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Design of Aerogravity-Assist Trajectories

Wyatt R. Johnson* and James M. Longuskit
Purdue University, West Lafayette, Indiana 47907-1282

Aerogravity-assist trajectories are optimized in the sense of maximizing AV obtained by the flyby, maximizing
aphelion, minimizing perihelion, and minimizing the time of flight for a particular destination planet. A graphical
method based on Tisserand’s criterion is introduced to identify potential aerogravity-assist trajectories. To demon-
strate the application of the theory, patched-conic trajectories are computed to each planet in the solar system.
For a lift-to-drag ratio of 7 and a launch excess velocity of 6.0 km/s, Pluto may be reached in 5.5 years using a

Venus-Mars—-Venus series of aerogravity assists.

Nomenclature
E = heliocentric specific orbital energy, km?/s?
g = gravitational acceleration at Earth’s surface,
9.80665 m/s* :
R = semimajor axis of aerogravity-assist (AGA) body, km
R, = aphelion distance, km
R, = perihelion distance, km
r, = periapsis at AGA body, km
U nondimensional heliocentric speed
U, = nondimensional excess velocity
V = heliocentric velocity of spacecraft, km/s
Va = velocity of planet with respect to sun, km/s
Vo = excess velocity, km/s
o = angle between V, and V,, rad
y = flight-path angle, deg
AV = change of velocity magnitude, km/s
0 = aerodynamic turn angle, rad
i = gravitational parameter, km®/s®
[ = total AGA turn angle, rad
Subscripts
pl = planet
1,2 = pathindices.
© = sun
Superscripts
— = preflyby
+ = postflyby

Introduction

RAVITY-ASSIST trajectories have become powerful aids

in enabling humankind to explore the solar system. The
Voyager Il mission depended on gravity assists from multiple plan-
ets. The Galileo spacecraft used Earth and Venus to reach Jupiter;
the Cassini spacecraft is using Earth, Venus, and Jupiter to reach
Saturn. Plans for a mission to Pluto require up to four flyby bodies,
with flight times ranging from 10 to 15 years' (compared to the
Hohmann transfer time of 45 years). However, for a given planet
and flyby Vi, there is a limit to the bending (and thus the AV)
that the gravity-assist technique can provide. Attempts to increase
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the spacecraft’s heliocentric energy by employing more flybys often
result in unacceptably long flight times to the destination body.

New technologies and new ideas may reduce the time of flight of
gravity-assist trajectories. One approach is to replace the conic arcs
between planets with faster low-thrust arcs.? Though this technique
has merit, as the V, at the flyby body increases, the AV gained
becomes increasingly smaller (as in the case of the conventional
gravity assist). Another idea involves flying a lifting body, for ex-
ample, a waverider, through the atmosphere of the flyby planet.
Aerodynamic forces can augment the bending angle to arbitrarily
large values. Lewis and McRonald* contend that the technology ex-
ists to build a waverider with lift-to-drag (L / D) ratios greater than 7.
More recently, Starkey and Lewis®® published results on high L/D
waveriders, but optimized for flight regimes in terrestrial applica-
tions. The aerogravity-assist (AGA) maneuver could dramatically
augment the gravity technique”®. An AGA has the added advantage
of yielding larger AV gains with higher flyby V..

Because the turn angle in an AGA is arbitrary, an AGA can per-
form nearly as well in one flyby as several conventional gravity
assists. There will be some energy losses due to drag, but this loss
is more than made up for by the large heliocentric AV and the sig-
nificant flight-time reduction. Preliminary work by McRonald and
Randolph® and by Sims et al.® indicates that, with AGA, a space-
craft could reach Pluto in 5-7 years, with minimal launch energy.
Bonfiglio'® confirms the work of Sims et al.’ by calculating sev-
eral AGA trajectories to Pluto with the satellite tour design program
(STOUR),!" which Bonfiglio modified for the purpose. Finally, Lo-
har et al: compute optimal AGA atmospheric flythrough trajectories
for a variety of cases.!>~'4

In this paper we find the maximum possible AV for an AGA
maneuver and compute the performance envelope of AGA trajec-
tories. We then apply a graphical technique to gain further insight
into potential AGA trajectories and compute theoretical bounds on
the minimum time of flight to each planet. Finally we propagate our
predicted minimum time-of-flight (TOF) AGA paths in a patched-
conic solver to find actual trajectories. ’

AGA Equations
A model relating pre- and postflyby V,, is given by"

=

Ve = {(Va? + w/ry) expl—20/(L/D)] = w/rp}* (1)

For convenience, we nondimensionalize this equation, using U, =
V2/(u/rp) to obtain
U = (Ug + 1) exp[—26/(L/D)] — 1 )

We calculate the AV, and then the more convenient nondimensional
AU from

AV =V 2+ VI -2V Vicose

AU =UL + UL —2¢/UxUd cos ¢ 3)
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Table 1 Percent error in approximating maximum AGA AU by different analytical approximations

Elices!® Transcendental Quadratic

L/D Maximum Mean MSE*® Maximum Mean MSE Maximum Mean MSE
1 74 17 3.3 69 3.7 0.7 55 44 22

2 62 3.7 0.4 58 1.4 0.3 69 23 5.7

3 53 3.2 0.3 50 0.7 0.2 55 6.8 0.6

4 47 3.6 0.2 43 0.4 0.1 46 2.5 0.2

5 42 3.6 0.2 38 0.3 0.1 40 1.0 0.1

10 23 1.1 0.1 23 0.3 0.0 24 0.2 0.0

15 18 6.5 0.5 17 0.4 0.0 17 0.0 0.0

Fig. 1 AU as a function of U and U in an AGA.
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Fig. 2 AU as a function of Uy, in a GA.

where ¢ is the total turn angle (gravitational and aerodynamic) given
by

¢ =sin™! [(1 + U;,)_'] + sin”™! [(1 + U;;)_l] +6 @

Equations (2-4) can be combined to yield an expression for AU
explicitly in terms of U, and U} :

AU =UL + UL ~2/UZUS cos{ sin“‘[(l + U;)"]

+sin”! (14 02) ™ + Q)@ ef(vs + 1)/(vs + 1]}
: &)

Figure 1 shows a graph of Eq. (5) for L/D =15. Because of
drag losses, U} <UZ in general. The special case of UL =UZ,
corresponds to a conventional (pure) gravity assist and is illustrated
separately in Fig. 2. We note that there is a maximum AU for all
gravity assists. For the pure gravity-assist case, we find from Eq. (5)
(and see in Fig. 2) that the maximum AU is 1 and occurs when
U =1. For the AGA case, however, the maximum AU is unlim-
ited and increases with increasing U_,. The rippling effect in Fig. 1
is caused by the V., being rotated around the planet through several

revolutions. The main lobe corresponds to the optimal turn angle to
maximize AU (and, hence, AV') during the flyby. Further aerody-
namic turning decreases U, to the first vailey, where V% points in
the same direction as V. Turning beyond one revolution will again
increase the AU, but less than before because of drag. Additional
revolutions could be completed until U} =0, at which point the
spacecraft would be captured in orbit about the gravity-assist planet.

Maximizing AV in a Single AGA

To maximize the AV obtained by a single AGA, we find an
analytic representation of the maximum AU, as a function of U_,. It
is not obvious from Eq. (5) that AU increases almost linearly, but the
results shown in Fig. 1 clearly suggest this trend. We use this insight
in our approximation. A different approach to this maximization is
done by Elices.'® Though Elices’s approximation has the advantage
of being simpler, its accuracy decreases with increasing L/D.

We start with the assumption that, for the optimal turn angle,
U} ~k*UZ, where k is some unknown constant, less than or equal
to one. Next, we make this substitution in Eq. (3). We note that, as
U, increases, the gravitational turn angles drop out of Eq. (5), and
there is a quadratic/logarithmic dependence of U, on AU . We then
solve for & in the parameter optimization

d
i — AU = 6
lim T U=0 (6)

Ugp— o

Because we are assuming U is very large, the gravitational turn
angle tends toward zero. From Eqs. (2) and (4), we see that

¢=(3)L/D)[(Us +1) /(UL +1)] » —(L/D) bk (T)
Substituting Eq. (5) into Eg. (6) yields
k—cos¢ —(L/D)sing =0 ®)

This transcendental equation will, in general, have several roots that
correspond to the locations in Fig. 1 where a peak is reached. Be-
cause we are looking for the maximum peak solution, we pick & to be
the value of the largest root. Whereas Eq. (8) can be solved numeri-

. cally, an explicit form is desired. Intuitively, the optimal turn angle

will be somewhat less than 7. Furthermore, as L/D — oo, k— 1.
We use the approximations

cos¢ ~ —1, singrm —¢p=n+(L/D)Ylk

bk (k— 1)+ (3) & =172

Two terms are required for the fnk term to solve for k. (The linear
expression is fairly inaccurate except for very high L /D ratios.)
Substituting, we obtain a quadratic expression for &:

2 2 _ 4l [——2————2”—+3]='0
¢ +[(L/D)2 } " @y LD ®

When the two roots in Eg. (9) are solved for, one root is always less
than 1, and the other is always greater. By definition, £ < 1, and thus,
the higher root is extraneous. Alsoas L/D — o0,k — 1,as expected
in both cases. Table 1 has a summary of the errors in these three
approximations (Elices, 'S the transcendental, and the quadratic) for
U, ranging from 0 to 30.
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The first error listed in Table 1 is the maximum percent error in
the 0 < Uy < 30 comparison range. In all cases the largest errors
occur at high valies of UZ. At high UL, and low L/D, none of
the approximations are accurate. However, the average error for all
examined U, is fairly small. Finally, the mean squared error (MSE)
is listed for all cases. For example, suppose a spacecraft performs an
AGA maneuver at Mars with an L /D of 5, an arrival Vi of 5 km/s,
and a periapsis of 3440 km. In this case the inbound Uy is 2. The
transcendental solution yields a maximum AU of 4.8. The actual
maximum AU is 4.46. This corresponds to an 8% error, which is
less than the maximum error for this case of 38% but well above the
average error of 0.3%.

In the quadratic and transcendental formulations, we see that AU
is also linearly related to U, by

AU = UZ[1 - 2kcos¢ + k%] 10

Thus, AU/UZ, is bounded between 1 and 4. The AU from an
AGA will increase with increasing UZ,.

Not surprisingly, the transcendental expression, Eq. (8), is the
most accurate (in the MSE sense) at all L/D ratios. At low L/D
ratios, Elices’s'® approximation is the next most accurate. At about
L /D =4, the quadratic begins to do better. Because the Taylor series
expansion is done about k = 1 (which is the case for L/D — o0),
it is expected that the two methods developed here asymptotically
reach zero error as L/D increases. .

Optimizing for Perihelion or Aphelion in a Single AGA

Clearly AGA can potentially yield dramatic improvements in at-
tainable AV over conventional gravity assists. However, unless a
maximum AV AGA makes it easier to reach a desired destina-
tion, the attainable AV is useless. The turn angle that results in the
maximum AV may not necessarily be the optimal turn angle for
reaching the next body. Indeed, one of the major points of the maxi-
mum AV theory is to provide a benchmark for practical AGAs, that
is, AGAs that actually get the spacecraft somewhere.

To this end, we examine optimizing the turn angles about the
planets to maximize the spacecraft’s aphelion, or to minimize its
perihelion, depending on if the target body is farther from or closer
to the sun. The spacecraft will then be able to reach any body in
the solar system between these two bounds. The derivations that
follow assume circular, coplanar planetary orbits. Figure 3 presents
a vector diagram of the AGA maneuver.

L/D = oo Case :

The simplest case to consider is L /D = co, where the spacecraft
would not lose any V, during the aerodynamic turning. This case
puts a theoretical upper/lower bound on what any AGA can accom-
plish. No matter how waverider technology progresses, a waverider
will never be able to outperform this limit.

The arrival V, at the AGA planet is computed as

V2, =V + Vi, —2VuaVacosy, = Vi + Vi,
—2(Ry/R)Vy2Vicosy = VE+ szl.z
- 2(R1/R2)Vpl'2V1 COs ¥t + ZMQ(R{I - Rl—l) = VPZU

+ Vo + Ve = 2R /R Va1 Voua + 200 (R = R')

+2V°°'1Vp1‘1 cosoy — Z(R[/Rz) Voo'lel_z cos ) (11)

b

7

Vpl
Fig. 3 AGA vector diagram.

Now that we have an expression for the arrival V, at the AGA
planet in terms of departure conditions at Earth, we can find the

* optimum a, to maximize Vi, . The first and second derivative rules

tell us that &) =0 degif R, > Ry, ora; = 180 deg, if R, < R).Inthe
R, > R, case, we maximize aphelion, and we minimize perihelion
in the R| < R, case.

With an L /D of oo, a spacecraft can turn any desired turn angle
without losing V.. The Hohmann transfer shows that a tangential
AV is optimum for maximizing aphelion or minimizing perihelion.
Thus, the optimum turn angle in this case makes the V, parallel
to the planet’s velocity vector (this is not true for the finite L/D
case because rotating the V,, also decreases its magnitude). For
a tangential departure, maximizing heliocentric velocity is equiva-
lent to maximizing aphelion (and similarly, minimizing heliocen-
tric velocity is equivalent to minimizing perihelion); we know that
V2+ = Vp|'2 + lez. .

Thus, maximum aphelion or minimum perihelion can be com-
puted as

Rap = Ra[Ua2/(2 = U2)] (12)

where, in this sense, U, = V2 R2/ po. ‘

Equation (12) is derived assuming the spacecraft departs Earth
and executes an AGA at the next planet in its path sequence. Further-
more, because [as shown in Eq. (11)] tangential Earth departures are
optimal in this sense, and because tangential AGA planet departures
are optimal, we can patch several of these trajectories together to get
the optimal multibody trajectory. The optimal multibody trajectory
departs each body tangentially as to maximize the arrival V, at the
next body. When the spacecraft arrives at the next body, it turns so
it leaves tangentially to go on to the next planet.

Finite L/D Case

Of course, infinite L/D ratios are impossible. A parameter op-
timization problem can be set up for the finite L/D case similar
to the infinite L/D case. However, V' is now a function of V
and 6. Launching tangentially from Earth is also not necessarily
optimal. For a single-body. AGA, maximizing aphelion or minimiz-
ing perihelion can be formulated as a two-dimensional parameter
optimization problem for a given L/D and launch V. An analytic
solution appears intractable, and so a numerical solution is calcu-
lated. The results are presented in Figs. 4 and 5.

Figure 4 shows the maximum- aphelion and minimum perihe-
lion possible with a single AGA at Venus for several different L/D
ratios. The Venus gravity assist (VGA) and Venus AGA (VAGA)
contours start from a launch V,, of 2.5 km/s, which corresponds to
the Hohmann transfer. We note that, at this launch V, it'is impos-
sible to increase aphelion, because the spacecraft arrives at Venus
with its V, aligned with the velocity vector of Venus, that is, o =0.
However, it is still possible to decrease perihelion. The more turn-
ing that can be accomplished, that is, the higher the L/D ratio, the
lower the perihelion can be. The ability to decrease perihelion for
the Hohmann transfer is the cause for the apparent discontinuity in
Fig. 4; the Hohmann transfer provides a perihelion at Venus, but we
can immediately get additional bending to decrease perihelion even
further.

As the launch V, increases, so does the arrival V,,, at Venus. Fur-
thermore, o also increases. Aphelion can be increased by rotating
the V, back toward o = 0 deg. For launch V,, less than 3.2 km/s, a
pure VGA is able to achieve maximum turning (without overturning
the V). Thus, an AGA is not needed, but for launch V,,, higher than
3.2 km/s, a VAGA more effectively increases aphelion. We see in
Fig. 4 that, even for a launch V,, as high as 15 km/s, a pure VGA
cannot reach Jupiter. For a high launch V,, there is a correspond-
ingly high o at the VGA. However, with high arrival V, at Venus,
the maximum turn angle is insufficient to rotate the V, enough to
increase the spacecraft’s heliocentric velocity (and therefore, its en-
ergy). A VAGA does not suffer this disadvantage because the Vi,
can be rotated to an arbitrary direction. The aerodynamic portion
of a turn is responsible for most of the turning at high arrival Vos
unlike low arrival V, where gravity dominates.

Because Figs. 4 and 5 represent aphelion and perihelion distances,
the points where a contour intersects a planet imply the spacecraft
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Fig. 5 Maximizing aphelion or minimizing perihelion using a single MAGA.

arrives tangentially. Also, the L/D = oo case must always depart
Venus tangentially because this provides the extremal heliocentric
velocity. Therefore, points where the L/D = oo contour intersect
a planet are all identical to Hohmann transfers from Venus to that
planet and may have fairly lengthy TOFs. For all finite L/D con-
tours, the departure & will be somewhat larger. Thus; Venus will not
be at perihelion (if traveling upwell) or aphelion (if traveling down-
well). Although the TOFs will be shorter, they are not much more
so if traveling to the outer planets and come at the cost of increased
launch V.

In many ways, Mars behaves inversely to Venus. Figure 5 shows
the Mars gravity assist (MGA) and the Mars AGA (MAGA). At the
Hohmann launch V, it is impossible to decrease perihelion; how-
ever, aphelion can be increased. Furthermore, the MGA is capable

of full turning for launch Vi, less than 3.2 km/s. The arc where grav-
ity alone is sufficient is smaller than that of Venus because Mars has
lower gravity. Because of this lower gravity, the MGA can barely
. rotate the V,, at higher arrival V.. However, the MAGA is still able
to because the departure direction is unconstrained. The large gap in
increasing aphelion between the pure MGA case and the L/D =35
case occurs because of the MAGA’s ability to have an arbitrary de-
parture angle. A single MAGA allows a spacecraft to reach Jupiter
instead of requiring the traditional 2 or 3 flybys of other planets.
At the launch Vo, for an MGA to reach Jupiter, 2a MAGA is easily
capable of escaping the solar system.
A MAGA is also more capable of decreasing perihelion at higher
launch V., than a VAGA. Decreasing perihelion is equivalent to
reducing heliocentric velocity during a flyby. For any gravity-assist
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body, the goal is to rotate the spacecraft’s Vi, to be parallel and
opposite in direction to the planet’s velocity vector. Because the
departure direction is arbitrary for an AGA, and the heliocentric
velocity of Mars is much smaller than that of Venus, a MAGA is
able to reduce perihelion more than a VAGA can, for the same
flyby Veo. ’

‘When there are more than one or two AGA planets to consider,
this graphical method becomes cumbersome and does not provide
much insight. An alternate method is developed instead.

Tisserand Analysis

A graphical tour design method based on Tisserand’s criterion
(and referred to as Tisserand graphs) was developed to aid in search-
ing for paths for the Europa Orbiter mission (see Refs. 17 and 18).
Two orbital elements completely describe the shape of a spacecraft’s
orbit. If we assume that the planets are in circular, coplanar orbits
around the sun, then the arrival geometry for the spacecraft at a given
planet is also known. Plotting contours of a third parameter from the
first two results in a Tisserand graph. For the Europa Orbiter case,
period and periapsis radius with respect to Jupiter were selected-as
the independent quantities. We use specific orbital energy instead of
period because many conic arcs to the outer planets are hyperbolic
with respect to the sun. Because these two quantities provide the
orbit shape, the flyby conditions are known when that orbit crosses
a given body’s path. In particular, the arrival V,, is known for a given
E, R, and flyby planet. From Fig. 3 we have that

VE=Vi+V?—2VyVcosy =V +2E +2u0/R —2V,V cosy

= V24 2E +2u0/R = 2(R,/R)Voy/2E + 200/ R,

=2E +3uo/R — 2(R,/R)\/2(ko/R)E + uo/R,)  (13)

In pure gravity assists, the pre- and post-V, are the same, but the
orbits (which are points on a Tisserand graph) are different, A gravity
assist is graphically depicted as following constant V,, contours on

a Tisserand graph, as shown in Fig. 6. The distance on a contour that’

can be traversed by a single flyby depends (in part) on the radius of
the flyby body, that is, when a flyby approaches the surface, further
turning is not possible.. The tick marks (dots) on the plot denote
contour distance at maximum turning. Figure 6 shows that Mars
is not a very effective gravity-assist body because its tick marks
are very close together. On the other hand, Jupiter’s tick marks are
spread out, and therefore, Jupiter is much more capable of altering
a spacecraft’s orbit.

An AGA further spreads out the tick marks. Let us consider the
hypothetical L/D = oo case where the V, can be turned to any
desired direction. This case corresponds to moving the tick marks
to the endpoints of the contours. Finite L /D values complicate mat-
ters because the V,, does not remain constant. As the aerodynamic
turn angle increases, the V. decreases. However, this loss may
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be worthwhile because the tick mark constraint is no longer valid.
With these facts combined, a sample trajectory to Pluto is shown in
Fig. 7.

In Fig. 6, the V, contours start at the lower-right corner at
Voo =1 kim/s for each of the planets. The spacing between con-
tours is also 1 kmy/s. In Fig. 7, the contour spacings are at 2 km/s for
clarity. This Tisserand graph depicts a trajectory found in STOUR
that launches from Earth on 13 April 2009 with a V, of 6.0 km/s
and travels to Pluto via a VAGA, a MAGA, and another VAGA. For
comparison, a polar view of this same trajectory is shown in Fig: 8.
From Fig. 7, we see that the launch V,, contour intersects several
Venusian V,, contours, meaning that the spacecraft can coast from
Earth to Venus. We use one phasing orbit to reach Venus, that is,
a type IV trajectory to Venus. The phasing orbit is not apparent on
the Tisserand graph because the graph does not distinguish between
single- and multiple-revolution transfers. The spacecraft arrives at
Venus on 10 May 2010 with an arrival V,, of 12.3 km/s and per-
forms a VAGA to reach Mars. The VAGA is graphically depicted
by tracing a Venusian contour upward to reach the Mars contours.
If a2 VGA were done instead, the spacecraft would be limited in
its turning (it can cross only one tick mark). With an AGA, the
spacecraft can get some free gravitational turning, but the rest of
the turning will result in loss of V.. In this case, the spacecraft
leaves Venus with a Vi, of only 10.7 km/s. This turning allows the
spacecraft to arrive at Mars with a V, of 18.9 km/s on 11 August
2010. The spacecraft performs another AGA, which lowers its Mars
Voo to 16.0 kmy/s, while also drastically pumping down its perihe-
lion to 0.086 astronomical units (AU) (or about 18 solar radii). This
is shown on the Tisserand graph by following a Mars contour to
the left. The spacecraft coasts to Venus, arriving 31 January 2011,
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where a final VAGA pumps up the heliocentric energy to a hyper-
bolic orbit. From Venus, the spacecraft arrives at Pluto on 5 October
2014.

Viterbi Algorithm

The Tisserand graph provides a valuable tool for examining grav-
ity assist (GA) or AGA trajectories. However, the decaying Vi in
the AGA maneuver complicates the interpretation of the graph. For
this reason, a computer program was written to search through the
Tisserand graph’s contours to find the shortest TOF trajectory from
Earth to every other planet. The program calculates both GA and
AGA cases for any number of flyby bodies. However, because of
the circular, coplanar assumption, and the lack of phasing (timing)
information, any hypothetical trajectory still needs to be verified by
other means. :

We discretize the Tisserand graph into a collection of nodes. The
orbital state vector after a flyby is then mapped to the nearest node.
Thus, the finer the discretization, the smaller the error in the algo-
rithm. There are up to four possible coast arcs from one planet to
another for each point in the Tisserand graph!” (only two arcs are
possible for hyperbolic trajectories). All possible arcs are consid-
ered, keeping the direction of the trajectory consistent for each arc.
A large number of trajectories (billions or more) must be considered.
To drastically cut back on search time, while ensuring each optimal
trajectory is found, we employ the Viterbi algorithm.'® This algo-
rithm finds the minimum-TOF path between any desired initial and
final condition in the minimal number of comparisons. The resuits
that follow are based on the Viterbi algorithm and the minimum-
TOF path, which ignores phasing. The predicted AGA paths must
be verified by solving the Lambert problem, which is addressed in
the next section.

The AGA resulis for Mars and Venus are unremarkable because
no GAs are needed to reach them. The optimal trajectory from Earth
to Mercury involves at least one flyby at Venus. For launch V,, higher
than 4 km/s, the TOF savings with AGA is minimal. A summary of
results for trajectories to Mercury (Y) is presented in Table 2.

For a launch V,, of 3 km/s, a single VAGA is insufficient to reach
Mercury; furthermore, it is impossible to reach Mercury with only
two flybys. The fastest potential three-flyby trajectory to Mercury
uses a Venus—Earth—Venus combination of AGAs for a TOF of
0.79 years. Additional flybys beyond the third increases the TOF
and, thus, are unnecessary. For launch Vi, of >4 km/s, a single

Table 2 Fastest potential AGA trajectories
to Mercury with L/D = 7 (ignoring phasing)

VAGA is sufficient to reach Mercury. The TOF cannot be improved
with additional flybys.

The biggest advantage of AGA is in missions to the outer planets.
A summary of results is shown in Table 3. Dashes mean that no
such trajectory is possible (due to insufficient launch energy). For
example, no trajectory to Saturn using only one flyby body exists
for a launch V. of 5 km/s, that is, the V; must be high enough to
make AGA effective.

Because this analysis does not take into account phasing (how-
ever, it does allow for resonant flybys), the existence of a trajectory
that returns to a given planet is not guaranteed. In general, the greater
the number of times a given planet is used (excluding resonant fly-
bys), the less likely such a trajectory will, in fact, exist at all.

Our algorithm allows for an AGA at all planets except Mercury

" and Pluto (which do not have appreciable atmospheres). Interest-

ingly enough, the time-optimal trajectories rely most heavily on
Venus and Mars and only occasionally use Earth. For many of the
cases, the optimal trajectory is an alternating series of Venus, Earth,
and Mars AGAs until the destination planet is reached. Because the
inner planets’ orbits have such low semimajor axes compared to the
outer planets, using them exclusively (since we can get arbitrary
bending at them) is better than hoping all of the outer planets line
up right. For example, the best trajectory to Pluto with a launch
Voo Of 6 km/s uses a Venus—Mars—Venus—Mars series of AGAs, as
opposed to using Jupiter, Saturn, Uranus, or Neptune (even though
AGAs are also allowed at these planets). Whereas Jupiter is a pow-
erful GA planet, it is too far away to compete effectively with the
inner planets when AGAs are used (except when substantial incli-
nation changes are needed). Another factor evident from examining
Fig. 6 is that, if Jupiter is used to pump up a spacecraft’s energy,
then its semimajor axis is greatly increased. A Jupiter AGA of this
fashion unacceptably lengthens the size and TOF of the conic arc
to the next planet, and thus, Jupiter does not appear in the fastest
trajectories found in the search. Thus, we do not have to depend on
phasing with Jupiter to get to the outer planets, only on the phasing
of Venus, Earth, and Mars.

Considering trajectories to Pluto for a launch Vi, of 6.0 km/s, we
see that adding a third flyby lowers the TOF to 5.7 years. This tra-
jectory is, in fact, the Earth—Venus—Mars—Venus—Pluto (EVMVP)
discussed earlier. However, the actual TOF may be much shorter
because Pluto is currently about 30 AU away from the sun, whereas
our algorithm assumes a constant semimajor axis of approximately
40 AU. A more fair comparison would be to Neptune, which has
a lower bound of 4.45 years using the Venus—Mars—Venus (VMV)
sequence of AGAs at a launch V, of 6.0 km/s. )

The EVMVP trajectory was examined in more detail using
STOUR for a 40-year launch window (2000-2040) and launch V,

Launch :
Veo, km/s ~ Path TOF, years ranging from 4.0 to 6.0 km/s. The results are shown in Fig. 9. The
trajectory is indicated by the “path” label, where the number n cor-
i ) Ié://EVY g;? responds to the nth planet from the sun. The “.lift/drag" field gives
5 BVY 0.30 the L/D ratios used at each flyby planet. In this case, an L/D of7
6 EVY 0.27 was used during the Venus and Mars encounters. Finally, the plot
itself comprises several letters. Each of these represents a trajectory
Table 3 Fastest potential AGA trajectories to the outer planets with L/D = 7 (ignoring phasing)
v Jupiter (J) Saturn (S) Uranus (U) Neptune (N) Pluto
[ 2]

km/s Path TOF, years Path TOF, years Path TOF, years Path TOF, years Path TOF, years

3 EVEMJ 1.99 EVEMS 3.53 EVEMU 8.21 EVEMN 15.33 EVEMP 23.08

3 EVEVMJ 1.64 EVEVMS 2.43 EVEVMU 4.24 EVEVMN 6.35 EVEVMP 8.21

3 EVEVEMJ 1.56 EVEVMVS 220 EVEVMVU 3.46 EVEVMVN 491 EVEVMVP 6.18

4 EVMIJ 2.20 EVMS 5.61 —_— —_ —

4 EVEMIJ 1.43 EVEMS 2.44 EVMVU 471 EVMVN 7.21 EVMVP 9.44

4 EVEMVI 1.36 EVEMVS 1.92 EVEMVU 3.20 EVEMVN 4.65 EVEMVP 5.93

4 EVEMVE] 1.32 EVEMVES 1.87 EVEMVEU 3.14 EVEMVEN 4.58 EVEMVEP 5.85

5 EMJ 2.46 e e _ —_—

5 EVMJ 1.46 EVMS 2.61 EVMU 5.52 EVMN 9.14 EVMP 12.45

5 EVEMJ 124 EVMYS 2.08 EVMVU 3.53 EVMVN 5.18 EVMVP 6.63

5 EVEMVIJ 1.23 EVEMVS 1.78 EVEMVU 3.04 EVEMVN 4.49 EVEMVP 5.76

6 EMJ 1.68 EMS 3.64 EMU 14.16 —_— i

6 EVMJ 1.27 EVMS 2.21 EMVU 441 EMVN 6.96 EMVP 9.23

6 EVEMJ 1.11 EVMVS 1.74 EVMVU 3.00 EVMVN 4.45 EVMVP 572
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Fig. 9 VMYV AGA ftrajectories to Pluto.

with the indicated launch date and TOF. The letter itself is an index
for the launch V, values that are searched. In this case, an A rep-
resents a launch V, of 4.00 kim/s; a B represents a launch V, of
4.50 km/s, and so on.

With the given conditions, the fastest trajectory to Pluto has a
launch Vo, of 6.0 km/s and takes only 5.5 years. If we use a launch
Ve Of only 5.5 km/s instead, the spacecraft gets there only slightly
later. Other trajectories with slightly longer TOFs are possible every
few years. These extremely low TOF trajectories to Pluto begin to
disappear as Pluto moves farther away (at later launch windows).
Even with a lower L/D ratio of 5, the VMV trajectory still yields
short TOFs, somewhat less than a year longer than-the L/D =7
case. Work by Sims et al.? indicates that lower L/D ratios will
yield trajectories to the outer planets that are 1-2 years longer than
the infinite L /D case. Earlier work by Bonfiglio'” yielded AGA tra-
jectories that either took 5 years longer for the same launch energy
or took 4 years longer for an increased launch energy of 7 km/s,
compared to our fastest AGA trajectory to Pluto (5.5 years for a
launch V,, of 6.0 km/s). Clearly, the Tisserand graphical method
is a powerful tool in identifying short TOF, low launch energy
trajectories.

Patched-Conic Results

The Tisserand graphs are ultimately just a tool to help find good
paths. Once a path has been identified, a patched-conic solver can
search for actual trajectories over a spread of launch conditions. The
paths from Tables 2 and 3 were used to search for both pure GA
and AGA trajectories to Mercury and Pluto over a 40-year launch
window.

For missions to Pluto, TOF and launch V,, will be of great con-
cern. However, for practical reasons, we do not want to subject the
spacecraft to excessive g-loading. Figure 10 shows the best TOF to
Pluto possible through the year 2040 for a launch V,, of 6.0 km/s
and a given maximum g-load constraint. Aerodynamic heating is
also of great concern, but fully addressing heating is beyond the
scope of this paper. However, g-loading scales with V2, and heat-
ing scales with V3 (Refs. 14 and 20). Thus, the relative ordering of
results for heating should be the same as for g loading. If TOF were
not a consideration, the trajectory that offers the smallest maximum
g loading is Earth—Venus—Earth—Pluto (EVEP). However, if g loads
of up to 7 g are tolerable, the Earth-Mars—Earth—Pluto (EMEP) is
the trajectory that is capable of getting to Pluto the fastest. If the
g-load constraint is over 8 g, the EVMVP trajectory is the best. The
performance of the EVMVP begins to asymptotically approach five
years beyond the 13-¢ constraint (or equivalently, under 5.5 years
TOF). Pushing the AGA beyond that limit yields quickly diminish-
ing returns and would not be very useful. The other five trajectories
shown in Fig. 10 never yield the fastest trajectory for any given
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Fig. 10 Shortest TOF trajectories to Pluto with a given maximum g-
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Fig. 11 Shortest TOF trajectories to Mercury with a given maximum
g-load constraint.

g-load constraint and, thus, would also never be used. We note that
the three optimal trajectories have a commonality: they each use
exactly two distinct planets in an alternating fashion [such as VMV
or Venus—Earth—Venus (VEV)].

A similar graph can be made for missions to Mercury, as seen in
Fig. 11. In this case, it is possible to get to Mercury with a launch Vi,
of 5.0 km/s using a pure GA trajectory {an Earth—Venus—Mercury
(EVY), where we use the last letter of Mercury to distinguish it from
Mars). Furthermore, using an AGA does not shorten the TOF below
that of the EVY. Thus, for a launch V, of 5.0 km/s, a pure GA at
Venus provides the time-optimal trajectory to Mercury.

Flight times to Mercury are relatively short, but an AGA provides
other advantages. Figure 12 shows the trajectories to Mercury now
optimized for lowest arrival V. The pure GAEVY has an arrival Vo,
of 8.4 km/s. Once we allow AGA trajectories, the optimum arrival
Veo 1s lowered to 5.9 km/s for only 2.5 g. Thus the AGA permits a
Hohmann transfer from Venus to Mercury and only requires a single
Venus flyby.

Discussion

Earlier we found the optimal atmospheric turn angle to maximize
AV, but we also know that this AV may not be pointing in the right
direction to get to the next planet. We can find the necessary con-
ditions for a maximum AV AGA to accomplish this by inspecting
the Tisserand graph (Fig. 6).

If an AGA begins near one of the endpoints of a Ve, contour (far
lower left or far upper right), then a maximum AV AGA would
drive the spacecraft toward the other endpoint (but at a lower con-
tour because some V, is lost). However, a maximum AV AGA
maneuver that begins near the middle of a Ve, contour would follow
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Fig. 12 Lowest arrival V. trajectories to Mercury with a given max-
imum g-load constraint.

the contour in one direction and then backtrack (overturn), only to
end up near where the maneuver began. Overturning results in a
large change in the spacecraft’s true anomaly but little change in
the shape of the orbit itself. A smaller turn angle gives an equiv-
alent turn, but with less loss of V. Thus, the most efficient AV
possible with an AGA are the ones that arrive and depart the flyby
body nearly tangentially. The limiting case occurs when L /D = o0,
where the spacecraft arrives and departs exactly tangentially. The
near-tangential arrival/departure condition is met in the earlier dis-
cussed EVMVP trajectory of Fig. 7. As seen in Fig. 7, all three
AGAs are located near the endpoint of a V., contour. However,
simply arriving or departing a contour near an endpoint is insuf-
ficient for maximizing AV for a given L/D. Because the optimal
turn angle is a function of L /D, higher L/D ratios permit greater
travel along the V., contours. For L/D =7, Eqgs. (7) and (9) yield
¢ =2 174 deg, so that the AGA maneuver travels through about 97%
of a V4, contour. Clearly, the AGAs in Fig. 7 are not AV maximum
because the AGAs begin in the middle of a contour. However, due
to the geometry of the contours, maximum AV AGAs are not pos-
sible for the EVMVP case at higher L/D ratios, that is, an AGA is
capable of providing a AV in excess of what is optimal for reaching
the next body. Therefore, a lower L/ D ratio exists such that a maxi-
mum AV AGA is possible and optimal for a specific maneuver. The
AGAs in Fig. 7 do turn the maximum amount without overturning.
Moreover, even when a maximum AV trajectory exists, it may not
be time optimal. From Fig. 7, we see that an Earth—Venus-Mars—
Pluto (EVMP) is possible using a maximum AV AGA with a Mars
V5 of 10 km/s. However, from Table 3, we know that the EVMVP
is faster than the EVMP. Even with a series of AGAs that do not
use 100% of the possible AV, the trajectory can be faster than any
comparable pure GA trajectory,

Conclusions

An AGA can potentially yield much higher AV than a pure GA,
and the Tisserand graph shows when it is possible. The real power
of AGA is apparent when multiple AGA flybys are used, especially
when one body acts as a V,-leveraging maneuver for another [such
as a VMV or Mars—Venus—Mars (MVM)]. These trajectories allow
for extremely fast missions with low launch energies. Unfortunately,
using multiple AGA encounters has some disadvantages. The high
AV involved with AGA is what enables the low launch V,, short
TOF trajectories. This directly translates to high approach V, and
high acceleration and heating loads. The heating will ablate the wa-
verider and degrade its aerodynamic properties, making subsequent
AGA passes more difficult.

As seen from the Tisserand analysis, the Earth is not used as often
for AGA because it has only a moderate effect on the orbit shape.
On the other hand, Mars and Venus can be quite effective. Venus is
typically most useful in changing the orbital energy of a spacecraft,
wheéreas Mars is typically most useful in changing a spacecraft’s

perihelion. Earth can do both, but neither quite as well as Mars or
Venus. The outer planets are too far away to be useful as AGA bodies.

AGA provides three significant advantages. First, trajectories do
not have to rely on phasing of the outer planets (aside from the
target) but only on Venus, Earth, and Mars. Second, TOFs are small.
Because the initial phase of an AGA trajectory will usually rely only
on Venus and Mars, the time required to build up the spacecraft’s
orbital energy is kept to a minimum. Finally, fast trajectories to all
planets exist using low launch energy.

The AGA technique provides exciting new trajectories to diffi-
cult targets in the solar system. For example, Pluto can be reached
in only 5.5 years using a VMV AGA, for a L/D of 7, with a launch
Vo of 6.0 km/s. The trajectories presented here supply compelling
reasons to develop high L /D hypersonic vehicles (such as the wa-
verider). The development of AGA technology will enable deep
space exploration at low launch energy and for short flight time.
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