences in thrust profile between the
STOUR-LTGA and SEPTOP trajectories, there are somewhat
prominent differences in the Mars flyby v∞, altitude, and B-plane
angle (Table 2). In spite of the thrust and flyby differences, the
propellant mass fraction for the STOUR-LTGA trajectory is only
about 10% different from the optimal value found by GALLOP
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Fig. 7 Thrust acceleration for STOUR-LTGA and SEPTOP EMC
trajectories.

Fig. 8 Out-of-ecliptic thrust angle for STOUR-LTGA and SEPTOP
EMC trajectories.

and SEPTOP (Table 2). Given the heuristic assumptions made in
STOUR-LTGA for the trajectory dynamics, one might have ex-
pected the difference to be larger.

Sauer13 presents a propellant-optimal EMC rendezvous trajec-
tory, also computed using SEPTOP, in which two thrusters are used,
the reference power is 10 kW, the initial mass is 1123 kg, and the
spacecraft consumes 250 W for housekeeping. Available data for
this trajectory are shown in Table 2. The launch, flyby, and arrival
dates are free in the optimization. The launch v∞ is also free, but
dictates the initial spacecraft mass according to the performance
of the launch vehicle used. We see that, although the optimization
problem solved by Sauer is somewhat different from the one solved
with GALLOP and SEPTOP based on the STOUR-LTGA solution,
there is a general correspondence in the solutions.

Earth–Venus–Earth–Mars–Jupiter (EVEMJ) Test Case
In the literature, the optimal trajectories we have found have, at

most, two flybys on thrusting legs between departure and destina-
tion planets. STOUR-LTGA, in addition to the strength of broad
searching over launch date and v∞, offers the significant ability of
searching over different, long sequences of flyby bodies. One such
path is EVEMJ (including launch and destination bodies). Currently,
paths of up to 20 bodies are permitted, although this limit can be
easily increased. Of course, the longer the paths, the longer the com-
putation times, and the longer the flight times, making the longer
paths better suited for short-period bodies.

Fig. 9 In-plane propellant consumption for EVEMJ trajectories.

For the EVEMJ path, where a flyby of Jupiter is desired, the
launch years 1975–2049 are searched, for launch v∞ of 0.5–2 km/s
at 0.5 km/s increments. These launch v∞ values are well below the
Hohmann launch v∞ to Venus (2.5 km/s). The MJ leg is assumed to
be a thrust–coast leg, with a switch radius of 3 AU, a distance where
large solar panels would be needed to power a thruster. The other
three legs are assumed to be thrust-only legs. To keep the search
times short, a launch-date step of 10 days is used. Because the last
leg, the MJ leg, will be somewhat energetic, the upper limit on k1

is set to 3. A maximum total time of flight of 2500 days is allowed,
with the maximum leg flight times set at 500 days for each leg except
the MJ leg, which is allowed up to 2000 days. The minimum flyby
altitudes at the gravity-assist bodies are all 200 km. Finally, with an
Isp of 3000 s assumed, conservative caps of 0.385 and 0.25 mm/s2

and 0.35 mm/s2 are set on the in-plane propellant mass fraction and
the average and maximum thrust accelerations, respectively. These
caps are set somewhat higher than the values that might be desired or
available on a real mission to account for possible excesses required
by the tangential-thrust exponential sinusoid.

The broad search yields two main groupings of trajectories,
spaced about 49 years apart, as seen in Fig. 9, where the in-plane
propellant mass fraction is plotted against launch date. The 49-year
spacing corresponds roughly with the 45-year repeat cycle noted
in previous work30 for the ballistic EVMVEJ path with the same
flyby bodies. Trajectories are found only for launch v∞ of 1.5 and
2 km/s, where there are about four times as many 2-km/s trajectories
as 1.5-km/s trajectories. Higher launch v∞ and less restrictive con-
straints on the thrust levels would fill out the trajectory families and
produce new ones.

We select, from the broad search, the trajectory with the lowest
in-plane propellant mass fraction, which launches in 2029, because
it also has attractive thrust and flight time characteristics when com-
pared to the other trajectories in the 2029–2036 trajectory grouping.
The trajectory geometry is shown in Fig. 10, and pertinent data are
listed in Table 3. The trajectory also serves as an initial estimate
in optimization using GALLOP, where the maximum final mass is
sought for a fixed launch mass of 300 kg and where a reference array
power of 10 kW is used. The launch v∞, launch, flyby, and arrival
dates are all held fixed at the STOUR-LTGA values, except for the
E flyby date, which is moved 16 days earlier, as to be explained. The
propellant optimal trajectory found by GALLOP is also reported in
Table 3.

When the unoptimized and optimized trajectories in Table 3 are
compared, three main differences are seen. First, the B-plane angles
are different, significantly so in the case of Venus, which means that
the optimizer was able to alter these to effect the out-of-plane tar-
geting more efficiently than using thrust alone. The more efficient
out-of-plane motion in the optimized trajectory is also evident in
that the STOUR-LTGA propellant mass fraction for the in-plane
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Table 3 STOUR-LTGA EVEMJ trajectory and its
GALLOP-optimized version

Parameter STOUR-LTGA GALLOP

Launch date 3 Sept. 2029 3 Sept. 2029
Launch v∞, km/s 2.00 2.00
V flyby v∞, km/s 3.64 3.77
V flyby altitude, km 6,533 30,000
V flyby B-plane angle,a deg 178.3 60.7
E flyby v∞, km 6.50 5.18
E flyby altitude, km 655 1,035
E flyby B-plane angle,a deg −180.0 −176.5
M flyby v∞, km/s 13.70 11.26
M flyby altitude, km 200 200
M flyby B-plane angle,a deg −1.8 −5.5
J flyby v∞, km/s 5.85 6.25
Average thrust acceleration, EV, mm/s2 0.12 N/A
Average thrust acceleration, VE, mm/s2 0.16 N/A
Average thrust acceleration, EM, mm/s2 0.10 N/A
Average thrust acceleration, MJ, mm/s2 0.14 N/A
Switch radius, AU 3.0 N/A
Propellant mass fraction 0.408 0.256
Propellant mass fraction, in-plane only 0.294 N/A
TOF EV, days 165 165
TOF VE, days 334 318
TOF EM, days 131 147
TOF MJ, days 1,335 1,335
TOF Total, days 1,965 1,965

aFundamental plane taken as the ecliptic.

Fig. 10 Ecliptic projection of an STOUR-LTGA EVEMJ trajectory;
E, V, and M gravity assists are labeled EGA, VGA, and MGA,
respectively.

thrusting is only 15% greater than the optimized overall propellant
mass fraction, compared to 60% greater for the STOUR-LTGA in-
and out-of-plane propellant mass fraction. Second, the flyby altitude
at Venus is almost five times larger in the optimized case. Third, the
flyby date of Earth in the optimized case is 16 days before that in
the unoptimized case. The last two differences are present largely
as a way of reducing the lengthy (and wasteful) thrusting excur-
sion beyond 1 AU, exhibited by the unoptimized trajectory prior
to the Earth flyby (Fig. 10). One potential method of diminishing
this excursion in STOUR-LTGA would be to use a thrust-coast
leg for the VE transfer. As for the considerably higher, optimized
Venus flyby altitude, it still causes the incoming v∞ to be turned
by 46 deg, corresponding to a heliocentric �V of 2.93 km/s. We
note that GALLOP did not converge as easily on this EVEMJ tra-
jectory as it did on the EMC trajectory (Table 2). Perhaps the added
difficulty is due to the added complexity of not only imposing two
more flyby constraints, but also of determining how to use the fly-
bys most effectively. Last, both the optimized and unoptimized ver-

sions of this EVEMJ trajectory are seen to be comparable to, if
not superior to, ballistic, gravity-assist EJ trajectories previously
reported.30

Other Paths
When using STOUR-LTGA, the LTGA mission designer is faced

with yet another choice: which trajectory path to use. In this paper,
we have discussed a simple path and a more complex path. Other
complex paths of similar character, such as EVMVEJ, can be easily
identified. One class of transfers deserving special mention is that of
consecutive flybys of the same body for v∞-leveraging purposes.31

(With interior leveraging, after a flyby or launch, a small �V is
applied near periapsis to increase the v∞ of the next flyby. With
exterior leveraging, a similar effect is achieved by applying the �V
near apoapsis.) Whether interior or exterior leveraging is sought,
the transfers should be set as coast–thrust in STOUR-LTGA, as
can be explained by considering a tangential launch from Earth.
In both the interior and exterior cases, a thrust–coast leg will not
permit a reencounter of the Earth, for typical values of the k1 and
k2 parameters. In the interior case, the apoapsis of the trajectory’s
osculating ellipse is reduced below 1 AU, whereas in the exterior
case, the periapsis is raised above 1 AU, making it impossible to
return to Earth on a coast arc. Using a thrust-only leg to return to
Earth would be possible, but wasteful, because the arrivalv∞ at Earth
encounter would be the same as the launch v∞ (assuming a circular
Earth orbit), due to the symmetry of the exponential sinusoid. The
coast–thrust leg does not have these difficulties. By extension, any
transfer back to the same body, whether at launch or later in a path,
should be set as a coast–thrust transfer.

Conclusions
We present a planar shape-based method for finding LTGA trajec-

tories from the infinity of solutions made possible by the availability
of continuous thrust. Whereas the primary drawback of the shape-
based method is that the thrust levels are determined a posteriori, that
is, they cannot be explicitly prescribed by the mission designer, we
show that there exists at least one shape, the exponential sinusoid,
that not only exhibits required thrust levels that are reasonably close
to those attainable in engineering practice, but also that has a veloc-
ity profile that makes it practically applicable to LTGA missions.

In particular, we use the exponential sinusoid with the assumption
of tangentially directed thrust, to compute rendezvous trajectories
to the asteroid Ceres via a Mars gravity assist and Jupiter flyby
trajectories, using gravity assists at Venus, Earth, and Mars. Trajec-
tories are computed in an automated way by a software program
according to broad search criteria set by the mission designer. In
addition to the exponential-sinusoid, low-thrust arcs, the program
includes out-of-plane approximations, as well as exact, two-body,
conic solutions for periods of coasting. Attractive trajectories from
the broad search are passed on as initial estimates to an optimiza-
tion program, which relies on direct methods. We show that even
though the thrust profile of the initial estimate might differ signifi-
cantly from the propellant-optimal solution, the optimizer is able to
optimize the thrust profile without violating the thrust constraints,
yielding a propellant mass fraction that is correlated to the initial
estimate. We find that the shape-based method not only provides
broad overviews of the trajectory design space, but also provides
good starting points for trajectory optimization.
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