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Velocity Pointing Errors Associated
with Spinning Thrusting Spacecraft

Daniel Javorsek II* and James M. Longuski'
Purdue University, West Lafayette, Indiana 47907-1282

Because of the imperfection of spacecraft assembly, there always exist misalignment and offset torques during
thrust maneuvers. In the case of an axially thrusting spin-stabilized spacecraft, these torques disturb the anguiar
momentum vector in inertial space causing a velocity pointing error. Much insight can be gained by analytically
solving the problem of time-varying torques and time-varying moments of inertia. We use approximate analytic
solutions to suggest how the velocity pointing error can be reduced for some practical assumptions based on current
technology. For example, in the case of solid rocket motors, a significant improvement in velocity pointing can be

realized by judicious distribution of the propellant.

Nomenclature

= acceleration, m/s?

= Fresnel cosine

= offset distance, m

thrust, N

= angular momentum, kg-m?*/s

= distance from throat of nozzle to the center of mass, m
= principal moment of inertia, kg-m?

= impulse, kg-m/s

= moment, Nm

mass, kg

= mass-flow rate, kg/s

= Fresnel sine

= time, $

= misalignment angle, deg

= angle between actual velocity vector and desired
velocity vector, deg

= velocity change, m/s

= error

= angle between average angular momentum vector and
inertial Z axis, deg

= Euler angles, deg

= initial spin rate, rad/s

= angular velocity, rad/s

]
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Subscripts

b = total burn, used to distinguish the total burn time
f = final state

r = ramp, used to distinguish ramp times

X, Y, Z = orthogonal inertially fixed coordinates

x,y,z = orthogonal body-fixed coordinates

0 = initial state

Introduction

T is impossible to build an ideal thrusting mechanism in a real
spacecraft. Various anomalies, such as thruster misalignment or
center-of-mass offset, will create body-fixed torques transverse to
the spin axis. An example of such a configuration is shown in Fig. 1
(where d and & are exaggerated for clarity). We restrict our analysis
to the case of an axially thrusting spin-stabilized spacecraft, where
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transverse torques perturb the angular momentum vector H from its
original direction and induce a velocity pointing error.

Longuski et al.! investigate the thrusting spinning spacecraft for
constant body-fixed torques and constant moments of inertia and
demonstrate that the angular-momentum vector and the velocity
vector are offset in inertial space by the same bias angle. We address
a related problem and begin our analysis by obtaining approximate
analytical solutions for two different cases: 1) time-varying torque
with constant moments of inertia and 2) constant torque with a time-
varying moment of inertia, Each of these approximate analytical
solutions provides insight into how velocity pointing error can be
reduced significantly with a prescribed thrust profile.

In case | we study linearly changing body-fixed torques and their
impact on the behavior of the angular momentum vector. This case
applies to short duration burns where the inertia properties remain
nearly constant. In case 2 we consider the common spacecraft dy-
namics problem in which a significant amount of propellant is con-
sumed (such as in the case of an upper-stage injection of a satellite
into geostationary or escape orbit). Case 2 also addresses the mo-
tion of the angular momentum vector in inertial space. The solutions
derived in each case permit us to piece together an approximate an-
alytical solution for the angular momentum vector behavior for a
particular thrust profile. Based on the analytic solution, we prescribe
a thrust profile that minimizes the angular momentum pointing er-
ror. In a high-fidelity case study we show that the resulting velocity
pointing error is significantly less than that achieved with a conven-
tional thrust profile.

Figure 1 illustrates the problem configuration, where h(¢) is the
vertical distance from the point of the force application to the center
of mass (CM) and F(z) is the thrust.

Analytic Solutions
Case 1: Constant Moment of Inertia with Time-Varying Torque
Simple Model for the Angular Momentun Vector
We will work directly with Euler’s law about the CM:

_dH
T ode

By assuming a nearly symmetric spacecraft with no axial torque,
the spin rate 2 will be constant. Furthermore, to eliminate the com-
plications of solving for the attitude motion (e.g., Euler angles) we
assume the transverse body-fixed torque M, remains in the inertial
XY plane. For a symmetric spacecraft we set My =0 without loss
of generality. For a linearly time-varying M, in the body xy plane
and referring to Fig. 1, we have

(D

M, = F@)[h(t)sina +d cosal 2)

or

M, =ct+c 3)
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Fig. 1 Spacecraft and rocket con-
figuration.

From these assumptions Eq. (1) can be written as

Hy = My = (¢it + ¢;) cos Q @
Hy = My = (¢c1t + ¢3) sin St 5)
Hz = Mz =0 (6)

Table 1 Spacecraft and PAM data for numerical simulation

Property Notation Quantity
Maximum thrust force Frax 76,100 N
Maximum CM offset d 0.02 m
Thrust misalignment a 0.25 deg
Initial distance from throat® to CM ho 0.80 m
Final distance from throat to CM hy 1.55m
Initial spin rate Q0 70 rpm
Initial PMOI® about x axis Lo 858 kg-m?
Final PMOI about x axis L 222 kg-m?
Initial PMOI about y axis I 858 kg-m?
Final PMOI about y axis I 222 kg-m?
Initial PMOI about z axis 10 401 kg-m?
Final PMOI about z axis Ls 102 kg-m?
Mass m’ 2,500 kg
Mass-flow rate m —24 kgfs

Throat of the nozzle for the motor.  ®Principal moment of inertia.

For small ¢, and ¢, an analytic solution is obtained’ for the case of
near symmetric rigid bodies with constant body-fixed torques.

When analytic expressions are available for Euler’s equations of
motion and the preceding Eulerian angles, the angular momentum
vector in inertial space can be evaluated using

HX C¢xc¢z . 5¢xs¢ys¢z —S¢XC¢_,. C¢x5¢: + S¢x5¢yc¢z wax

HY = s¢xc¢z + C¢x5¢y5¢z
H; _Cd’ysd’z

For the initial conditions Hy (0) = Hy(0) =0 and Hz(0) = L,w,p =
1.2, the integration of Egs. (4-6) provides the following:

Hy = (c1 /@) cos Qt + [(cit + c2)/ QIsin @t — ¢ /@ (7)

Hy = (o1 /@) sinQt — [(c1t + c2)/ QI cos &t + 2 /2 (8)
Hy; =1,Q &)

The assumption that My remains in the inertial XY plane has
serious limitations and must be applied with caution. To check our
heuristic solution for the angular momentum behavior, we apply a
more formal approach starting with Euler’s equations of motion.!

Outline of Formal Solution for the Angular Momentum Vector
For time-varying torques and constant principal moments of in-
ertia, Euler’s equations of motion are

M.x = de)x _+ (Iz - 1_,-)(1{,,0)2 (10)
M, = Ly, + (I, — [)w.o, (11
M, = Lo, + (I, — L)w.w, (12)

Assuming a near symmetric rigid body I, & I, under the influence
of a single time-varying torque M,, the spin rate is nearly constant
with time (i.e., @, ~ w0 = 2). The solutions of Euler’s equations
of motion are relatively insensitive to variations in /, and I, if the
orientation changes in H are small.>?

There are 12 forms of Euler-angle rotation representations to give
the attitude of a spacecraft. If a type 1: 3-1-2 rotation is used,* the
kinematic equations are

bx = (@ cos §, — w, sing,) sec b, (13)
¢y = @ cosp. + w; sing. 14

$: = wy + (0, COS P + 0, sin ;) tan s

coxchy

s¢xs¢z - C¢xs¢yc¢z lywy (16)
C¢yc¢z Lo,

where ¢ and s denote the cosine and sine. This relationship may be
simplified for small angles.

Comparison of Analytical Solution with Numerical Results

Equations (7-9) indicate that the angular momentum vector fol-
lows a spiral path in space (as shown in Fig. 2a). We have verified our
heuristic approach, by performing a highly precise numerical inte-
gration of Egs. (10~15) and using Eq. (16). (For the numerical values
represented in Table 1, the maximum error between the heuristic and
the numerically integrated solutions is around 3.6 x 10~ mrad.)

Case 2: Time-Varying Moment of Inertia with Constant Torque
Simple Model for the Angular Momentum Vector
Again we use Euler’s law

dH
M= —=
dt an

This time we cannot assume the spin rate is constant. To make the
equations integrable, a constant transverse torque M, is assumed
(with M, = 0). To simplify the approximate analytical solution, we
neglect jet damping. For the case of generalized torques and a vari-
able moment of inertia, Euler’s third equation of motion becomes

M, = I,(w. () + Lo (1) + Uy — L)oo, (18)

For a nearly symmetric rigid body Eq. (18) becomes
. d
M, = L.(Nw, () + Lo (1) = a‘t‘[lz(t)wz(t)] (19)

Assuming no z-axis torque (M,=0), Eq. (19) indicates that
[ (t)w, (¢) is constant. Therefore, H7 is conserved and remains con-
stant in inertial space with the magnitude

Hz = 1,(Qw:(0) = I.(Nw:(1) (20)

As a result, when I, changes, the spin rate must also change to
conserve Hyz by the following equation:

w (1) = HZ/I:(t) = [0/ 1.(t) (21
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Fig. 2 Analytical solution to the angular mementum vector in inertial
space for phase a) 1, b) 2, and ¢) 3 of the trapezoidal thrust scheme.

Using the heuristic approach, Euler’s law results in the following:

o T 1eQ
Hx—Mx—MxCOS[£ [Iz(t)]dt}
Hy:My:stin{/o [%] dt}

Hz;=0

(22)

(23)

24
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Equations (22) and (23) are integrable in terms of Fresnel integrals

if
T e
il =ar b+
0 1)

=at’+Q (25)
This implies that
I.(1) = Lo/Qat/Q+1) (26)
For small values of 2at/ 2, Eq. (26) can be approximated by
L(t) = Lpy(1 — 2at/RQ) @n

so that I, decreases linearly as a function of time. For the initial
conditions Hy (0) = Hy(0) =0, and Hz(0) = 102, the integration
of Egs. (22-24) provides

{2 4 fat+Q
+sm<Z>S!:,/E( > )j“ (28)
4 Q? 4 fat+Q
Hy:MJ\/;{COS<—27>S|: a—( 5 >:|
2
—81n<Q—> [ i(“HQ)” (29)
amn 2
Hz(t) = I0%2 (30)

The Fresnel integrals in Egs. (28) and (29) can be approximated as

followsS:
Clz) = _1_ LT, T,
@) = 3 + f(z)sin 20~ g(2) cos 3¢
S(Z) = % - f@ cos(%zz) —g(2) sin(g—z2>
_ 1+ 0.926(z) -3
F@ = 3790 13104 T°@  lf@I=2x 10
1
g = +£(2)

2 +4.142(z) + 3.492(z%) + 6.670(z%)

le()] <2 x 107 - (3D)

For a more accurate representation (Je] < 10~%), see Ref. 7.

Comparison of Analytical Solution with Numerical Results

A sample plot of the inertial angular momentum components
represented by Egs. (28-30) is shown in Fig. 2b. As in case 1, we
tested our heuristic approach against numerical integration. (The
values provided in Table 1 result in a difference between the two
solutions of 4.2 x 10~2 mrad.)

Thrusting Maneuvers
Construction of an Analytic Solution for the Trapezoidal
Thrust Scheme
We wish to produce a thrust profile to minimize velocity pointing
error while simuitaneously driving the angular momentum vector
back to its initial position. Our goal is to maintain the average orien-
tation of H along the initial inertial Z direction, which is the desired
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Table 2 - Summary of each phase of the trapezoidal thrust scheme

Phase Thrust I, Distance to CM Mass Invariant constants
1 Linearly increasing Io ho mo I Iy d, @
2 Finax Linearly decreasing (ho+hp)/2 (mg+myg)/2 Iy, Iy, d, o
3 Linearly decreasing Ly hy mg Ly Ay, d, ¢
A Phase 1 Phase 2 Phase 3 Phase 2,1, <t < t, — ty:
Ramp Up L Ramp Down
1 T Q2 AL
Fivax Hy = My —1 cos =2 | C(@) + sin[ =2 | S(z)
a 2a 2a
P 2 Q2
Thrust b Hy = My ax, /= | cos| =2 }S(z) —sin[ =2 | C(2)
a 2a 2a .
Hz = 1% (34)
f——— ; | > where
to Time tr .

Fig. 3 Sample thrust profile of the trapezoidal thrust scheme.

direction of the AV. Even though H moves around in inertial space,
if its average orientation is along Z, the velocity vector will tend to
align along Z as well. The trapezoidal thrust profile shown in Fig. 3
accomplishes the goal of maintaining the average H along Z. Piec-
ing together the solutions already derived for each segment of the
profile creates the corresponding analytical solution for the angular
momentum vector.

In general, a spacecraft has principal moments of inertia and mass
properties that are changing with time. In the trapezoidal thrust
scheme we always assume that m and k are constant (where average
values are used for the constants). The thrust increases linearly over
the first phase of the burn. Because this phase is short compared
to the entire burn time, we assume constant principal moments of
inertia in the analytic solution. During the second phase, the thrust
is held constant, and the principal moment of inertia associated with
the axis of symmetry decreases linearly. The burn time of the third
and final phase is shorter than that of the first phase because of
the increased spin rate that results from the decreasing I, in phase
2. Again we assume constant moments of inertia while the thrust
decreases linearly (Table 2).

It is not necessary that the thrust profile be entirely symmetrical.
Because the spin rate is increasing throughout the burn, £+ will not
have to be as long as 1, in order to obtain the same results. However,
each of them will be dependent on the spin rate Q with the following
relationship:

t, > nQ2n/ Q). (32)

where n is some integer. For the ideal case when the initial and
final spin rates are known exactly, n =1 will permit minimized
pointing errors and will result in a final angular momentum vector
position coincident with the initial position. In practice, however, we
never obtain the precise spin rate we desire. Thus, depending on the
amount of uncertainty we have in the spin rate, the value for n should
be greater than one. The sensitivity of the velocity pointing error to
uncertainty in spin rate decreases as » increases. In our numerical
example (Fig. 2a) we use a value for n of 12, which results in the
angular momentum vector making 12 intermediate spirals on the
initial ramping portion of the trapezoidal thrust scheme (phase 1).

Thus, the analytical solution for the trapezoidal thrust scheme
results in a combination of the preceding solutions and can be rep-
resented by the following equations.

Phase 1,1 < t,4:

Hy = (hosina + d cos &) ( Fuiax /1020 [(1/R0) cos(S202)
-+ 1 sin(Qpt) — 1/

Hy = (hosina + d cos &) (Fuux/t0R0)[(1/$20) sin(S2pr)
-t cos(Ro1)]

H; = 1202 (33)

M max = Foax (huvg sina +d cos o)

$2 Lo 4 | alt —i0) + 2
gm0 (2], = [ |ZTEOT
B —to—t) \ s am 2

(33)
Phase 3,1, —ts <t < 1y
Hy = (hysina + d cos o) (Frax /12 5) [~ (1/25) cos(251)
+(t — 1) sin(Rpt) — 1/Q7]
Hy = (hysina + d c0s ) (Fruax /82 £)[—(1/S25) sin(€2 1)
— (tpy — t) cos(25t) + 1]
Hy = I8y (36)

Velocity Pointing Errors During Thrusting Maneuvers
Let us use the angles px and py to specify the orientation of the
angular momentum vector in inertial space:

tan px = Hyx/Hz 37
tanpy = Hy/H; (38)

The average values of these angles provide an accurate approxima-
tion for the velocity pointing error even when M, and I, are time
varying as in our case.

In general, the velocity change in inertial space during thrusting
can be found through integration of the acceleration equations

ax Fx/m
ay | =Al| F,/m (39)
az Fz/m

where A is the transformation matrix given in Eq. (16) and F;, F,,
F, represent the body-fixed forces.

To define the velocity pointing error, we assume an instantaneous
inertial frame moving with the spacecraft where the thrust duration
is-assumed to be instantaneous. The desired AV is along the inertial
Z axis, and in practice this is very nearly so. Integrating Eq. (39)
provides the components of the velocity change in inertial space,
namely A Vy, AVy, and AVz. We use the transverse velocities A Vy
and A Vy to define the velocity pointing error angles yy and yy:

tanyy = AVX/A VZ (40)
tanyy = AVy/AVZ (41)

where AVy and AVy are much smaller than AV,
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My=clt+ G

/ My = constant
X .

Fig. 4 Motion of the angular momentum vector in inertial space for
constant and ramp-up thrusts.

1.245m
e

Ulysses
Spacecraft

Fig. 5 Schematic of generic spacecraft with the PAM.

Because the velocity pointing error is dictated by the average
angular momentum vector,! we can approximate this error by sum-
ming the H vectors from Egs. (33-36) and dividing by the total burn
time. For the trapezoidal thrust scheme this means that we have an
analytic solution for the velocity pointing error of the spacecraft.
The conclusion is that the trapezoidal thrust scheme keeps the av-
erage angular momentum vector along the Z axis. Figure 4 shows
this relationship and compares the first phase (the ramp-up segment)
of the trapezoidal thrust scheme (M, =c¢ ¢ + ¢;) to a step function
thrust profile (M, = constant). When the thrust profile is a step func-
tion, the angular momentum vector traces a small circle in inertial
space. The average angular momentum vector H,y,, lies along the
center of this circle, as does the AV, which accounts for a velocity
pointing error p. On the other hand, when the thrust profile is a
ramp, the angular momentum vector traces a spiral in inertial space
where H,,, remains along the desired direction, the Z axis. In this
case the AV is, to a high degree of accuracy, along the Z axis as
well. Thus the velocity pointing error is nearly zero.

We test these analytic solutions in the following case study.

Case Study: Numerical Evaluation
of the Payload Assist Module

In our numerical evaluation we study the injection of the Ulysses
spacecraft on its interplanetary trajectory to the sun. The space-
craft used the Payload Assist Module (PAM)—miore specifically the
STAR 48B—to provide a 4.2-km/s velocity increment on 8 October
1990. We use approximate representative values for size, mass, and
spin rate of the Ulysses. Humble et al.® provide data on the widely
used PAM. PAM’s nearly spherically symmetric inertia characteris-
tics simplify the analysis. However, this analysis could be performed
on any spacecraft and rocket combination given the principal mo-
ments of inertia of the system and their time histories. A schematic
of the generic spacecraft and rocket system is provided in Fig. 5.
The details of the derivations of the mass properties are not included
in this paper but can be readily reproduced using the dimensions in
the figure and the constants provided in Table 1.

Much of the data in Table 1 was accumulated from Jet Propul-
sion Laboratory reports,” and relative sizes were determined from
manufacturers’ engine pamphlets. Thrust misalignment is obtained
from the excellent work produced by Knauber,'® which states that
most upper-stage fixed nozzle solid rocket motors have a thrust mis-
alignment of less than 0.25 deg.

The first part of the case study is an evaluation of the approxi-
mate behavior of the generic system. The model includes linearly

THRUST [N]

1..

00 2‘0 40 GIO BIO 100
TIME [SEC]
a) Thrust profile .

8o}
70
60}
50}
i
30
20}
10}
0
-10

Vy/ Vz [MRAD]

=20 0 40 60 - 80 100

20
Vx / Vz [MRAD]
b) Velocity pointing error
Fig. 6 Star 48B.

changing principal moments of inertia for all three axes to provide a
model that is as accurate as possible. We assume that the CM travels
at a constant velocity from the initial to the final positions given in
Table 1. The model also assumes a constant mass-flow rate. Finally,
unlike the analytical solutions presented before, the higher fidelity
model used in the case study includes jet damping.

The CM offset is used as the radius for the jet damping. Following
Thomson,!! we arrive at the equations of motion

M, = L, + Lo, + (I, = L)wyw, — m(h? + d*/2)w,
My = Ly + Loy, + (I, — wsw, — miw,
M, = La, + Lo, + (I, — w0, — nd*e, (42)

These equations are numerically integrated along with Egs. (13-15)
and Eq. (39) for the Star 48B thrust profile. Data for the Star 48B
thrust profile are represented by the l4th-order polynomial curve
plotted in Fig. 6a. The subsequent velocity pointing error is shown
in Fig. 6b. The average pointing error of 59.5 mrad is also visible in
the figure.

Next we analyze the efficacy of the trapezoidal thrust scheme
in our case study. To make the comparison as realistic as possible,
the burn time, maximum thrust, and total impulse are held constant
for both thrust profiles. By working backwards from the known
impulse, maximum thrust, and burn time, we are able to calculate
the necessary ramp times and to set the rise time of each phase
to be #,9 =t,s=t,. Using the specification in Eq. (32) with n =12,
we confirmed that the computed rise time is large enough for the
trapezoidal thrust scheme to prove beneficial.
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Fig. 7 Trapezoidal thrust scheme.

1t is very important that the burn time, maximum thrust, and total
impulse remain constant between the two comparisons. This re-
quirement is necessary because the PAM is designed to withstand a
certain maximum chamber pressure. Because the chamber pressure
is proportional to the thrust, the trapezoidal thrust profile cannot
exceed the prescribed maximum thrust. The engine is similarly de-
signed to accomplish a specific mission by providing a specific total
impulse over a specified burn time. These parameters uniquely spec-
ify the engine performance. The ramp time ¢, is calculated with the
following equation:

=1t — 3/Fmax (43)

The impact of the trapezoidal thrust scheme in our case study is
shown in Fig. 7. The only modification is the shape of the thrust pro-

file (Fig. 7a). The velocity pointing error is only 0.81 mrad (Fig. 7b). -

By comparing Figs. 6b and 7b, we see a drastic decrease in the veloc-
ity pointing error. This result is consistent with the goal of maintain-
ing the average angular momentum vector along the Z axis, which
is nearly achieved as shown in Figs. (2a~2c). The error predicted by
the analytical method [Eqgs. (33-36)], based on the average orienta-
tion of the angular momentum vector, is 0.58 mrad, which is near
the actual value of 0.81 mrad. Table 3 summarizes these results.
From our case study we make a number of observations. First, we
note that the thrust profile is dictated by the grain geometry, i.e., how
we choose to expose new burn surface area. We can greatly reduce
the velocity pointing error by carefully designing the propellant
grain geometry. Second, the error committed in our assumptions of

Table3 Summary of velocity pointing errors
for the case study

Pointing error,

Thrust profile p, mrad
Star 48B (Fig. 6a) 59.5
Trapezoidal thrust scheme (Fig. 7a) 0.81

Table 4 Pointing error dependence
on model assumptions

Velocity pointing

Quantity held constant error, p, mrad

None (case study) 0.811
Without jet damping 0.797
m 0.809
h 0.870
Iy Iy 0.796
I 0.150

100

]

p [MRAD]

\\\/"W“_ ]

30 40 50 60 70

Q [RPM]

Fig. 8 Velocity pointing error dependence on spin rate for the trape-
zoidal thrust scheme (case study).

[ i~}
(=]

constant Iy, Iy, f1ay,, and 1 in our analytical analysis is negligible
as confirmed by the numerical results. Table 4 provides values for
the pointing error when different parameters, which were allowed to
vary in the case study, are held constant. The first value listed is the
error found in the case study using the trapezoidal thrust scheme,
0.811 mrad. By holding various quantities constant, we see that the
variation in /, has a significant effect on the velocity pointing error.

Finally, in the case of the Ulysses spacecraft, we note that if
60 mrad is an acceptable pointing error then the advantage of using
the trapezoidal thrust scheme is that the spacecraft need not be spun
up to such a high spin rate. In fact, with the trapezoidal thrust scheme
we would only need to spin the spacecraft at 25 rpm instead of the
actual 70 rpm used in Ulysses to achieve the same pointing accuracy.
For most spin-stabilized spacecraft this is a costly maneuver that
must be performed to maintain stability. The benefits are realized
again if the spacecraft must be despun after the maneuver. This
dependence on spin rate is shown in Fig. 8. The general trend follows
the 1/ Q? law noted in earlier work.' :

Of course, these models are only approximations of the actual
mass and inertia behaviors over time. Many things were not taken
into account. We have neglected thermal effects at startup and
burnout of the engine and have used an entirely steady-state anal-
ysis when performing rocket ballistics. In practice it is difficult to
achieve the low thrust levels in phase 1 so that the trapezoidal shape
cannot be enforced exactly. Finally, a more practical thrust profile
would be similar to that of a trapezoid with rounded corners. In any
case, we believe the general statements about the rise time still ap-
ply. An interesting follow-on study would be to investigate a grain
geometry that permits low initial thrust levels.
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Conclusions

1) The velocity pointing error can be closely approximated by
the average orientation of the angular momentum vector in inertial
space. Approximate analytic solutions for the angular momentum
vector are found by directly integrating Euler’s law.

2) For a solid rocket motor, by judiciously loading propellant so
that the engine thrust profile closely matches a trapezoid, large ben-
efits can be gained in reducing velocity pointing error. This strategy
can be employed in other propulsion systems where the thrust profile
can be specified.

3) For a given velocity pointing error, the trapezoidal thrust
scheme allows for a lower spin rate.
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