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Analysis of a Class of Earth-Mars Cycler Trajectories
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Sun-orbiting spacecraft trajectories that repeatedly encounter Earth and Mars may play a central role in a
future Earth-Mars transportation system. Such orbits are known as Earth-Mars cycler trajectories (cyclers).
‘By using gravity-assist maneuvers at Earth or Mars, many cyclers can avoid using large amounts of propellant.
The known cyclers were found using heuristics or numerical searches. We describe a new, systematic method
for constructing and evaluating cyclers. Our method reveals that previously known cyclers, such as the Aldrin
cycler and the Versatile International Station for Interplanetary Transport cyclers, belong to a larger family of
cyclers. Our cycler construction method also reveals some previously unknown cyclers. For example, we identify
a new cycler that repeats every two synodic periods and has a low V., at Earth and Mars (5.65 and 3.05 kmys,

respectively).

Nomenclature -

semimajor axis, astronomical units (AU)

eccentricity

number of Earth-Mars synodic periods before repeating
orbit period, years

parameter of the cycler orbit, AU

position vector, AU

distance from sun to spacecraft, AU

aphelion radius, AU

perihelion radius, AU

number of complete revolutions before repeating
Earth-Mars synodic period, years

time to repeat the cycler trajectory, years

hyperbolic excess speed, km/s

angle between initial Earth

position and Earth’s position after n synodic periods, rad
angle from Earth to Mars, rad

argument of periapsis, rad
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Introduction

N the late 1950s and early 1960s, the utility of gravity-assist

maneuvers was finally understood, and missions using multi-
ple gravity-assist flybys'~6 were shown to be possible. In the late
1960s, Hollister”$ and Hollister and Menning®1® discovered ballis-
tic gravity-assist trajectories that repeatedly encounter Venus and
Earth. Trajectories that repeatedly encounter the same planets on a
regular schedule without stopping are now known as cycler trajec-
tories, or cyclers.

Rall'! and Rall and Hollister!? appear to be the first to demonstrate

that cycler trajectories exist between Earth and Mars. Their method

of finding Earth-Mars cyclers was essentially heuristic, and so they
wrote “Because of the cut-and-try nature of the method, one cannot
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be certain that all periodic [cycler] orbits have been found—even
among the types of periodic orbits considered.”'? The cyclers they
did find repeat every four synodic periods or more. '

In 1985, Aldrin suggested that an Earth-Mars cycler may exist
which repeats every synodic period.'® The existence of this “Aldrin
cycler” was subsequently confirmed by Byrnes etal.' Alsoin 1985,
Niehoff first proposed the Versatile International Station for Inter-
planetary Transport (VISIT) 1 and VISIT 2 Earth-Mars cyclers. =17
These cyclers were investigated further and compared to the Aldrin
cycler by Friedlander et al.}® A natural question that arises is whether
there are any other Earth-Mars cyclers. In this paper, we describe a
new method of constructing such trajectories.

Assuming conic orbits, several researchers have investigated the
families of trajectories that leave Earth (or any other orbiting body)
and return at a later date:!°~2 Such trajectories are known as consec-
utive collision orbits. Howell and Marsh provide an excellent histor-
ical overview in Ref. 26. If only the Earth is used for gravity-assist
maneuvers, then we can construct Earth-Mars cyclers by patch-
ing consecutive collision orbits together at the Earth encouaters so
that the entire trajectory repeats after an integer number of Earth—
Mars synodic periods. We elaborate on this method of constructing
Earth-Mars cyclers.

Interestingly, Poincaré knew about periodic solutions of this sort,
that is, consecutive collision orbits patched together at planetary
encounters.”’ Such orbits are known as Poincaré’s second species
periodic orbits and have been studied quite extensively.?*3* How-
ever, as far as we know, Poincaré’s second species periodic orbits
have not previously been considered as potential Earth—~Mars cycler
trajectories.

Methodology

To construct Earth-Mars cycler trajectories, we begin by making
a number of simplifying assumptions: 1) The Earth-Mars synodic
period S is 2.—!, years. 2) Earth’s orbit, Mars’s orbit, and the cycler
trajectory lie in the ecliptic plane. 3) Earth and Mars have circular or-
bits. 4) The cycler trajectory is conic and prograde (direct). 5) Only
the Earth has sufficient mass to provide gravity-assist maneuvers,
6) Gravity-assist maneuvers occur instantaneously. (For each cy-
cler trajectory constructed in our simplified solar system model, we
hope to find a corresponding cycler trajectory in a more accurate
model.)

We note that assumption 1 is equivalent to assuming that the
orbital period of Mars is I% years (whereas a more accurate value
is 1.881 years). Assumptions 2 and 3 allow us to set up a planar
coordinate system with the sun at the origin and the Earth on the
positive x axis on the launch date. (After we find a cycler trajectory,
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Fig. 1 Example initial configuration.

Fig. 2 Departure/arrival geom-
etry whenn=1, 8,15,....

.. Earth’s orbit o

we choose the launch date so that the spacecraft encounters Mars.)
An initial Earth—Mars configuration is illustrated in Fig. 1.
Now we must determine what conditions must be met if the space-
. craft orbit is to be a cycler trajectory. At the initial time, tp =0, the
angle ¢ from Earth to Mars (as shown in Fig. 1) is chosen so that
the spacecraft will encounter Mars after leaving Earth. Following
the Mars encounter, the spacecraft may encounter Earth again. If an
Earth encounter happens when the Earth-Mars angle ¢ = ¢y again,
then the spacecraft could remrn to Mars using the same (shape)
Earth-Mars transfer orbit that it used initially. Moreover, the trajec-
tory could be repeated indefinitely, and hence, it is a cycler trajectory.
Let T be the time to repeat a cycler trajectory. Then the preceding
discussion implies that ¢ (T") = ¢ (0) = ¢. Because ¢ () (the angle
from Earth to Mars) repeats once per synodic period, 7 must be an
integer number of synodic periods:
T=nS=n (2}) M
where n=1,2,3,.... Because the angular velocity of the
Earth is 27 rad per year, we also know that Rggu(T) =

[cos(2m T), sin(2n T)). Therefore, the conditions for the spacecraft
orbit R(t) to be a cycler trajectory are

R0 =[1,0] (2)
R(nS) = [cos(2nnS), sin(2rns)] (3

wheren=1, 2, 3, .... Aproblemof this form is known as a Lambert
problem. Given n, we want to find a solution R(¢) to the two-body
problem that connects Ry =[1, 0] to R, = [cos(27nS), sin(27nS))
in a time of flight T =nS.

For example, let us consider the case n = 1, which means we are
looking for cycler trajectories that repeat every T =nS =21 years.
In 2_]? years, the Earth orbits the sun 2:} times, so that when the
spacecraft retarns to Barth after 23 years, the Earth will be ! of a
revolution (51.43 deg) ahead of where it was when the spacecraft
left (also true when n =8, 15, ...). The geometry of this Lambert
problem is illustrated in Fig. 2.

Table 1 Unique-period
solutions (nU0)

n Solution, r =0

§ O Q

+  Cycler trajectory

2.5 + Aldrin cycler

2.143
2.
1.5F 2-3revs

1-2revs

Time of Flight (years)

0.5 :
0-1 rev

0.5 060708091 1.5 2 25 3
Period of Solution Trajectory (years)

Fig. 3 Seven cycler trajectories that repeat every synodic period,n=1.

The n =1 case has multiple solutions, that is, there are many dif-
ferent trajectories that connect R, to R, in 21 years. These solutions
are illustrated in Fig. 3, which shows the orbital periods of solutions
with various times of flight. The solutions to the n =1 case corre-
spond to those solutions with a time of flight of 23 years (2.143
years). In Fig. 3, we see that there are seven solutions, correspond-
ing to the seven points on the solution curves with a time of flight of
2.143 years. In fact, one of the solutions is the Aldrin cycler, which
has an orbital period of 2,02 years,

Categorizing Cycler Trajectories

As seen in the preceding example, there can be multiple solutions
for a given choice of n (the time-to-repeat in synodic periods). For
each n, there is one solution that makes less than one revolution.
There are two solutions that make between one and two revolu-
tions, two solutions that make between two and three revolutions,
and so on. Once the number of revolutions is large enough, there
are no solutions because the time of flight is not long enough to
accommodate all of the revolutions. When there are two sclutions
for a given number of revolutions, they are referred to as.the short-
period and long-period solutions. Every solution can be uniquely
identified by specifying 1) n, the time-to-repeat in synodic periods
(n=1,2,3,...),2)whether the solution is long period, short period,
or unique period, that is, when r =0, and 3) r, the number of revolu-
tions, rounded down to the nearestinteger [r =0, 1, 2, . .., Fmax ()]

We denote a solution by a three-clement expression of
the form nPr, where P is either L, S, or U depending on
whether the solution is long, short, or unique period, respec-
tively. For example, the seven solutions in the n=1 case
are 1U0, 1L1 (Aldrin cycler), 1S1, 1L2, 182, 1L3, and 1S3.
Tables 1-3 show the form of the unique-, long-, and short-period
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Table 2 Long-period solution (nLr)

Number
of full
revolutions, r n=1 n=2 n=73 n=4

5 NS NS @ @
6 NS NS @
7 NS NS NS @
8 NS NS NS
9 NS NS NS NS

"Aldrin cycler (see Ref. 14),
®Case 1 cycler analyzed by Byrnes et al.>
Mo solution.

cyclers for n=1-4. The initial and final position vectors
R, and R, are indicated by line segments. Note that cyclers 112,
214, 316, and 458 are all equivalent to Earth’s orbit.

‘When 7 is a multiple of seven, then R, = R; (aresonant transfer),
so that the Lambert problem becomes degenerate. In these cases, the
nPr notation must be extended to accommodate the larger variety
of solutions. We discuss this extension later.

Evaluating Solutions

Not all cycler trajectories are practical for applications. In this
section we describe some criteria for evaluating their usefulness.

Number of Cycler Vehicles Required

When n =1 and the cycler trajectory crosses Mars’s orbit, it
crosses Mars’s orbit at two points. By launching the cycler space-
craft at the correct time, it will encounter Mars at the first Mars-orbit
crossing, which minimizes the tine of flight from Earth to Mars, A
cycler trajectory used in this way is called an outbound cyeler be-
cause it is used to travel from Earth out to Mars. Similarly, the ¢ycler
spacecraft can be launched at a different time so that it encounters
Mars at the last Mars-orbit crossing before returning to Earth (to
minimize time of flight from Mars to Earth). When the cycler tra-
Jjectory is used in this way it is called an inbound cycler. We note that
the difference between an inbound cycler and an outbound cycler is
the launch date, not the shape of the cycler trajectory.

For an outbound cycler, the short Earth~Mars leg (usually) oc-
curs only once every n- (2%) years (which is the repeat interval,
T). For example, if a cycler repeats every two synodic periods, then
the cycler vehicle will make the short Earth-Mars trip only once
every two synodic periods. One synodic period after the cycler ve-

Table 3 Short-period solution (2Sr)

Number

of full

revolutions, r n=1 n=2 n=3 n=4
1 @@@@
., @66

| @O
4 NS® @ @ @

. . ©0

5 Ne NS
6 NS NS @
7 NS NS NS
8 NS NS NS
9 NS NS NS NS

*No solution.

hicle leaves Earth, the short Earth—Mars transfer becomes available
again (at Barth), but the cycler vehicle is not there. By launching
a second cycler vehicle at that time, that short Earth—Mars transfer
opportunity can also be used. Therefore, two cycler vehicles are
required to guarantee a short Earth—-Mars trip every synodic period
(for a two-synodic-period cycler). In general, when the cycler re-
peat time is n synodic periods, n cycler vehicles are required to
take full advantage of all of the short Earth—Mars legs. Similarly,
an additional n cycler vehicles are needed to take full advantage of
all of the short Mars-Earth legs. Thus, a full fleet of cycler vehicles
nominally has 2n vehicles. The value 2 is actually an upper bound
because sometimes there is more than one short-duration Earth—
Mars (or Mars—Earth) leg per repeat interval 7. For example, the
Rall'! and Rall-Hollister cyclers'? and the VISIT cyclers'>~!" have
this property.

Aphelion Radius

For acycler trajectory to be used for transportation between Earth
and Mars, it should cross the orbit of Mars, that is, the aphelion
radius should be greater than the orbital radius of Mars. A quick
glance at Tables 2 and 3 reveals that some cycler trajectories do not
pass this test. (For example, in Table 2, the cycler with n =3 and
r =5 has an aphelion below Mars’s orbital radius.) The eccentricity
of Mars causes its heliocentric distance to vary between 1.38 and
1.67 astronornical units (AU), so that some of the cyclers with an
aphelion radius not too far below the orbital radius of Mars still
occasionally encounter Mars (if the encounter occurs when Mars is
near perihelion).

In the cases where the spacecraft does not naturally encounter
Mars, AV maneuvers could be used to force an encounter, Because
of the cycler timing constraint, determining the optimal maneuvers
is difficult and requires numerical optimization. The problem of
optimizing the maneuvers for the low-aphelion cases is beyond the
scope of the present analysis.
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Vo at Earth and at Mars

Because taxi spacecraft must rendezvous with the cycler space-
craft as it passes Earth and Mars, we want the Earth V,, and the Mars
Vo to be as small as possible, a requirement that often rules out tra-
Jectories with a small number of revolutions r per repeat interval.
The orbit that achieves the lowest possible sum of V,, at Earth and
Vo at Mars is the Hohmann transfer orbit (2.95 km/s at Earth and
2.65 km/s at Mars). Unfortunately, the Hohmann transfer orbit is
not a cycler trajectory.

Required vs Maximum Possible Turn Angle

For the spacecraft to return to Mars on the same-shape orbit it
used originally, the orbit’s line of apsides must be rotated by AW
degrees, where AW is the angle between the initial and final Earth
positions (R, and R,):

AW = (n/7) - 360 deg (mod 360 deg) (4).

We note that when n is a multiple of seven, the line of apsides
does not need to be rotated (because AW =0 deg). Therefore, all
cycler trajectories with n a multiple of seven are ballistic cyclers,
that is, cyclers that do not require any deterministic AV maneuvers.
The VISIT 1 and VISIT 2 cyclers are examples of n =7 solutions.

If the line of apsides must be rotated, an Earth gravity-assist may
be able to accomplish the rotation without propellant. The required
flyby radius must be sufficiently greater than the Earth’s radius. We
assume that Barth flybys are constrained to altitudes greater than or
equal to 200 km. If the required altitude is less than 200 km, then a
AV maneuver is needed.

Rotating the line of apsides is equivalent to rotating the V., vector
at Earth. If the required Vi, turn angle is less than the V,, turn angle
obtainable with a 200 km flyby, then no AV maneuver is required,
that is, the cycler is ballistic. Otherwise, a AV maneuver is required,
in which case we refer to the cycler as a powered cycler.

The Most Promising Solutions

. Table 4 lists characteristics of the most promising cycler trajecto-
ries with 1 <n < 6. Note that the Aldrin cycler (1L1) is among the
most practical, despite the fact that the Earth fiybys can not provide
all of the required turning. Cycler 2L.3 has a low Vo at Earth and
Mars, but its aphelion is slightly below the orbit of Mars. It is the
case 1 two-synodic-period cycler analyzed by Byrnes et al. >

Some of the cyclers with n =6 are also promising. The 6S7,
688, and 659 cyclers have required turn angles that are less than
the maximum possible turn angles; hence, they are ballistic cyclers.
The required flyby periapsis altitudes at Earth are 1402, 5408, and
13,836 km, for the 657, 6S8, and 689 cycler, respectively. These
cyclers also have a low V,, at Earth and at Mars. Unfortunately, 12
vehicles are required to provide short Mars—Earth and Earth—-Mars
trips every synodic period. Also, the 659 cycler has an aphelion at
1.40 AU, which is significantly below the orbital radius of Mars (at
1.52 AU).

Table $ lists some characteristics of the n=7 cyclers. These
cyclers are special because they repeat every T =nS=7-(2}) =
15 years, that is, after an integer number of years. Therefore, the
Earth is at the same point in inertial space at the beginning and the
end of the repeat interval T, so the cycler line of apsides does not
need to be turned. Therefore, all n =7 cyclers are ballistic cyclers.
The VISIT 1 and VISIT 2 cyclers are n =7 cyclers.

Many of the n =7 cyclers encounter Earth and Mars more often
than once every 15 years (Table 5). For example, the VISIT 1 cy-
cler encounters Earth every 5 years and Mars every 3.75 years. An
implication is that fewer than 14 spacecraft are required to ensure
frequent short Earth~Mars transfers. -

Also, because of their simple geometry, the orbital characteristics
of the n=7 cyclers can be found analytically. Because each n =7
cycler makes r revolutions during the 15-year repeat time, the orbit
period is 15/r years. In fact, an estimate of the period P (in years),
of any nPr cycler is:

P a2 15n/{Tr 4 [n (mod 7)}} (3)

Because the orbit period of an n =7 cycler is 15/r years, the
semimajor axis a (in AU) is

a=(15/r)} ; ©)

The cycler orbit perihelion radius R, is not uniquely determined
by r, however. If r < 15, then the semimajor axis of the cycler or-
bit is larger than the semimajor axis of Earth's orbit, so that all
R, €(0, 1) AU are possible. If we choose a value for R, then we
can calculate the cycler orbit eccentricity e using

e=1-(Ry/a)=1-[R,/(15/)}] 7

Table 4 The most promising cyclers that repeat every one to six synodic periods

Aphelion Veo Veo Shortest ~ Required Maximum possible
Cycler, radius, at Earth,  at Mars, transfer turn angle, turn angle,
nfr AU km/s km/s time, days deg deg
1L1*® 223 6.54 9.75 146 34 72
212 2,33 10.06 11.27 158 134 44
2L3b 1.51¢ 5.65 3.059 280° 135 82
3L4 1.89 11.78 9.68 189 167 35
-3Ls 1.45° 7.61 2.974 274° 167 62
385 1.52¢ 12.27 5.45¢ 134¢ 167 33
485 1.82 11.23 8.89 88 167 38
456 1.53 8.51 4.07 157 167 54
534 249 10.62 12.05 75 134 41
585 2.09 9.08 9.87 89 134 50°
556 1.79 7.51 732 111 135 62
557 1.54 5.86 3.67 170 135 79
5S8 1.34¢ 411 0.71¢ 167® 136 103 -
654 2.81 7.93 12.05 87 83 39
685 237 6.94 10.44 97 34 68
656 2.04 5.96 8.69 111 84 78
687 1.78 4.99 6.66 133 gst 90f
658 1.57 4.02 3.90 179 8sf 104f
659 1.40° 3.04 1219 203¢ 86" 120f

" Aldrin cycler (see Ref, 14).
BCase 1 cycler analyzed by Bymes et al*
°Note: the semimajor axis of Mars is 1.52 AU.

4Difference between Mars’s speed and spacecraft aphelion speed.

*Time to transfer from Earth 10 aphelion,

"Ballistic cycler: required turn angle is less than maximum possible turn angle.
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Table 5 Cyclers that repeat every seven synodic periods (15 years)

Number of Years between Years between
revolutions every Period Aphelion Earth Mars
15 years, r (15/r), years radiug,® AU encounters encounters
1 15 (11.16, 12.16) 15 15
7.5 (6.66, 7.66) 15 1.5
<l 5 (4.85, 5.85) 5 15
4 3.75 (3.83,4.83) 15 3,75
5 3 (3.16, 4.16) 3 15
6 2.5 (2.68, 3.68) 5 7.5
7 2.143 (2.32,3.32) 15 15
8 1.875 (2.04, 3.04) 15 1.875
9 1.667 (1.81,2.81) 5 15
100 1.5 (1.62, 2.62) 3 7.5
11 1.364 (1.46, 2.46) 15 13
12¢ 1.25 (1.32,2.32) 3 3.75
13 1.154 (1.20, 2.20) 15 15
14 1.071 (1.09, 2.09) 15 T

®Range given corresponds to perihelion range R, € (0, 1) AU, PVISIT 2 cycler.'®  ©VISIT 1 cycler.'®

Fig. 4 VISIT 2cycler 7(1.0)10.

Mars’ i

The cycler aphelion radius R, can then be calculated using
R, =a(l +e) =_2-(1S/r]% - Ry (8)

When 7 is a multiple of seven, r and R, determine the semimajor
axis and eccentricity of the cycler orbit. However, there is still a
degree of freedom in the argument of periapsis, , that is, the angle
from the x direction to the cycler orbit periapsis direction. To de-
termine the possible values of w, we recall that the spacecraft orbit
encounters the Earth when the Earth crosses the positive x axis. At
that point, the distance from the sun to the spacecraft, R,is 1 AU, and
the true anomaly of the spacecraft is £w, so that the conic equation
for the spacecraft orbit tells us that

R(xw) = p/[1 + ecos(xw)] =1 9)

where p =a(l — ¢?) is the parameter of the cycler orbit. Hence, the
argument of periapsis can have two possible values given by

o = tarccos[(p — 1)/e] (10)

Therefore, when n is a multiple of seven, we denote a cycler using an
expression of the form n(R,)r=, where R), is the perihelion radius
(in AU) and the + or — indicates whether the argument of periapsis
is positive or negative, respectively. Figures 4-6 illustrate the use
of this notation for various VISIT 2 cyclers. In Fig. 4, the argument
of periapsis is zero, and so the sign is not needed. We note that as
the perihelion radius R, is decreased, the V,, at Earth and Mars
increases, so that a perihelion radius near 1 AU would tend to be
chosen for practical applications.

Extending our Method of Constructing Cyclers

Although our method can construct many known cyclers, there
still remain other known cyclers that our method cannot construct.
Examples include the Rall'! and Rall-Hollister'? cyclers and various

Fig. 5 VISIT 2cyclers7(0.9)10+
and 7(0.9)10-.

Fig. 6 VISIT 2 cyclers 7(0.5)10+
and 7(0.5)10-.

cyclers identified by Bymes et al.** We anticipate that extensions of
our method will be able to construct these cyclers as well.

Our method of constructing cyclers can be extended in several
ways. Forexample, we have been assuming that all Earth encounters
are an integer number of synodic periods apart, with no intermediate
Earth flybys. There is no reason to rule out such intermediate Earth
flybys. Aslong as the trajectory returns to Earth after an integer num-
ber of synodic periods, it is still a cycler. Indeed, intermediate Earth
flybys could be very useful. If one gravity assist can not adequately
turn the line of apsides, then more gravity assists might. Also, more

- Earth encounters may imply more short Earth-Mars transfers (or

more short Mars-Earth transfers). (In the next section, we provide
an example of a cycler using one intermediate Earth fiyby.)

Other possible extensions to our method include 1) using gravity-
assist maneuvers at Mars, Venus, or the moon; 2) allowing for in-
clined cycler orbits; and 3) allowing for propulsive AV maneuvers.
A way of estimating the total AV required by powered cyclers would
also be useful for identifying nearly ballistic cyclers.
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Numerical Results for Cyclers in a More
Accurate Model

To simplify the analysis, our method of constructing cyclers uses
circular coplanar orbits for Earth and Mars. The hope is that any
cycler found in the circular coplanar model would correspond to a
similar cycler in a more accurate solar system model, that is, using
analytic or integrated ephemerides for Earth and Mars.

As discussed earlier, the most promising cycler in Table 4 is the
1L1 cycler, which is better-known as the Aldrin cycler. We see in
Table 4 that the required turn angle for 1L1 is 84 deg, but the Earth
can only provide a turn angle of 72 deg, and so a AV maneuver
is required, (Equivalently, the required flyby altitude is —1731 km,
which must be raised to at least 200 km using a AV maneuver,)
Previously, Byrnes et al.'* minimized the required AV for both an
inbound and an outbound version of the Aldrin cycler in a more
accurate solar system model. Both trajectories were optimized over
a 15-year time period (which is approximately how long it takes
the Earth-Mars system to repeat inertially). They found thata AV
maneuver was not required on every leg. The total AV required by
the outbound cycler is 1.73 km/s (or 247 m/s per synodic period,
on average), and the total AV required by the inbound cycler is
2.04 km/s (or 291 m/s per synodic period, on average). The flight
times between Earth and Mars vary between 147 and 170 days, The
Veo at Earth and Mars vary from 5.39 to 6.19 km/s, and from 6.05
to 11.74 km/s, respectively.

Cyclers 657 and 658 are also interesting because they are ballistic
in the circular coplanar model and have sufficiently high aphelion
radii. Our atternpts to find long-term ballistic versions of these cy-
clers in a more accurate solar system model were unsuccessful.

The remaining cyclers in Table 4 are not practical. They either
require too many vehicles, have overly long Earth—Mars transfer
times, or have unacceptably high encounter V... Moreover, none of
them is ballistic, and some have an aphelion below the orbital radius
of Mars. Therefore, we did not search for corresponding cyclers in
a more accurate solar systerm model.

Some of the (seven-synodic-period) cyclers in Table 5 are worth
investigating further because they are all ballistic and some have
fairly frequent Earth and Mars encounters, particularly the VISIT 1
and VISIT 2 cyclers. In Ref. 35, Niehoff et al. provide a 20-year
numerical solution to the VISIT 1 cycler that is ballistic in a realistic,
that is, noncircular and noncoplanar, model of the solar system.

We have begun investigating extensions to our method to find
other classes of cyclers. In one such extension, we allow for a single

Table 6 Outbound ballistic $1L1 cycler itinerary (using DE405

ephemerides of Earth and Mars)
Altitude of Leg
Approach Vi, closest duration,

Encounter Date km/s approach, km days
Earth 1 9 June 2008 6.89 (launch) 541
Earth 2 3 Dec. 2009 6.90 31,114 186
Mars 3 6 June 2010 4.31 17,704 809
Earth 4 24 Aug. 2012 6.42 26,490 540
Earth 5 14 Feb. 2014 c 643 41,524 139
Mars 6 3 July 2014 7.14 12,179 - 890
Earth 7 9 Dec. 2016 4.01 27,726 530
Earth 8 22 May 2018 403 19,923 115
Mars 9 15 Sept. 2018 '6.47 11,570 934
Earth 10 6 April 2021 4.61 T22992 532
Earth 11 20 Sept. 2022 4.59 14,780 223
Mars 12 1 May 2023 2.77 7,593 793
Earth 13 . 2 July 2025 7.08 23,858 542
Earth 14 26 Dec. 2026 7.09 35,164 170
Mars 15 14 June 2027 5.26 13,751 830
Earth 16 21 Sept. 2029 5.78 26,818 537
Earth 17 12 March 2031 5.78 39,044 125 -
Mars 18 15 July 2031 7.70 10,566 915
Earth 19 15 Jan. 2034 378 22,988 529
Earth 20 28 June 2035 3.76 9,586 138
Mars 21 13 Nov. 2035 4.68 15,525 907
Earth 22 7 May 2038 5.55 — e

intermediate Earth flyby between two Earth encounters that are tw:
synedic periods apart. Within that class of cyclers, we have found?
a noteworthy new cycler that we call the ballistic S1L1 cycler, £
30-year itinerary for an outbound ballistic SIL1 cycler is given il
Table 6. The positions and velocities of Earth and Mars were deter
mined using the Jet Propulsion Laboratory’s DE405 ephemerides
We note that the flyby V,, are all less than 7.7 km/s, the flyby alti
tudes are all greater than 7500 km, and the Earth-Mars legs rang
from 115 to 223 days.

Conclusions

Earth-Mars cycler trajectories (cyclers) have the potential to b
used in a future Earth-Mars transportation system. Until now, cy:
clers were found using a combination of intuition and numerica
searching. We have developed a new, systematic method of con
structing cyclers. It is based on the observation that if a spacecraft i:
on a cycler trajectory, then it must return to the Earth after an intege:
number of synodic periods. Our cycler construction method reveal:
that many previously known cyclers, such as the Aldrin cycler anc
the VISIT cyclers, are special cases of a more general family. Ow
method also finds new cyclers. However, none of the new cyclers ap-
pears to be as practical as the Aldrin cycler or the VISIT cyclers. The
key contribution of this paper is a methodical technique to desigr
cyclers.
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