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Graphical Method for Gravity-Assist Trajectory Design

Nathan J. Strange* and James M. Longuski®
Purdue University, West Lafayette, Indiana 47907-1282

A new analytical technique directly related to Tisserand’s criterion that permits the quick identification of all
viable ballistic gravity-assist sequences to a given destination is introduced. The method is best presented by a
simple graphical technique. The graphical technique readily demonstrates that gravity assists via Venus, Earth,
and Jupiter are tremendously effective in sequences such as Venus-Earth-Earth—Jupiter and Venus-Earth-Mars-
Earth. Estimates are made for the shortest flight times for a given launch energy to each planet. This graphical
technique should provide mission designers with a potent tool for finding economical gravity-assist trajectories to

many targets of high scientific interest in the solar system.

Nomenclature
a = semimajor axis, astronomical units (AU)
E = specific energy, km?/s
e = eccentricity
H = hyperbolic anomaly of the flyby, rad
i = inclination, deg
P = vperiod, days
rp = periapsis distance, AU
rpanet = average distance from sun to planet, AU

T = Tisserand invariant, dimensionless

t = time from periapsis to the flyby, s
14 = heliocentric velocity of spacecraft, km/s
Vptanet heliocentric velocity of planet, km/s

[

Voo hyperbolic excess velocity, km/s

X = eccentric anomaly of the flyby, rad
AV = change in velocity, km/s
7 = gravitational parameter of central body, km?®/s?
Subscripts
1 = flyby of the innermost planet on a leg of a tour
= flyby of the outermost planet on a leg of a tour
Superscripts
- = quantity before flyby
+ = quantity after flyby
Introduction

ISSIONS to the outer solar system and to Mercury can be
expensive in terms of both launch cost and travel time. The
technique of gravity assist has been key to either lowering launch
mass or flight time (or both) and, hence, to making accessible such
targets of great scientific interest. Many highly successful missions,
including Mariner 10, Pioneers 10 and 11, and Voyagers I and II,
have used gravity assists for deep space exploration.
In the 1800s, the work of Leverrier (see Broucke!) and Tisserand
(see Roy?) on the perturbations of the orbits of planets and
comets laid the foundation for the gravity-assist technique. In the
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1950s, Battin® proposed using a planetary gravity assist to return
a spacecraft to Earth without the use of propellant. Later, sev-
eral investigators*~® studied the potential of gravity-assist swingby
maneuvers for planetary exploration.

Well-known classical paths such as the Venus—Earth-Earth
gravity-assist (VEEGA) trajectory used by the Galileo spacecraft
have proved very effective. Yet, it is unclear whether or in what situa-
tions a better path might exist. Nonclassical paths such as the Venus—
Earth—Mars—Earth proposed by Petropoulos et al.'® can sometimes
exceed the VEEGA’s performance.

In this paper, we use an energy-based method to investigate the po- -
tential and to establish the performance envelope of various gravity-
assist paths. Currently this technique does not readily admit the pos-
sibility of a propulsive AV maneuver between gravity assists. It is
-well known that such maneuvers can create new trajectory options,
but for the present we exclude AV gravity-assist trajectories from
our analysis. Thus, in our energy-based method we address only
patched-conic ballistic trajectories, but the technique is sufficiently
potent to assess all such alternatives.

Approach

The satellite tour design program (STOUR) is a software tool that
was developed at the Jet Propulsion Laboratory for the Galileo mis-
sion tour design.!! This program has been enhanced and extended at
Purdue University to enable the automated design of gravity-assist
tours in the solar system as well as the satellite system of Jupiter.!*=1*
STOUR uses a patched-conic method to calculate all gravity-assist
trajectories meeting specified requirements.

Given a path or sequence of gravity-assist bodies, STOUR can
step through a range of launch dates to find all gravity-assist tra-
jectories that follow the path. The searches can be computation-
ally intense, sometimes requiring weeks of computer time for wide
launch windows and multiple flyby paths. A path of gravity-assist
bodies must be specified before an STOUR run is executed. Often,
the computation time required renders an exhaustive search of all
possible paths infeasible. What is needed is a method to identify
the most promising paths before conducting an STOUR search. In
addition, a method is needed to identify all viable paths. Ideally, we
want a method that generates the best trajectory (in terms of low
launch energy and short flight time) to a given planet for any given
launch period.

We will refer to the problem of identifying a sequence of gravity-
assist bodies and assessing the potential of that sequence or path as
path finding. Similarly, we refer to the process of propagatmg that
path with a tool such as STOUR as path solving.

Graphical Method

The P—r, plot developed for the Europa orbiter mission design'®
offers a method for selecting a ballistic path of gravity-assist bodies
for computation in STOUR. This plot is an energy-based method
similar to that employed by Hollenbeck® and to the gravity-assist
potential plots described by Petropoulos et al. 10 The P—r, graph
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uses energy contours related to Tisserand’s criterion (see Roy?) to
illustrate gravity-assist trajectories. A literature search shows that
similar plots of period vs periapsis are used in the study of Cassini’s

Saturn orbit insertion.!? Also, Labunsky et al.'® describe a graphical -

method that is very similar to the P-r, method for the study of
orbital transfers and gravity-assist maneuvers.

Figure 1 illustrates the mechanism of a gravity assist. The space-
craft’s orbit relative to a flyby planet is a hyperbola, and the space-
craft’s velocity relative to the planet when it is infinitely far away
is V4 (the hyperbolic excess velocity). The net effect of the flyby
is to rotate the V, vector from the incoming V to the outgoing
v}, without changing the magnitude. The spacecraft’s orbit about
the sun is determined by its heliocentric velocity, which, using the
patched conic method, is found from the addition of the Vi, vector
(i.e., the velocity relative to the planet) to the planet’s velocity as
shown in Fig. 2. Here, V ~ is the heliocentric velocity before the
flyby, and V't is the velocity after the flyby. When the Vo, vectors
have the same magnitude, but different directions, we obtain dif-
ferent heliocentric velocities from this vector addition and, hence,
heliocentric orbits with different periods and periapses.

In Fig. 2, when the angle « is zero, the Vi, vector is aligned with
the planet’s velocity vector (Vpyue) providing the highest energy

VPIanet

v
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Fig. 2 Gravity-assist vector diagram.

heliocentric orbit for that V.. This alignment corresponds to the
flyby being at periapsis of the heliocentric orbit. When « is 180 deg,
the V, vector is opposite to the planet’s velocity vector, and we have
the lowest heliocentric energy possible with the flyby at aphelion.

Figure 3 shows a P—r, graph of heliocentric orbits in the ecliptic
where we plot period P vs periapsis r,. A contour of orbits with
a Vo of 5 km/s with respect to Venus is shown. A gravity assist
with Venus rotates the V, vector of the spacecraft along this V,
contour, modifying the orbit about the sun. A V,, contour is the
locus of orbits with the same energy relative to the planet. We note
that a sequence of flybys with Venus may change the energy of a
spacecraft relative to the sun and other planets, but not relative to
Venus. In Fig. 3, the spacecraft values of P and r, are confined to
the one V., contour shown. :

The farthest point to the upper right on the V, contour in Fig. 3
corresponds to positive alignment of the spacecraft’s velocity vector
with the planet’s velocity (@ =0 deg) and represents the highest
heliocentric energy possible for encounter with the planet. Rotation
of the V, vector away from this alignment corresponds to moving
from right to left on the V,, contour toward negative alignment with
the planet’s velocity vector (a = 180 deg). This point corresponds
to the lowest heliocentric energy.

Venus's gravity determines how much a heliocentric orbit can be
changed in one flyby without impacting the planet. We would like
to constrain our flybys to a safe margin above the planet’s surface,
for example, 200 km. To indicate this altitude constraint, we use
tick marks (shown as dots on the plot). From a given tick mark on
a contour, the spacecraft’s orbit may move a maximum distance
indicated by the next tick mark (either up or down that contour)
before violating the 200-km altitude constraint. When not starting
at a tick mark, the nearby tick mark spacing can be used to estimate
the distance the spacecraft may travel along the contour.

A P-r, plot combining several V, contours for Venus, Earth,
Mars, and Jupiter is shown in Fig. 4. Here we assume that all of the
planets are in circular and coplanar orbits. We also assume that the
spacecraft is in the same plane as the planets. The contours in Fig. 4
start next to each planet’s name at a Vo, of 1 km/s, then increase in
steps of 2 km/s toward the upper left of the plot. Using tick marks,
we constrain the flybys to a minimum altitude of 200 km at each
terrestrial planet and to a minimum aititude of five Jovian radii at
Jupiter.

The point where contours from different planets intersect repre-
sents a potential transfer orbit between those two planets. Comparing
these contours gives the values of Vi, at each gravity-assist body
for this transfer orbit. We can string together tours of the planets by
connecting the contours, where the intersections indicate transfer
orbits between each pair of planets in the tour. This process tells us
whether a tour is possible from an energy standpoint but not from
a phasing (timing) point of view, that is, we must assume that each
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corner with V. = 1 km/s.

The contours increase towards the
upper left corner by steps of 2 km/s.
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Fig. 5 Illustrating a VEEGA with a P-r,, plot.
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planet is always located at the proper position for the flyby to take
place. In this way, we can assess the potential performance of a
‘tour before the laborious calculations in a path-solving tool such as
STOUR (which solves the phasing problem).

A P-r, plot can be used to easily find and evaluate paths for
gravity-assist trajectories such as the VEEGA (Fig. 5). The VEEGA
allows a'low Earth launch energy (for this case, Vo, =3 km/s) to
place a spacecraft on a Jupiter-bound trajectory. The VEEGA starts
by launching into an orbit with a perihelion low enough to reach
Venus. A single Venus flyby is then used to increase the spacecraft’s
Vo at Earth to a value high enough to reach Jupiter, that is, 9 km/s.
Two Earth flybys are then needed to rotate the spacecraft’s V., vector
so that it reaches Jupiter. (The distance to Jupiter along Earth’s
Voo =9 km/s contour is greater than the tick mark spacing for one
flyby, but less than the spacing of two tick marks. Thus, we know that
two Earth flybys are required.) We see that the last leg of a VEEGA
is effectively the same as launching from Earth with a higher energy
(Vo =9 vs 3 km/s).

In 1889, Tisserand discovered an invariant quantity that held for
comets before and after perturbations of their orbits by Jupiter.
He used this criterion to identify a comet with a new orbital pe-
riod and perihelion as the same comet observed at an earlier date.
The contours on the P—r, plot also represent orbits with the same

Tisserand constant. Here we are using planets to intentionaily per-
turb the spacecraft’s orbit about the sun. Tisserand’s criterion has
long been used as a check of the assumptions made in designing
trajectories with patched-conic analysis."® This invariant is given
by

1
T = roune/a +2[a(l = &) [reua|* cosi e

A plot of period vs periapsis can only depict elliptic and circular
orbits. However, if we change the vertical axis from period to specific
energy, we get another graph that can show hyperbolic and parabolic
orbits as well. This E—r, plot can then represent all heliocentric
orbits. Henceforth, we will formally refer to these graphs (both P—
r, and E—r, plots) as Tisserand graphs in honor of the astronomer.
Because we are assuming the planets to be in circular, coplanar
orbits, the argument of periapsis and longitude of the ascending
node of the heliocentric orbit have no effect on Vy, and flight-path
angle. If we wish to consider spacecraft orbits outside of the ecliptic,
we would add inclination as a third axis on these graphs, and our
Vo contours would become surfaces.

The relative scaling of the energies and distances of the inner
planets in comparison to the outer planets makes generation of one
readable Tisserand (E—,) graph impractical for the entire solar
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Fig. 7 E-r, plot for the outer planets.

system. It is more convenient to group the inner planets and outer
planets separately as in Figs. 6 and 7. Figure 6 shows horizontal

dash—dot lines for the energies of orbits that are able to reach each

of the outer planets. Contours that cross the line labeled Jupiter are
able to reach Jupiter, contours that cross the next line may reach
Saturn, etc. A VEEGA path reaching Jupiter is illustrated on this
plot. The V,, contours start at 1 km/s and increase in steps of 2 km/s
toward the upper left of the plot. The tick mark spacings indicate
the 200-km altitude constraint for the terrestrial planets.

Figure 7 shows vertical dash—dotted lines for orbits with periapses
that can reach the various inner planets (where Y stands for Mercury,
V for Venus, E for Earth, and M for Mars). A Voyager-type grand
tour path starting from Earth is shown. On this plot the V, contours
also start at' 1 km/s and increase toward the upper left by steps
of 2 km/s. However, the tick mark spacing is different for each
planet. Jupiter’s (altitude) tick marks are spaced at five Jovian radii
to mitigate radiation. Saturn’s tick marks are spaced at an altitude
of two Saturnian radii to avoid the rings. Uranus’s and Neptune’s
tick marks are spaced by one planetary radii to avoid rings as well,
and Pluto’s tick marks are spaced for the 200-km constraint.

Although these two Tisserand graphs can be used in combination
to design tours, it is often much easier to generate a new plot with
only the four or five planets of interest for the tour. For example,
a useful Tisserand graph often includes the destination planet and
Venus, Earth, Mars, and sometimes Jupiter.

Figure 8 shows a plot to design tours to Mercury with Vi, contours
incremented by steps of 2 km/s. Two paths are shown launching from
Barth with a V, of 3 km/s. One path is Earth—Venus—Earth-Mercury
(EVEY) and arrives at Mercury with a Vo, of 12 km/s (this value
is interpolated between the 11 and 13 km/s Mercury Voo contours).
The second path is EVEVY, which arrives at 11 kmy/s.

Figure 9 shows V., contours for Venus, Earth, Mars, and Jupiter
for missions to the outer planets. For a launch of Vi, =3 km/s, we
can identify several paths that get to Jupiter: EVEEJ, EVEME]J,
EVEVEIJ, EVEEMJ, EVEVVVJ, EMEMEE]J, etc. In addition, we
can see that once any trajectory gets to Jupiter from Earth or Venus,
it can reach any of the outer planets by a single Jupiter gravity
assist.

If we start with the simplest of the Jupiter trajectories, the
VEEGA, we can increase its effectiveness by adding a V-
leveraging flyby with Mars or Venus between the two gravity assists.
Although Mars has closer tick marks than Venus, that is, it has less
gravity, a Vo.-leveraging flyby of Mars moves the spacecraft farther
up the Earth V,,, contours, enabling it to achieve a higher final helio-
centric energy than with Venusasa Ve -leveraging body. We can also
see cases where pumping down i.e., decreasing heliocentric energy,
at Mars gives a larger Vo at Venus or Earth, which can then deliver
a spacecraft to Jupiter, whereas with two or three Mars pump-ups,
i.e., flybys that increase heliocentric energy, the spacecraft could
not reach Jupiter.
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By generating these plots for a specific problem, we can easily

determine the minimum launch energy to fly a given path, or the

minimum number of flyby bodies needed to reach a destination for
a given launch energy. However, we would also like to compare the
flight times for different paths. For example, we would like to know
if a high-energy five-body path is faster or slower than a low-energy
three-body path.

Flight Time

Flight time can be estimated for a path found by our graphical
method. Given the periapsis and specific energy of the transfer orbit,
there is a finite set of arcs that connect the two planets on the transfer
orbit. If we limit our consideration to orbits that complete less than
one revolution about the sun, then there are eight arcs that connect
two planets for a given periapsis and energy.

A point where two V, contours intersect is an orbit that crosses
the orbits of two planets. This orbit can be used to travel from the
planet nearer the sun to the planet further out, that is, “up.” The orbit
can also be used to travel from the outermost planet to the planet
closer to the sun, or “down.” Additionally, each of the two planetary
encounters may be on either an outbound, that is, after periapsis and
before apoapsis, or an inbound, that is, before periapsis, leg. The
eight permutations of these possibilities give rise to eight possible
transfer arcs between two planets for a given specific energy and
periapsis (ignoring multiple revolutions). i

Fig. 10 Possible (counterclockwise) trans-
fer arcs.

Figure 10 illustrates the possible transfers. In Fig. 10, ¢; is the
time from periapsis of the transfer orbit to its crossing of the nner
planet’s orbit, and 1, is time to its crossing of the outer planet’s orbit.
Here, an up transfer that leaves the innermost planet outbound and
arrives at the second planet outbound goes from #; to #,. Similarly,
a transfer from —; to #; would be a down transfer leaving inbound
and arriving outbound, where ¢, and ¢, are positive.

Table 1 shows the flight time for these permutations. In Table 1,
I-I denotes a transfer leaving the first planet inbound and arriving
at the second planet inbound, O-I leaves the first planet outbound
and arrives at the second inbound, etc. Here, P i$ the period of the
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Table 1 . Flight times for possible arcs

Up* Down® Flight time
I-I 0-0 P+t —0°
O-1 O-1 P—1 -5
-0 1-0 ntt
00 -1 th—1)

2Up denotes transfers ending farther from the sun.

bDown denotes transfers ending nearer the sun.

SThis arc is not possible for hyperbolic or parabolic orbits because
it requires flying through apoapsis.

orbit, # is the time from periapsis of the orbit at the inner planet
encounter, and #, is the time for the outer planet encounter. The first
two rows in Table 1 are for elliptic arcs only because they require
flying through apoapsis. The positive times used in Fig. 10 and
Table 1 are computed from Kepler’s equations:

t = |(P/2m)[ X\ — esin(X )] €3
= |y/(@®/u)[e sinh(H;) — Hy}| 3

where Eq. (2) applies to elliptic transfers, Eq. (3) applies to hy-
perbolic transfers, X is the eccentric anomaly of the inner planet
flyby, and H, is the hyperbolic anomaly. These equations provide
t;; to obtain r, the appropriate eccentric anomaly X or hyperbolic
anomaly Hj is substituted for the outer planet’s flyby.

When stringing these arcs together for a path, we must take care
that when the spacecraft arrives at a planet inbound that it also
leaves the planet inbound. Similarly, when the spacecraft arrives
outbound it also leaves outbound. The one exception is when we
are able to overturn the velocity vector to get the same heliocentric
flight-path angle, but inbound rather than outbound (or vice versa).
This exception happens at the far left and far right ends of a V,
contour when there is enough turning to go all of the way to the end;
further turning reverses the direction of travel on the V,, contour
(the spacecraft comes back down the contour with the opposite
heliocentric flight-path angle).

The time of flight estimate is calculated by a MATLAB® script,
using the algorithm (discussed later) to connect contours on a plot
into tours. This program selects the minimum time (hypothetically)
possible to get to a given planet for a given launch energy. The
phasing (timing) problem is ignored in these calculations, and so
the results can range from optimistic to infeasible.

Automated Traversal of Tisserand Graphs

To search automatically for possible tours on a Tisserand graph,
the plot is discretized. We do this by selecting a set of V, contours
for each planet. Where these contours intersect is a node of the grid
and a possible transfer orbit for a tour. Additional nodes are added
for resonant orbits at each planet.

Traversal of the graph begins by choosing a set of nodes on a
launch V, contour. Then we construct a second level of nodes from
all nodes that can be reached in a single flyby from our starting set
of nodes. The flight time from each initial node to each node on the
second level is calculated, and the fastest flight time (and the initial
node for that flight time) is saved for each node on the second level.
This step gives us the first two flyby bodies in paths to each node
on the second level.

After the fastest path to each node on the second level has been
computed, we construct a third level comprising all nodes that can
be reached by one flyby from the nodes on the second level. Again,
we save the fastest flight time to each node on the third, along with
the initial node and the node on the second level, thus building a
path to the node on the third level. This process continues across the
grid until the fastest path to every node on the grid is computed. If,
from the third level or higher it is possible to reach a node on the
second level faster than from the first, the faster path is used and
that node is then moved up to the fourth level or higher (based on
how many flybys are needed in the path to get that low cost).

An added complexity to the process is that the flight time from one
node to another depends on whether the spacecraft encounters each
planet inbound or outbound and whether it is going up or down (see

Fig. 10 and Table 1). To account for the different types of encounters,
two cost functions are tracked for each node. One is the time of flight
for a path whose final flyby is outbound, the other inbound.

This algorithm finds the fastest path to every planet on the grid
for discrete values of V. The fastest path for a specified arrival Voo
contour is also calculated. Visual inspection of a Tisserand graph
already tells us the minimum number of flyby bodies to reach a planet
or if a given path can even reach a planet. For a destination planet
and a launch V, contour, this algorithm can predict the fastest path
to that planet from an energy basis. However, the required location
of the planets, that is, the phasing required to fly this path, may occur
rarely or never.

Results

Table 2 shows the potentially fastest path to each of the nine
planets for launch V,, values of 3, 5, 7, 9, and 11 km/s (ignoring
phasing). Table 2 was generated on a grid of V, contours separated
by 1 km/s. Paths are truncated after the fifth body. (When no limit
on flybys is imposed, we find 15- and 17-body paths to Pluto with
infeasible phasing.) The lowest Hohmann V,, is used as the lower
bound for each planet’s contours in constructing the grid; the upper
bound is set based on the most energetic heliocentric hyperbola that
can be created with gravity assists. Resonant orbits of up to 6:1 (i.e.,
six planet revolutions to one spacecraft revolution) are considered
for all of the inner planets (Y, V, E, and M). For Earth, Venus,
and Mars the resonances: 3:2, 1:2, and 1:3 are considered as well.
Additional nodes are incorporated with the correct orbit periods for
these resonant transfers.

Table 2 should be interpreted as a performance envelope of the
flight time needed for a given launch energy. This analysis assumes
that the planets are in the correct position for the best flyby (in terms

Table 2 Potentially fastest paths (ignoring phasing)

Launch Vo, km/s Path Flight time, years
3 EVEVY 0.8
3 EV 0.3
3 EVEM 0.7
3 EVEVE] 24
3 EVEEJS 7.5
3 EVEEJU 13.0
3 EVEEJN 20.0
3 EVEEJP 27.8
5 EVY 0.3
5 EV 02
5 EM 0.3
5 EVEVEJ 2.1
5 EVMVES 42
5 EVEMJU 8.1
5 EVEEIN 11.3
5 EVEEJP 13.7
7 EVY 0.2
7 EV 0.1
7 EM 0.3
7 EMEMIJ 2.0
7 EMEMIS 3.7
7 EMEMIU 6.6
7 EMEJSN 9.9
7 EMSJISP? 12.3
9 EVY 0.2
9 EV 0.1
9 EM 0.2
9 EME] 1.7
9 EMEIJS 3.1
9 EMEJSU 55
9 EMEISN 79
9 EMEIJSP 9.9
11 EVY 0.2
11 EV 0.1
11 EM 0.2
11 EMJ 1.3
11 EMIS 2.6
11 EMEJSU 4.7
11 EMEJSN 6.9
11 EMEJSP 8.7

This path is not possible due to the phasing of two Saturn flybys.
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Table 3 Flight times for potential gravity-assist paths (ignoring phasi;lg) )

Launch Vi, Jupiter, Saturn, Uranus, Neptune, Pluto,

Path® kmy/s years years years years years
EVEX 6 23 N/T® N/T N/T N/T
EVEEX .3 4.8 N/T N/T N/T N/T
EVEEX 4 39 6.8 13.6 N/T N/T
EVEEX 5 38 6.5 124 19.0 25.8
EVEEX 7 3.8 6.5 124 19.0 25.8
EVVVX 6 5.8 N/T N/T N/T N/T
EVEMX 5 22 N/T N/T N/T N/T
EVEEMX 5 3.8 6.3 11.9 19.5 275
EVEVEX 3 24 N/T N/T N/T N/T
EVEVEX 5 2.1 5.0 N/T N/T N/T
EVEMEX 3 2.7 N/T N/T N/T N/T
EVEMEX 5 33 6.7 12.0 20.2 28.2
EVEVEEX 3 42 6.9 12.7 18.2 23.5
EVEMEEX 3 4.7 8.0 14.8 N/T N/T

Paths with Jovian gravity assist

EIX 9 R 5.0 10.4 17.4 25.3
EJX 11 —_— 2.7 54 8.4 11.0
EVEJX 6 —_— 4.7 92 14.8 20.8
EVVVIX 6 —_ 79 11.7 16.0 19.5
EVEEJX 3 —_— 7.5 13.0 20.0 27.8
EVEEIX 5 —_ 5.5 8.5 113 13.7
EVEEJX 9 _ 5.4 8.4 11.2 13.7
. EVEVEJX 3 _ 44 79 12.2 15.7
EVEVEJX 5  — 3.5 6.2 9.2 117

aWhere X represents the terminal planet in the path, that is, Jupiter, Saturn, Uranus, Neptune, or Pluto.
bNo trajectory exists to this destination planet for this path and launch energy.

of flight time) and, as such, probably underestimates the flight time
required for most paths. Furthermore, paths containing sequences
such as VMV or MEM may never occur due to the requirement that
a planet be in the proper position for a second flyby. Clearly, the path
EMSJSP for the launch V,, of 7 km/s is infeasible for this reason.

Table 3 shows flight times to the outer planets for a sampling
of paths at various launch energies. We notice that paths such as
VEEGA perform very well for low launch energies but begin to
offer diminishing returns as.we increase launch energy; an increase
of launch V, from 5 to 7 km/s offers no significant improvement.
Qur preliminary investigation with the path-solving tool STOUR
shows that these flight time estimates tend to be roughly 30% below
what STOUR finds for the next 40 years. Petropoulos et al.'® found
all paths to Jupiter given in Table 3 for launch opportunities in 1999-
2030, with the exception of the EVEVEE and EVEMEE paths,
which they did not investigate. ‘

Tables 1—3 can be used in conjunction with the Tisserand graphs
to give a ballpark estimate of the flight time for different paths.
However a path solving tool is needed to account for phasing. The
program STOUR solves not only the phasing problem, but also
provides for three-dimensional transfers between noncircular, non-
coplanar planetary orbits.

Our method has application beyond the design of purely ballistic
trajectories. For example, Johnson and Longuski®® use Tisserand
graphs to assess the performance of aerogravity-assist trajectories.
Future work may include the analysis of deterministic trajectory
maneuvers between gravity assists such as in AV -Earth gravity-
assist trajectories.

Conclusions

Tisserand graphs facilitate the assessment of potential gravity-
assist paths comprising purely ballistic transfer legs. Both arrival
and launch V. may be studied for such a path. The graphs also
make many characteristics of a possible path highly conspicuous.

Tisserand graphs are a powerful tool that permits us to Teadily
construct gravity-assist paths to any destination in the solar system.
All paths so constructed are feasible from an energy perspective.
Paths that do not exist on a Tisserand graph are strictly infeasi-
ble for ballistic trajectories. Thus, we can eliminate unnecessary
searches and confine path finding to those that obey the criterion.
Estimates of flight time can be made for a given launch Vo, thus
providing another criterion for candidate rejection. After applying
these criteria, the mission designer can be assured that the remaining

candidate paths found are worth pursuing in the laborious calcula-
tion that must follow to solve the phasing problem. This last prob-
lem, path solving, is well known and discussed in great detail in the
literature.
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