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Nondimensional Analysis of Reaction-Wheel
Control for Aerobraking
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The equations of motion for an aerobraking spacecraft are nondimensionalized. This process yields three di-
mensionless parameters that intrinsically describe the capability of a reaction-wheel controller to manage angular
momentum during an atmospheric drag pass. These parameters, namely acromoment, desaturation speed, and
equilibrium momentum, completely characterize the behavior of all reaction-wheel controllers for aerobraking at
any planet. As the names imply, the behavior is determined by the density of the atmosphere, the torque of the
reaction wheel, and the moment of inertia of the spacecraft (and associated parameters). Theoretical bounds on
the three parameters are found, and comparisons to past aerobraking spacecraft are made. Numerical simulations
demonstrate that the established bounds correctly predict the performance exhibited during aerobraking, =~

Nomenclature

system matrix

acceleration, m/s?

input matrix

output matrix

coefficient of drag

derivative of spacecraft’s aerodynamic moment
coefficient with respect to angle of attack, deg™!
polynomial coefficients

characteristic force ratio

polynomial coefficients

affine term

orbit eccentricity

local gravity acceleration, m/s?

acceleration ratio

angular momentum, kg - m?/s or dimensionless
moment of inertia, N-m

nondimensional moment of inertia

feedback gain mattix

nondimensional moment

characteristic torque ratio’

spacecraft mass, kg

aeromoment pararieter

desaturation speed

reaction wheel equilibrium

dynamic pressure, N/m? or dimensionless
spacecraft radial distance, km or dimensionleéss * -
reference area, m? '
characteristic flythrough time, s

reaction wheel control torque, N - m or dimensionless
spacecraft velocity, km/s or dimensionless
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state vector

X =

o = angle of attack, deg » PN
B = inverse scale height, km™!, or sideslip angle, deg
y = flight-path angle, deg

AV = change of velocity magnitude, ks

®* = atmospheric turn angle, deg

6 = - true anomaly, deg

@ = gravitational parameter, km?’/s?

p = . atmospheric density, kg/km> or dlmensmnless
T = npondimensional time

* .=, relative desaturation time . . .

Q = inertial reaction wheel velocity, rad/s

w = inertial spacecraft angular velocity, rad/s
Subscripts

f = final value

i = initial value .

p = periapsis

rw = reaction wheel ‘ ,

sc = spacecraft (not including reaction wheel). -

Introduction

N aerobraking spacecraft uses the atmosphere to reduce the en-

ergy of the orbit (Fig. 1). The atmospherlc drag force provides
the desirable AV to effect the orbit change. During each orbit, the
spacecraft also accumulates angular momentum from several exter-
nal torques, for example, aerodynamic, gravity gradient, and solar
radiation pressure. Traditionally, the spacecraft reaction wheels ab-
sorb this angular momentum, allowing the spacecraft to remain in an

' inertial attitude. As the reaction wheels become saturated, propellant

is used to eliminate the acquired angular momentum.! Previous aero-
braking missions have used an open-loop strategy to desaturate the
reaction wheels during the atmospheric drag pass.! =3 Two major dif-
ference exist between these missions and our proposed implemen-
tation. The previous missions sequenced the desaturation maneuver
relative to the predicted time of periapsis, whereas our method*>
senses atmospheric entry and activates a control law accordingly.
The other difference is that past missions relied on attitude-control
thrusters to.provide attitude control during the aeropass (in the form
of rate damping on the angle of attack), whereas our proposed meth-
ods rely solely on reaction wheels to achieve the same effect.
Johnson et al.*~® demonstrate that a reaction-wheel attitude-
control law is easily capable of managing the angular momentum of
a spacecraft similar (in terms of mass and aerodynamic properties)
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Fig. 1 Orbit decay using aerobraking.

to the Mars Global Surveyor (MGS). The performance of the previ-
ously developed control laws depends on several parameters, such
as the spacecraft’s inertia propetties, reaction-wheel storage capac-
ity and torque limit, and atmospherlc density, to name a few. For
each new aerobraking mission, a similar study would have to be
performed to determine if reaction-wheel control is feasible. Simi-
larly, if reaction-wheel control is to be used on any given mission,
the spacecraft would have to be designed within some appropriate
parameter space. The focus of this paper is to present specifications
for the spacecraft design that determine whether or not any reaction-
wheel control law is capable of managing the angular momentum
in an aerobraking mission w1thout the need for propellant-wasting
reaction control.

The literature of aeroass1sted maneuvers has a nch theoretical
background and several applications.>”~1> NASA plans for regular
~ missions to Mars at every synodic opportunity includes heavy re-
“liance on aerobraking to reduce propellant requirements. Future mis~
“sions to the atmospheric-bearing bodies in the solar system (Venus,

Mars, Jupiter, Saturn, Titan, Uranus, and Neptune) will depend on
aeroassisted techniques such as aerocapture; aerobraking, and aero-
gravity assist. In many of these cases, autonomous attitude control
and momentum management will play-an important role.

Nondimensionalization of the Equations of Motion

Derivation

The three axes of rotation (pitch, yaw, and roll) are dynamically
coupled. However, the behavior of the aerodynamically stable axes
in the six-degree-of-freedom model (pitch and yaw) indicates the
single-axis model is sufficient for a feasibility study for these two
axes. Thus, we will only consider thesingle-axis equations of motion
(EOMs) and apply the results to the pitch and yaw axes indepen-
dently. Angular momentum stored about the roll axis is not directly
controllable. An approach to roll-axis momentum management is
discussed further by Johnson et al.'4

The dimensional orbital and momentum EOMs are given by
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‘We note that the second term in Eq. (5) is due to the natural motion

.+ of the spacecraft around the planet. Because the spacecraft tends to

* Yemain in-ah- mertlally fixed attitude, the angle of attack will vary
.as the planet rises and.falls relative to the spacecraft. This term is
unique to the pitéh axis.5 The corresponding linearized yaw-axis
EOM is simply

,3. = Wyaw ®)

We redefine the state variables. in Eqs. (6) and (7) to be the mo-
mentum instead of the angular rate; that is, Hy = I,cw and H,,
Lw$2). Next we normalize r, V, and g (dynamic pressure, glven
by g =3 p V2) by their values at periapsis: 7, V), and g,. Torque
and angular momentum are normalized by the reactxon wheel lim-
its Of Umax and Hpyy. Finally, time is scaled by the characteristic
flythrough time fope

)

Tohar = AV/ap l (9)
 ohar =\/2m2/ﬂeu o (10)

The charactenstlc fiythrough time represents the equivalent
amount of time the spacecraft is subjected to periapsis like dynamic
pressures. With these normalizations, all parameters and variables
for the remainder of the paper are dimensionless.

Parameterization
With these subsututlons the d1mens1onal EOMs (1-7) become
F=Vsiny - 0* (11)
V =—g*lg-D* + (siny/r)] (12)
6 =(Vcosy/r). " a3
§ = —g" (cosy/rV) + ©F {(V cosy/r) ‘ (14)
M = Hy(M*/I*) + M*g* - (cos y [2V) -~ (15)
e = =g M~ (/") e
Hy = (u/r*) an

The nondxmensxonal EOMs in Eqs (11-17) contain six nondi-
mensional parameters that are defined in-Table 1. |

An orbit shape is characterized by two parameters, for example,
semimajor axis and eccentricity. In.our nondimensional parameteri-
za’tion, the orbit is characterized by ©* (the atmospheric turn angle)
and g* (an acceleration ratio). The third parameter D* describes the
drag force. The three remaining parameters pertain to the momen-
tum EOMs (15-17).

Two terms produce coupling between the orbxtal EOMs and the
-momentum EOMSs. The first occurs in. the last term of Eq. (15),
due to the presence of y, , and V. We note that near petiapsis
(the area of interest for aerobraking), this. last termis approximately.
unity. The second source of coupling is implicit from the g term of
Eq {(16); Because of our choice of time scalmg, g~0for|t| > 1and

= 1for £ =0. The exact shape of g(¢) is dependent on the orbit
eccentrlc1ty From our earlier definitions, however, ¢ ~ 1 over one
timescale. Thus, the differences in shape should be fairly minor.

Table 1 Nondimensional parameters

Parameter ‘

~ Definition Descripticn
@ Vptehae/Tp o Atmospheric. turn angle
& (M/rz)/(Vp/tchar) " Acceleration ratlo '
b* . ! (quCD/m)/(u,/rp) Chadracteristic force ratio
M* ~qpSLCht,/(Hnax /tchar) - Characteristic forque ratio _
I+ ‘ I /(Hgaxtehar) - ; Nondimensional moment of inertia
T* (Hmax/ Umax )/ Echar o

. Relative desaturation time
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Table 2 - Reduced nondimensional parameters

" Definition

Parameter ‘ Description

2 M1 Aetomoment

D2 1/z* Desaturation speed

D3 I*g* Equilibrium momentum

With these assumptions, we can'decouple the momentum EOMs
from the orbital EOMs and analyze. the structure of the momen-
tum EOMs independently. The approximate EOMs inside the at-
mosphere are, thus, given by the linear time-varying system:

M = Ho(M*/I") + M*g* (18)
‘ Hsc =-q- M- (u/r*) ) (19)
Hy = (u/7") (20)

For convenience, we make the following deﬁmtlons and approxi-

mation:
= /M /I , @n

=1/* @
py=I"g* (23)
90~ @

., The apprommatlon inEq.(24) is made to mmphfy the EOMs into
a lmear time-invariant system. This approximation is accurate near
periapsis, that is, during the time the controller is active. Our final
form of the nondimensional momentum EOM:s is thus,

M = Hy,p? + p?ps(cos y /r2V) 5)
He=M ~up; (26)
H. = ups @7

The new nondimensional parameters py, p;, and p; (Table 2)
have the following physical interpretations:

1) Parameter p, is the agromoment parameter. It describes'the
atmosphere’s ability to rotate the spacecraft. Larger p; values cor-
respond to more dense atmospheres.

2) Parameter p; is the desaturation speed of the reaction wheel. A
large. p, means the reaction wheel is capable of despinning (spmmng
down from its initial speed to zero) quickly.

3) Parameter ps is the equilibrium momentum for the pitch ax1s
The equilibrium for the spacecraft momentum is —p3, and for the
reaction wheel, it is + p; (when the total system momentum is zero).
The sideslip angle B has a zero equilibrium value, and thus, we
lét p; =0 for this special case. By definition of p;, we have the
constraint that

O<pisl (28)

The linear system can be written as

_— i=Av+Bu+E )
H=7Cx S (30)

where

x=[M H, Hul 3

0 p} 0.

‘ A=]~1 0 0] (32)
0 0 0

=0 -p 2T 33
c=10 11 (34)
E=[plps 0 0] 09

Evolution of Parameters - ’

The parameters py, p, and ps are not constants, but rather they
evolve over time. The first two parameters are -both directly pro-
portional to Ze, Which increases as the orbit decays. The smallest
values of n and p, will, thus, occur on the initial orbit, when ot-
bit period is greatest. For a particular control law, the performance
will depend on the spacecraft-design, the reaction wheels, and atmo-
spheric properties. The mostrestrictive case isthe initial aerobraking
pass, where flythrough time is short: The controllér’s performance
will getierally improve on subsequent orbits. '

If thé initial and final orbit eccentricities are known, the ratio of
the final value of p; or p, toits initial value can easily be computed.
For example, MGS captured jinto a 48-h elhpt1ca1 orbit (¢~ 0.9),
and it completed its last aerobraklng orbit once it reached a 2-h
orbit (e~0.1): : .

pf/p:=\/ei/e =,/0.9/0.1=3 (36)

logyopy — 102101’:’ = log;p3 ~ 0.5 (37)

The. p; parameter is- inversely proport10nal to r2V Periapsis
distance will vary 51gn1ﬁcant1y less than periapsis velo<:1ty Thus,
the ratio of p3 s to ps; is found by ,

Pf/Pi = ",-ZVi/V% Vs ' ‘ (38)
pr/pi~Vi)Vi= /(1 +e)/(Q+e)~131  (39)
logyops —logypi ~ 0.12 2 (40)

Thus, log;,p and logop; can be expected to increase by about
0.5:over the-course of a mlss1on whereas log10 p3 1ncreases by about
0.12. [

Typical Parameters

Table 3 lists dimensional data®31%,11:16-18 and the derived nondi-
mensional parameters for three aerobrakmg spacecraft: Magellan,
MGS, and a hypothetlcal aerocapture tether, . .

Magellan’s initial, aerobraking orbit was at e=0. 39 whereas
MGS began aerobraking at.e =0.9. To. present a fair comparison
between the spacecraft, an eccentncny of 0.9 is used. (The p; and

" pa.values for the initial Mageilan aerobraklng qrbit are roughly 50%

greater than listed in Table 3.) The tether £ase.uses an eccentricity
of 1.54 (whlch conesppnds to the Hohman,n transfer) beoause this
is an agrocapture example. ,

. Asg W shall 508, the determmmg factors 1n momentum control
dur,mg aerobrakmg gre.the py and p; parameters Reagtion-wheel
control is. only. suitable for. spacecraft with p; 2. Magellan and
MGS both meet this requlrement in the extreme case of e =0, 9,
whereas the tether does not. MGS exceeds thls threshold by amuch
greater margin than Magellan, but MGS was deSLgned to aerobrake,
whereas Magellan was not... . : .

ControlLaws .

“We consider three atmospheric control laws. An'inértial attitude
hold mode is used until the spacecraft descends thtough the sénisi-
ble atmosphere at t = —1, 4t which time, an atmospheric controller
is activated. At atmospheric exit, any residinal angular momentum
is reabsorbed: by the reaction wheels, and normal; exoatmosphenc
attitude control resumes; The three control:laws we examine are
the spin-down, the affine. partial:state; and.the two stage.* First,
we analyze the: natural behavmr of the system when control is tnot‘
applied. owi b v TR :
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Table 3 Nondimensional parameéters for three spacecraft

Magellan . MGS .
: - Hypothetical

Parameter Pitch . Yaw Pitch Yaw tether®
e 09®  o09b 0.9 0.9 1.54
8, 1/km 0.167  0.167 0145  0.145 0.125
1w, km?3/s? 324,859 324,859 42,828 . 42,828 42,828
rpkm i, 61893 61893 . 3,514 . 3,514 3,490
fhaw S, . . 703 703 1178 1178 . 954
m, 1;§‘ o 1,100 1,100 760 760 2,112
SmP T 227 22.7 1704 17.04 - 605
Lym " 97 3.7 8.73 8.73 7,250
gpyNm? 027 027 '0.18 018" ~ 73
Cp v’ 122 22 195 1.95 1.0
Chg,yiftad < - —~048 - —0.57  ~021. —0.57 ~1.0
Lokmem?o 0 02,2090 1,204 410 814 . 1.07 x 101
- Hipgx, km -m?/s 27 .. 2. 22 22 - N/A
Umax; km-m?/s? . 018 018 . 014 . 014 - NA
OF e 0.113 = 0113 . 0161 0161 . 0.154
gt 0.060 0060 = 0085  0.085 0.060
Do 0.00145  0.00145 ~0.00227 0.00227 0.591
B G 2822 '33.86° 3013 8218 N/A
o 1.16 0.63 0.16 0.31 N/A
T 213 - 213 1.33 1.33 N/A
pi: 492 - - 730 138 16.2 1.64°
2 0.47 0.47 0.75 0.75 N/A
3 0.069 o4 0.013 od N/A
logor1 0.69 0.86. 1.14 1.21 0.22
logpa . . ~033  -033 -012 -0.12 N/A
loglopg ST =116 ) -1.87 —00  N/A

2Tether example does not have reaction wheels thus corresponding parameters are not
applicable.

"Magellan began aerobraking at e = 0.39; data are presented for ¢ = 0.9 to allow com-
parison to MGS.

°M*/I* is defined even though M* and I* are not defined md1v1dua11y

"For the yaw axes p3 =0

: No Control
We can gain insight into the behav1or of the system by first con-
sidering ithe case of no.control. In this case; the reaction wheel is
held at ¢onstant speed when the spacecraft enters the atmosphete,
and thus, # = 0. The open-loop eigenvalues are easily seen to be

The “scﬂlauons in' the spacecraft’s attitude are thetefore, un-
d 'with a (nondimensional) frequency of pi:tadian. Thus, the
tantaneous perlod of a s1ng1e oscillation m the spacecraft’s at-

larger numerlcally found to be roughly 8/ D1-
i Sensible’ atrh(Jsphere spans about two time units, the
ﬁfﬁﬁbé&?ﬁ‘fﬁ"’gsmﬂa&s thioiigh at least one full cycle when p; > 4.
cle d ﬂecuon yields the worst. performance, because the

flattack’ h1story is rnax1mally biased. (The space-
' atfaék fegches 4 maximum at perlapsm ) ‘For this

As 1nd1cated earher, Magellan and MGS are both in the- pl >2
region (and thus; reaction-wheel.control is feasible for these space-
craft), but the tether w né‘lﬁ%béchﬂbe ipri= 1. 64 < 2) The best ap-

the. passive
Spin ﬁowm:

. The spin«dowr ¢ ]
wheel whenr the spadeeraft ;

TSR AN R .
um tﬁi‘qu,e‘ t'oithc ne'acti‘on

which tendsto keep the“ spacwﬂaf from: m@tﬁung;»whﬂe‘thgs wheels
are desaturated. The spin-down control. law works best ifistarted

[ | 7y NI

near periapsis, where the .atmosphere’is-densest. In terms of the

nondimensional variables, the time required to spin down a reaction
wheel with stored momentum H,, is simply H.,,/p,. The control
law is activated at t = — H,,,/2p, so that the spin down will be
halfway complete at periapsis.

We can immediately. place a lower bound of the value of p,. The
actual atmospheric flythrough time is approximately two timescales
(2thar). The spin-down operation must take place within the atmo-
sphere, and:so we have the.constraint that -

| Huw/pr<1l/pp<2 . 42)
This leads us to identify a critical value p; et such that
D2 > p‘2,cri’t = %‘ (43)

This constraint states that the reaction wheel must be capable of
desaturating within the sensible atmosphere. From Table 3, we see
that MGS meets this requirement for all orbits. Magellan is slightly
below this threshold for the e = 0.9 case but meets the requ1rement
for its initial aerobrakmg orbit (where p, =0.7).

Affine Partial State

The affine partjal-state controlleruses feedback from the two mea-
surable state variables, Hy, and H,,,. Without the ability to measure
the third state variable M, the closed-loop system poles cannot be ar-
bitrarily placed. Furthermore, the system is time varying so that neg-
ative eigenvalues are insufficient for closed-loop stability. We take
the approach of finding the feedback gain vector, K =[0 K. K],
to minimize the maximum real component of the eigenvalues.

For any monic polynomial with exactly one specified coefficient,
the minithax solution occurs when the roots are real and identical.

Proof by Contradiction’ '
Consider the monic polynomial, ¢, = 1, given by

pe) =3 (Z)c;’“ksk @44
k=0

If the jthterm is the only specified term, then the minimax solution
is given by ¢ == ¢; for all k; which yields..-

p;(s) = Z (Z)c;'ksk - (45)

k=0 ‘
pis) = (s +c)" (46)

Letus assume that p;(s) is not the minimax solutioh. In other words,
every root of p(s) has a real part smaller than ¢j. We wﬂl call this
better polynom1a1 q (s)

9@ =2 <Z>d:*’~°s’<' @

k=0

q(s) = I'[(s tete) 8)

L=l

‘Our constraints are that d j=cy (the jth term is fixed), and
R{e;} > 0 for all i. [We need every root of g(s) to be smaller than
¢;.] Expansion of Eq. (48) reveals that

X (7) n—j . Prol
(’;)d;’ _,j = l_l (c,- +€x) (49)

k=1i=1

(50

JRRE) oy B

L gset 31)
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However, our original assumption was that d; = c;, that is, the jth
term was fixed, and so we have a contradiction. Therefore, if any
term in a polynomial has exactly one coefficient that is fixed, with
the rest arbitrary, then the polynomial that minimizes the maximum
real part of the roots is the polynomial with » repeated real roots.

Application to the Affine Partial State Controller
The characteristic polynomial for the closed-loop system is

3+ 52 pa(Kye — Kew) + 5p2 — Koy D?pa =0 (52)

In Eq. (52), the s term has a fixed coefficient (no feedback avail-
able). Because the s term is the only such term, we know the minimax
solution occurs when all roots are real and identical. From Eq. (52),
we deduce the (triple-root) closed-loop eigenvalue to be

s=-p/V3 (53)

The required feedback coefficients are given by
K. =8p\ [~21p (54)
Ko =—p1 [V2Tp, (55)

One important result from picking gain values proportional to
P1/ D, is that the desaturation parameter p, scales out of the charac-
teristic polynomial. In other words, as long as the constraint Eq. (43)
holds, the system performance is independent of the reaction wheel
size.

The optimal feedback parameters are functions of atmospheric
parameters, which may not be known very precisely and could sub-
stantially differ from orbit to orbit. We have found this control ap-
proach to be very robust, even with orbit-to-orbit density variations
ranging from 10 to 200% of nominal values. The robustness is dis-
cussed in further detail by Johnson et al.5'

Two Stage

The affine partial-state controller works best when started early
during the drag pass, and the spin down controller works best near
periapsis. The two-stage controller combines the affine partial-state
and spin-down controllers.*>

Results

There are three significant control strategies, based on the acromo-
ment parameter. For sufficiently large p;, a reaction-wheel control
law is capable of controlling the attitude while dumping the system
angular momentum.*> This active control operates best when the
angle-of-attack oscillations have a small amplitude. The entry angle
of attack is chosen to minimize this amplitude.

When the aeromoment is too small, a reaction-wheel controller
does not have enough time per drag pass to dump all of the system
momentum. However, a specific entry attitude can yield the desired
AH. This passive-control strategy of targeting for a particular entry
attitude applies when the spacecraft’s attitude oscillates through a
fraction of a period (and is thus predictable).

We can also employ both techniques to achieve a more robust
controller. An entry attitude is selected such that the natural oscil-
lations of the spacecraft should result in zero system momentum
after the drag pass. For high p, this entry-attitude scheme is virtu-
ally impossible because any perturbation on the atmospheric den-
sity would ruin the estimate. Once atmospheric entry is detected,
reaction-wheel control is used to dump angular momentum actively.
However, for low p1, this dumping scheme is ineffective because of
insufficient time. As we shall see, a composite strategy accommo-
dates systems for arbitrary values of py, that is, from very low to
very high.

Case 1: High Aeromoment (Active Control)

Figure 2 shows the fractional momentum remaining after a drag
pass using the spin-down controller over a range of p; and p; values.
The blue regions indicate no angular momentum is remaining after

12

log P,

Fig. 2 Fractional momentum remaining after a drag pass using spin-
down controller: horizontal axis provides the aeromoment (atmospheric
density), vertical axis provides the desaturation speed (reaction-wheel
strength), blue regions indicate greatest reduction of angular momen-
tum, and red regions indicate insufficient dumping.

a pass, whereas a red region indicates the final momentum is at least
100% of reaction wheel capacity. The reaction wheel is initially fully
saturated (arbitrarily in the positive direction). We allow the reaction
wheel to be saturated initially to maximum capacity to demonstrate
the worst-case performance. A wheel with leftover margin would
behave at least as well as a smaller wheel with no margin, that
is, by a simple rescaling of the nondimensional parameters. (The
performance will not necessarily be identical because of the inherent
nonlinearity of saturation.)

As predicted earlier, there are minimum values of p; and p,
for which the control law works. When a log scale is used, the
predicted constraints for feasible control are log,,p; > 0.3 and
log,op2 > —0.3. However, the spin-down controller can suffer if
p2/p1 exceeds some threshold. If p, is large, the reaction wheel
despins too quickly. The net result is that the spacecraft’s attitude is
mostly uncontrolled because no control is used before or after the
desaturation. Whereas the natural oscillations in the spacecraft will
tend to pick up additional momentum, the initial bias is removed.
Because a weaker reaction wheel performs better in this case than a
stronger reaction wheel, the control law can easily be modified by
reducing the torque to prolong the spin-down duration.

The control law performance near the critical p, threshold is co-
incidentally due to a fortunate initial condition in the angle of attack.
In some of the cases, the entry angle of attack is such that the net an-
gular momentum accumulation is destructive, and the final system
momentum is low. In the remaining cases, the net angular momen-
tum accumulation is constructive, and the final system momentum
is even larger. Because a small perturbation in the atmospheric den-
sity profile can shift the locations of these waves, we cannot use this
effect to our advantage. This limitation is inherent to the high p,
case, as will be shown later.

The affine partial-state controller (Fig. 3) performs noticeably
better than the spin down. This controller is able to operate in
a lower p, range than the spin down can and has more consis-
tent behavior at low p;. Furthermore, the closed-loop eigenvalues
[Eq. (53)] are solely a function of p; as the results in Fig. 3 confirm
for log,, p2 > 10g, P2, = —0.3. There is a slight gradient in the p,
direction, however. Equation (53) was derived from idealized as-
sumptions that ignore the reaction-wheel torque limit. In the low p,
cases, the reaction-wheel torque saturates, and thus, the commanded
torque is less than the requested torque. For high p,, the requested
torque is available. One important difference between the affine
partial-state and spin-down controllers is that the former improves
with increasing p,, whereas the latter worsens.

The two-stage controller (Fig. 4) is the best out of the three con-
sidered laws. At first glance at Fig. 4 we notice that the lightly shaded
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Fig. 3 Fractional momentum remaining after a drag pass using affine
partial-state controller.

tog

Fig. 4 Fractional momentum remaining after a drag pass using two-
stage controller.

regions are greater in area than for the other two control laws. From
a practical consideration, the two-stage controller is also less sensi-
tive to periapsis timing errors*® than the spin-down controller while
still maintaining the advantage of the affine partial-state controller.
These aspects make the two-stage controller the most robust of the
three considered control laws.

Case 2: Low Aeromoment (Passive Control)

For low p,, the atmospheric density is too thin (or the spacecraft
is too massive) for the atmosphere to deflect the spacecraft’s atti-
tude significantly. In this case, we can make the approximation that
H,. =0. Equation (25) can be solved:

M = Hscp% + P%Pa(COS y/r2V) ~ pf(Hsc + P3) (56)
M(t) = M(t) + pi[Hs(to) + psl(t — to) (57

Thus, the angle of attack grows linearly in the vicinity of pe-
riapsis. With this solution to the time history of M(z) (and a few
more assumptions), we can calculate the angular impulse the space-
craft receives at periapsis and use this information to select the
proper entry attitude to remove passively the spacecraft’s angular
momentum, ‘

‘When no control is used, Eq. (26) becomes

Hsc =—q-M (58)

Integrating Eq. (58) over the drag pass will yield the AH. Let
the atmosphere be modeled by the (nondimensional) exponential
density law:

p =expl—Br,(r — 1] (59)
From Table 1, we have that
V, tehar
o = 9 (60)
Tp
1+e)2nr?
O = LE_P 61)
Brien
Thus,
2 (1
O = _rr_(le_)_ (62)
Brpe
so that
2r(1+e)
Pro =g ©
Substituting Eq. (63) into Eq. (59) yields
—2r(1+4+e)r—1)
0 = exp [—-——@*Ze ] (64)

The aerodynamic moment will be proportional to ¢, which must
be integrated over the entire drag pass. Because the density changes
much faster than the velocity, we can approximate the velocity as a
constant over the orbit. To integrate g over the entire orbit, we need
to express the term r — 1 in Eq. (64) in a more convenient fashion. '
We approximate it with a Taylor series in powers of true anomaly
0, noting that, because r — 1 is an even function, then only even
powers of 8 will be present in the expansion.

Thus, the nondimensional dynamic pressure is found to be

-27(1 -1
q=pVi=exp l:—-———n( ol )] (65)
®*2¢
and the nondimensional altitude is obtained from
1+e e — ecosf

-1= - 1= 66
r 1+ ecos6 1+ ecos® (66)

1 e6?
—1=e|l0+08 24+ ...|l=—— (67
r e[ Tt At T ] are O

Combining Eqgs. (65) and (67) yields

g =exp[-7m(6/0")] (68)

From the angular momentum EOM
He=—q-M=~q-[M©O)+p}(He +p)t] (69
We can write [with the help of Eqgs. (13), (69), and (68)]

i __H
d9 ~ dd/dr

dH MO + pi(H. + pa)t
o o

0\
-l — 70
XP|: 3 (@*) :l (70)
At apoapsis, the atmospheric density is negligible (for moderate
to high eccentricities). The form of Eq. (70) has a simple closed-
form solution if we extend the limits of integration to +o00. A true

anomaly in the added range has no physical meaning, that is, our den-
sity function is not periodic, but because the atmospheric density is
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negligible in this realm anyway, the error in using this approximation
is small. Furthermore, Eq. (70) is the sum of an even function and
an odd function. The integral of the odd function over o0 is zero.
Finally, the impulsive AH is given by

o0 2
AH = — N M®(?) exp —n(%) do 71
AH = —M(0) (72)

The passive momentum management strategy is, thus, to target the
inertial attitude such that the normalized angle of attack at periapsis
is equal and opposite in magnitude to the stored momentum. This
strategy is used by Longuski et al.'¢ for aerobraking tethers. For the
low p; case, atmospheric perturbations will not significantly disturb
the spacecraft’s attitude. Thus, we can propogate the desired angle
of attack at periapsis backward to the entry condition.

Figure 5 illustrates the final momentum after a drag pass using
passive control. As with the earlier cases, the initial reaction wheel
saturation is 100%. A reaction wheel is still used to maintain an in-
ertial attitude before atmospheric entry, and thus, Fig. 5 is a function
of both p; and p,. However, the performance of the passive-control
method is largely independent of p; in the low p; regime. As we can
see from Fig. 5, the region for which the passive control is designed

02 04 08 08
log p,

Fig. 5 Fractional momentum remaining after a drag pass using pas-
sive control.

~05 0 05 15
logp,

Fig. 6 Fractional momentum remaining after a drag pass using spin-
down controller.

~0.5 0 0.5 1 16 2
logp,

Fig. 7 Fractional momentum remaining after a drag pass using affine
partial-state controller.

1.6

05 1 15 2
logp,

~0.8

Fig. 8 Fractional momentum remaining after a drag pass using two-
stage controller.

(log,op1 < 0.3) is predominantly blue, which indicates that most of
the angular momentum is dumped.

Case 3: Composite Strategy

We now combine the active- and passive-control strategies to
yield a method that is appropriate for any value of p;. The entry
attitude is chosen to remove passively the stored momentum, and
a reaction-wheel control law is used during the flythrough. The
difference in selected entry attitude will be irrelevant for high p,
because a reaction-wheel controller is much more insensitive to
entry conditions in this realm. The results for this case are presented
in Figs. 6-8. In these cases, the performance in the high p; portion
is nearly identical to the earlier results in Figs. 2-4. The composite
strategy extends the reaction-wheel control capabilities into the low
pi regime, as well as into the difficult to control intermediate p;
regime (p; ~ 2).

Conclusions

The nondimensional analysis reveals three parameters that deter-
mine control law performance. The first of these is the acromoment
parameter, which is a function of atmospheric and aerodynamic
properties. The second is the desaturation speed parameter, which
describes the relative strength of the reaction wheel. The third is
the reaction-wheel equilibrium parameter, which is a function of
gravitational and moment-of-inertia properties.
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Theoretical limits (which are controller-independent) are derived
for the three parameters. In all cases, the reaction wheel must be ca-
pable of desaturation within the atrnosphere, and the reaction-wheel
equilibrium momentum must be within the reaction-wheel limits.
For active control, the aeromoment should be large enough for os-
cillations in attitude to occur. For passive control, the acromoment
should be very small to allow accurate predictions of angular im-
pulse. These limits are necessary (but not sufficient) conditions for
suitable performance.

Three reaction-wheel control laws are-considered: spin down,
affine partial state, and the two stage. Numerical simulations indi-
cate that the theoretical limits are necessary and sufficient condi-
tions for the affine partial-state and two-stage controllers. However,
the spin-down controller has an additional constraint in that the
reaction-wheel strength cannot be too large. By contrast, the affine
partial-state and two-stage controllers perform better with increas-
ing reaction-wheel strength.

In general, these analytic results determine limits on the design of
spacecraft attitude-control systems to be used in aeroassisted mis-
sions. The three characteristic parameters provide specific guide-
lines for missions at any of the atmosphere-bearing bodies in the
solar system.
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