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Periodic Solutions for Spinning Asymmetric Rigid Bodies
with Constant Principal-Axis Torque

R. Anne Gick,* Marc H. Williams," and James M. Longuski¥
Purdue University, West Lafayette, Indiana 47907-1282

‘We analyze the motion of a spinning asymmetric rigid body subject to constant torque along one of the principal
axes. Periodic solutions for the angular velocity vector and the corresponding kinematic parameters are given in
terms of Fourier series expansions. Three semi-analytic solution methods are presented: one-period integration,
Newton’s method, and a perturbation method. These are compared for computational efficiency with a given error
bound. The solutions apply to arbitrarily large attitude motions. When multiple period solutions are desired, these
methods always prove more efficient than straightforward numerical integration. The techniques may be applied
to onboard computations, maneuver analysis, and maneuver optimization.

Introduction

HE motjon of a rigid body subjected to body-fixed torques,

where the moments of inertia do not change appreciably, is
known as the self-excited rigid-body problem. This problem was
first clearly defined by Grammel (see Ref. 1) and has occupied
a number of investigators over the past few decades.!~® Leimanis'
gives an excellent account of the (largely academic) literature up un-
til the mid-1960s. With the advent of the space program, researchers
have looked at the self-excited rigid body with new interest because
it is highly relevant to spacecraft. Variations on this theme include
analysis of the motion of axisymmetric, near-symmetric, and asym-
metric rigid bodies, subject to constant and time-varying body-fixed
torques, during small- and large-angle excursions of the spin axis.
In general the problem is intractable with respect to the goal of
finding closed-form, exact analytic solutions, and each author has
been forced to make concessions in simplifying the analysis to fit
the exigencies of the particular application.

In this paper we address the problem of characterizing the full (dy-
namics and kinematics) motion of a spinning asymmetric rigid body
with constant torque on a principal axis when the motion is periodic.
In general, when a constant body-fixed torque is applied to a spin-
ning rigid body, the resulting motion is either a progressive spinup
to high angular velocity or a bounded oscillation, depending on the
initial angular velocity and on the magnitude and orientation of the
applied torque. Our previous work'® on this problem was restricted
to a spinning axisymmetric body with transverse torque. In this case
the spin about the major axis remains constant, while the transverse
spins undergo a simple harmonic variation. The attitude motion is,
therefore, amenable to Fourier—Floquet techniques.'!'? When these
techniques are applied to a nearly axisymmetric body, the results are
excellent for small torque, but the errors increase with increasing
torque. In the present paper we generalize o an arbitrary asymmet-
ric body, and proceed to use Fourier-Floquet methods to analyze the
spin and attitude motions for all cases where the angular velocity is
oscillatory. (For other dynamics applications of Floquet theory see
Calico and Wiesel,'*> Mingori," and Noah and Hopkins.'%)

The dynamical solutions are discussed in detail in the work of
Livneh and Wie,'¢ though without addressing the kinematics. We
borrow certain of their results here, repeating only as much as nec-
essary for clarity. The essential result is that the angular velocity
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vector can be periodic only if the applied torque is perfectly aligned
with one of the three principal axes. Any misalignment will cause
the body to spinup (though for small misalignments, the process
takes a long time). The periodic solutions can be divided into two
classes: 1) torque along the major or minor (stable) axis and 2)
torque along the intermediate (unstable) axis. In the first case, the
resulting motion will be periodic only for certain initial conditions
and torque magnitudes. In the second case, the motion will be pe-
riodic for (essentially) any initial condition and torque magnitude.
Our goal is to describe efficient, that is, semi-analytical, methods
for computing the angular velocity and attitude for all cases where
the motion is periodic. Three methods are presented and compared.

Euler’s Equations of Motion

We begin our analysis for the attitude motion of a rigid body by
considering Euler’s equations of motion:

Ix(bx = Mx - (Iz - Iy)wywz (1)
lywy =My — (L — 1w, 0, 2
Izd)z =M, - (Iy - Ix)wxwy 3

where M,, M,, and M, are torque components; @, @y, and w;
are angular velocity components; and I, I,, and I, are principal
momeants of inertia. Without loss of generality, we also assume that
I, is the intermediate principal moment of inertia

@

[min < ]y < Imax

‘We can rewrite Euler’s equations (1-3) in the following nondimen-
sional form!6:

dX

— =-YZ 5
T YZ + (5)
dyY
— =ZX 6)
e + iy (
dZ
— =-—XY (©)]
ar + Uy
by introducing the following time and amplitude scaling parameters
T="h ®
Y= a’y/(h/‘y): Z =w,/(hk;) (9)

X = o/ (hix),
and ‘
e = M, [ (R Lkcc), py = M, [ (B k)

M = Mz/(hzlz"z) (10)
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The nondimensional inertia parameters, ky, &y, and k,, are given by -

Kkt = ————-—————Iylz P ..__..____._IZ L
* (Iz—lx) (Iy'_Ix), 7 (Iz—ly) (ly—-Ix)
&= an
(- L) — 1)
These parameters are not independent, but are related by
sz—-IC;-i-l(zZ:l (12)

If the torque is constant, we can choose the frequency scale # as
follows:

1

b= {[Me/ ]+ [1,/1,6)] + M) a3)
so that g, tty, and ., form the components of a unit vector

Pt pl+pl=1 (14)

We are particularly inte;ested in those situations in which the

solution of Eqs. (5-7) are periodic. This can happen only if the

applied torque is aligned with one of the principal axes.'6 There are
three cases to be studied:

H 1 0 0
p=|u [=]01, 1], ]0 (15)
K 0 0 1

However, because Egs. (5-7) are symmetric in the interchange of
X and Z, only the first two need be examined. When 2 ={0, 1, 0],
Eqgs. (5-7) have equilibrium points at XZ=—1 and Y =0 with
similar results for the other two cases. The stability characteristics
of these equilibrium points have been discussed in Ref. 16.

The nearly symmetric case, studied in Ref. 10, for which

Ke ™Ky, > 1, Kk, &~ 1. (16) -

corresponds to the limit of infinitesimal X, Y. In that limit (when
H,=0), Z remains nearly constant while X and ¥ undergo a simple
harmonic variation with frequency Z. Evidently this solution ap-
plies whenever X and Y are much less than Z, whatever the reason
(near symmetry, large z spin, or small torque). In the general case,
Eqs. (5-7) are reducible to quadrature when the torque is aligned
(Eq. (15)].

Constant Torque Along the Intermediate Axis

When the torque is applied along the intermediate, or uristable
axis, p=[0, 1, 0], the rigid-body motion described by Egs. (5-7)
is equivalent to the motion of a particle moving in a one-dimensional
potential well. To demonstrate this, we introduce a new variable
6(T) =—2tanh™!(X/Z), so that the angular velocities can be writ-
ten as

X = —Rsinh(6/2) an
1d¢

Y= 33T (13)

Z = Rcosh(6/2) (19)

where R =./(Z%— X?) is constant. Because R is constant, then
when 6 is periodic X, Y, and Z will also be periodic. Note that
because the equation pair (5) and (7) is invariant under the inter-
change of X and Z, we may assume |Z] > |X|. Moreover, because
these equations are also symmetric under the interchange of X with
—X and Z with —Z, we may always arrange for Z > 0, so that R
and 6 are real. From these definitions and Egs. (5~7), we obfain a
single second-order equation
2
a0 + R%sinh§ =2

dT? . 0

50

40

30}

20

o — V=-206+R%cosh® N
“20r| ... V=-20-R%cos @ 7

0% -4 -2 0
6 (rad)

Fig.1 Potential well characterization, R = 3.

which is the equation of motion of a particle moving in a potential
well:

V(0) = —26 + R*cosh6 1)
where the corresponding energy integral is
E=X247-9 (22)

(Note that with these definitions, kinetic energy is 2E — V.) This
potential energy is plotted in Fig. 1 for the special case R = 3 (solid
line). Because V(8) is strictly convex, 8 will necessarily oscil-
late between two extreme values that depend on the total energy
E. The potential is convex regardless of the value of R (provided
R #£0), so all motion in this class will be periodic, regardless of the
initial conditions. The only exception is when X = Z initially. In
this casé (R =0), the asymptotic behavior is spinup, X =Z — 0,
dY/dT — 1; although this solution is structurally unstable. In con-
trast, when X = —Z initially (so R =0), the motion is periodic.

Constant Torque Along the Minor (IMajor) Axis

When the torque is applied along either of the two stable principal
axes, =1, 0,017 or [0, 0, 1]7, the Euler equations (5-7) can be
represented by a similar, but qualitatively different, physical equiva-
lent. We introduce a new variable 8(T) =2 tan~!(¥/Z), from which
the angular velocities are determined, for p={[1, 0, 01":

1do
=35 23)

Y = Rsin(6/2) (24)
Z = Rcos(6/2) (25)

where R =./(Y?+ Z?) is constant. Because R is constant, then
when 8 is periodic X, Y, and Z will also be periodic. (The case for
p=[0,0,1]" is trivially determined by interchanging X and Z.)
With this substitution, the Euler equations reduce to
d 2

7 +sing = F 26)
where s = R T. This is equivalent to a particle moving in a one-
dimensional potential well:

V(@) =260 — R%cos9 27

which is shown by the dashed line in Fig. 1 for R=3. The corre-
spon("ling energy integral is given by Eq. (22).

It is apparent from Fig. 1 that the potential well now has finite
depth, so that the oscillations occur only for a range of energies E
bounded bX the qxtrema of V. When the energy is outside this range,
the body will spin up along the x axis.
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In this case, the rigid-body angular velocity motion is analogous
to the motion of a forced simple pendulum. The equation of motion
for a simple pendulum!” of length / and mass m with a transversely
applied constant force is given by

29 F
=7 sinf = e 28)
where s =t./(g/1) and F/(mg) is the thrust-to-weight ratio.

We note that if the thrust-to-weight ratio is greater than one, the
pendulum will rotate. When the ratio is less than or equal to one,
the pendulum will either rotate or oscillate depending on the initial
energy. Analogously, the rigid body spins up if the ratio 2/ R*is
greater than one. When 2/R? is less than or equal to one, the rigid
body will either spin up or oscillate about the equilibrium point
0 = sin~!'(2/R?), depending on the initial energy.

The boundary between periodic motion and spinup can be de-
termined by computing the largest energy E consistent with being
inside the potential well (Fig. 1). The range of energies for which
periodic motion occurs is E~ < E < E*, where

EX=R*2-mn/2& [ R4/4 —1 +sin™! (2/R?) — n/Z] 29)

(with the arcsine taken to lie in the principal branch [0, 7/2]). This
domain is shown in Fig. 2. (The x and © indicate the test cases
of Fig. 3 where M, =200 N-m and M; =10 N-m, respectively.)
Near the lower energy limit, the body executes small-amplitude har-
monic oscillations about the equilibrium point. At the upper energy
limit, the body executes a large-, but finite, amplitude oscillation

1
0.9} b
0.8f 1
0.7 1
0.61
0.5¢

2/R?

0.41
0.3¢
Periodic Motion
0.2r

0.1

Bi o2 0 02 04 06 08 1
E/R?

Fig.2 Bounded periodic motion space for minor-axis torque.

- Mx=200Nm

= M= 10Nm
X B

o 10 20 30 40 50
time (s)

Fig.3 Nutation angle ©() for M; =[10, 200]N-m.

with infinite period. The two bounds coalesce at R* =2 (where
E* =1 — m/2), which is the equilibrium point X =0, Y =Z=1.
In the pendulum analogy, this point corresponds to the mass ly-
ing in the horizontal position supported by the thrust, an obviously
critical configuration on the verge of either rotation or oscillation,
depending on how it is perturbed.

Reference 16 presents a three-dimensional surface representation
of the periodic boundary in the X¥Z state space. Whereas the present
two-dimensional result of Eq. (29) and Fig. 2 is less intuitive, it
is more compact and allows a simple test for periodicity of given
initial conditions (because E and R are completely determined by
the initial conditions on X, ¥, and Z). .

Determination of Period
When the angular velocity motion is periodic, the corresponding
nondimensional period P is given by

. Ormax 6
P / S (30)
. 9mm

VE+8—R20(6)

sin?(8/2)
sinh?(8/2)

major or minor axis torque

o(f) = {

intermediate axis torque 31

The turning points, Oy and O, are the zeros of the radicand. We
evaluate this integral numerically because there is no closed-form
solution for it. However, because the integrand is infinite at the
endpoints, we employ a cosine transformation:

0(5) = [(emin + emax)/z] + [(emm - max)/2] COSE (32)
to regularize the integral. This leads to
7‘5 — (emnx - 9miu> SinE d§ (33)
2 o VE+6(E) — R2[6(5)]

With this transformation, the period integral can be numerically
computed to any desired accuracy. When Opux — Bimin is small, the
integral can be approximated by

P =27/(R* £4)% (34)

where the + and — correspond to the intermediate-axis and minor-
axis cases, respectively.
The corresponding nondimensional frequency is given by

§=2r)P (35)

Using the time transformation given in Eq. (8), we denote the val-
ues for dimensional period and frequency as P ="P/h and v = AV,
respectively.

If we replace 8,y in Eq. (30) with 6 (varying from By to Bnax ), the
integral gives twice the nondimensional time 27, thereby implicitly
defining the solution 8(T) over a half-period. The solution over the
full period is obtained by reflection. This solution by quadrature has
notbeenused in the present work, although tis a feasible alternative.

Kinematic Equations
The body orientation can be described using Cayley—Klein pa-
rameters (see Refs. 18 and 19) [«, B1. These parameters are complex,
but satisfy a normalization | & [2+] 8 |* =1, sothatthey contain only
three degrees of freedom. The transformation between a body po-
sition P =[x, y, zI7 and its inertial space image P =[x,y 21"
can be expressed by P’ =RP, where

at— 2 i@+p) 2P _
R=real| —i(@?—pY o+ —2iaf (36)
20 ~2iaf  laff ~ B

with complex conjugation denoted by overbars. Clc?arly.this rota-
tion matrix is quadratic in [e, B8] and reduces to the identity matrix
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when « =1, =0. For example, a fixed point on the major axis,
P =10, 0, 117, will move along an inertial space trajectory

X'+ iy =20, 7= laf ~ |8 37
From this we see that the angle between the z and z’ axes, or
nutation,? is

® =2cos ! (Jee|) (38)
whereas the precession angle is
& = L(af) ’ (39

Similarly, any of the other commonly used Eulerian angle parame-
terizations can be expressed in terms of [«, 8]. The relations with
the 3-2~1 sequence is given in Ref. 10.

The reason for adopting the Cayley—Klein parameterization is that
[, B] obey linear homogeneous differential equations (in strong
contrast to Eulerian angles):

& = (lw,/2)a — (i0/2)B (40)
B=—(iw/2a — (iw,/2)B o))

where
0 = w; +iw, | 42)

These equations have a general invariant |a|? + |8|?, which, as al-
ready noted, is taken to be 1 by definition.

‘We have shown that the dimensional Euler’s equations (1-3) can
be reduced by scaling to a parameterless form [Eqs. (5-7)]. The same
scaling applied to the kinematic equations (40) and (41) yields

de =
i = E[KzZO{ - QB] 43
é _ i

where Q =« X +ik,Y. Therefore, the eccentricities of the body,
as measured by the «s, affect the orientation, even though they have
no effect on the scaled dynamics.

When the angular velocities vary periodically in time, the Cayley—
Klein parameters vary quasi periodically. Therefore, the kinematic
problem can be solved using Fourier—Floquet methods, as in our
earlier work!® on axisymmetric bodies. The essential idea is that
there must exist a solution of Eqs. (40) and (41), [«,, £,], of the form

oy = e () 45)
By =e7"u(r) (46)

where [u, v] are periodic with period P and s is a constant to be de-
termined. Once such a solution has been found, the general solution
can be constructed: :

o =Ciay +Cif, @n
B=Cify— Gy : (48}

where [C}, (3] are free constants that can be used to match any
initial conditions. To make use of this general solution, we need
efficient ways to determine the periodic functions [, v] and the
parameter 5. We will present three such methods.

One-Period Numerical Integration

When the angular velocities are periodic, the Cayley—Klein pa-
rameters are quasi periodic, which means they never repeat. Nev-
ertheless, the general form of these parameters, for arbitrary time
and arbitrary initial conditions, can be deduced from one particular
solution over one period of the angular velocities.

Let [a;, By ] be the particular solution of Eqs. (40) and (41) with
initial conditions [1, 0] at = 0. This solution can be obtained from

a numerical integration over one period 0 <7 < P. From the sym-
metries of Eqs. (40) and (41), the general solution for any initial
conditions [« (0), A(0)] must be

a = a(0)e;(t) — B(0)B (1) (49)
B = a(0)B1(t) + B(O)@, (t) (50)

However, because [a;, 8] have been determined only over one pe-
riod, we need to continue this solution into 7 > P to have the solution
for all time.

Let [ag0, By01 be the initial conditions required to produce a
solution of the form shown in Egs. (45) and (46). Then the conditions
that  and v repeat at the end of one period provide

cos(sP) = real{a, (P)] (51)
a0 = KBi(P) (52)
Buo = K (o (P) — e7*P) (53)

where K is an arbitrary normalization factor. It makes no difference
which of the infinite number of s values satisfying Eq. (51) is cho-
sen because different choices amount to redefinitions of the [k, v],
with no change in [«, 8]. It follows immediately that the periodic
functions [u, v] are

u= e [eeg00ty — ﬁqOBl] (54)

v =" [a081 + Byoi1] (3

which define [u, v] for all ¢ because they are periodic.
Finally, the fundamental solution [e;, 8] can be continued to all
t using

o) = —Gg0e7 U + By’ D (56)

B = @goe™ " v — Byoe™'i 57
where we have assumed a normalization |egq|? +B8,0/>= 1. The
solution for arbitrary initial conditions and arbitrary time can now
be evaluated from Eqs. (49) and (50).

Fourier-Floquet Techniques

Because the angular velocities and kinematic parameters [u, v]
are periodic, we can express them using Fourier series as follows:

[X Y Z u U]: Z [Xn Yo Zy u, U,,]E,, (58)

n=—00

where X, Y,, Z,, u,, and v, are the Fourier coefficients and E,, is
the complex sinusoid:

En = eim'tT — einvl (59)

One straightforward way of determining the Fourier coefficients
is by performing a Fast Fourier Transform (FFT) analysis of the
discrete time histories obtained from one-period numerical integra-
tion. The main advantage is that the algorithm is stored compactly
because relatively few coefficients must be retained.

However, the governing differential equations (5-7) and (40) and
(41), contain no more than products of periodic functions, so that a
purely algebraic attack on the Fourier coefficients is feasible. Substi-
tuting the Fourier series, Eq. (58), into the nondimensional Euler’s
equations (5~7), and equating the coefficients of E,, we find that
the coefficients of the angular velocities must obey

o
iniX,+ Y Yu-mZm = tubro =0 (60)
m= -0
oo
indYy = Y Za-mXm = Hybno =0 (61)
m=—x
o0
in9Zy+ Y Xu-m¥n = Hibuo = 0 62)
m=-—
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where 8,g is the Kronecker delta. To complete the set we also need
to enforce specified initial conditions

Z (Xn Yo Z:]=[X(O0) Y(O) Z(O)] (63)

n=-—00

This set of nonlinear infinite-dimensional equations (60-63) must
be solved for the coefficients [X,, Y., Z,] and the frequency .

Similarly, algebraic constraints on the kinematic solution can be
obtained by substituting Egs. (45), (46), and (58) into Egs. (40) and
41):

1 & -
s + nv)u, = '5 Z (Wl —m — DUy ) (64)

m=-o

1 &
(s +nvyy, = —"2' Z (@nltn —m + Vs —m) (65)

m=-o0

where v =h and @y, = ki, X, etc., are considered known. These
(infinite-dimensional) linear equations are homogeneous in [i,, va]
and can be solved with a normalization constraint uo=1. Once
a solution is found, for {u,, v,] and s, it can be renormalized to
[u)? + v} =1. . g

We investigate two methods (a Newton iteration and a perturba-
tion expansion) for solving both the dynamics problem (60-63) and
the kinematics problem (64) and (65). In both procedures the se-
ries are truncated by neglecting all terms with |n| > N. The retained
(2N + 1) coefficients are then estimated, by either Newton iteration
or perturbation. If any of the tail coefficients, n = £N, exceed the
error bound, then N is increased by 1 for the next iteration. The
iteration stops when the largest change in any coefficient is smaller
than the error bound. We usually begin with N =1, unless a bet-
ter initial guess is available. This ensures that the series will be no
longer than necessary to achieve the specified accuracy.

Newton’s Method )

For any given truncation level N, the algebraic equations can
be expressed compactly as F(U)=0, where U is a state vector
containing both the Fourier coefficients and the unknown frequency
(¥ or s). To implement a Newton iteration we need only define U,
F, the Jacobian dF/dU, and an initial guess for U.
~ For the dynamics problem [Egs. (60-63)], we take U to be the
column vector

v=[xT ¥y z7 " : 66)
where X, ¥, and Z denote column vectors obtained by stacking the
(2N + 1) Fourier coefficients X,, Y,, and Z,, for example,
X=[X_y X-yg1 - X2 X4 Xo Xi Xo -+ XN

67

The equations, then, are
[i5[nX + PZ — 11,6 |
iv[nlY — ZX — py6
ivnZ + XY — ;6

FO=| sy _x@ ©8)
ZnYn - Y(0)
| T.Z-2ZO
where
[n] = diag(—N,...,—2,-1,0,1,2,..., N) 6%

§=[..,0,1,0,...17 @0

and the matrices denoted by the caret () have Toeplitz structure, for
example,

Xo Xoi X
R Xy Xo X
X=1x, X X b

This matrix is padded with zeros in the upper right and lower left
corners to make X (2N + 1) square.
The Jacobian can readily be computed

riv[n] 2 P imXT
—Z iv[n] -X Y
dF 14 X ivln inlZ
o _ - 72
du 1 0 0 0 72
0 1 0 0
o 0 1 0 |

where 1 and 0 are (2N + 1) row vectors of ones and zeros, re-
spectively. We observe that there are 6(N + 1) equations and only
6N + 4 unknowns, so that the problem is overdetermined for a fixed
N. This is resolved by employing least squares.

Unless a better initial guess is available, we use the solution for
asymptotically large Z, which coincides with the solution for an ax-
isymmetric body as discussed in Ref. 10. This solution has constant
Z and simple harmonic X and Y. The corresponding coefficients
for intermediate-axis torque, p = [0, 1, 0]7, are

X = i{l1/Z(0) — Y(0) — iX(0),0, —1/Z(0®) — Y (0) + iX (0))7 /2
Y = —[1/Z(0) — Y (0) — iX(0), —2/Z(0),
1/Z(0) - Y(0) +iX(0)]" /2
Z=10,2(0),0I"
T=2Z0) (73)
and for the minor-axis torque case, s =[1,0, 017,
X =[1/Z(0) + X(0) —i Y (0), —2/Z(0),
1/Z0) + X (©) +iY (0)]7 /2
Y =i[l/Z(0)+ X(©) —iY(0),0,
—1/Z©0) + X(0) +iY (0] /2
Z =10, Z(0), 0]

7= 2Z(0) (74)

When the applied torque is very large, Newton’s method does not
converge with the guess as given. This problem is circumvented by
replacing the zeros in the initial guess for Z [Egs. (73) and (74)]
with a small nonzero number such as —2Z(0)/100.

For the kinematics problem, Eqgs. (64) and (65), we define a trun-
cated state vector

U=1[u"v",s]" 75)

where u and v denote column vectors of the (2N + 1) coefficients,
stacked as in Eq. (67):

u
FU) = 2sI — A) [v:| 76)
Ug — 1
where
" N
A= % v[n] —@ an
—d —&, — vin]
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and the matrix denoted with the dagger (*) indicates reverse order in
the counter [see Eq. (64)). The Jacobian, dF/dU, is easily obtained
from Eq. (76).

We note that Eq. (76) is a standard eigenvalue problem. In Ref. 10
we formulate this problem where the A matrix is banded due to
the simple harmonic nature of the transverse angular velocities. A
numerical algorithm is given that exploits the banded structure. In
the general case, the A matrix in Eq. (77) is full because of the
presence of higher harmonics; nevertheless, we could solve Eq. (76)
using the techniques of Ref. 10. In this paper we present several
alternative methods that are computationally more efficient in the
full matrix case.

We begin the kinematic iteration with the following initial guess
foru and v

u=[0 1 O], v=[0 0 0 (78)

The initial guess for the eigenvalue s is taken to be w,q/2, consistent
with the small-torque approximation.'®

Perturbation Method

The perturbation method consists of iteratively executing a par-
ticular arrangement of Eqgs. (60—65) to determine the Fourier coef-
ficients and the frequencies. For the dynamics problem (60-63), it
is convenient to combine X and Y into a single complex number ¢,
with corresponding Fourier coefficients ¢,:

r=X+iY (79)

Initially ¢, and Z, are set to zero. Next, we implement the fol-
lowing equations in the order given:

Zo «— Zy+ Z(0) ~ Z Zn (80)

{0 <_§0+ (l,u'—zzm{—In)/ZO (81)
Gea+O =) b 82)

P Znlam (83)

U P/l (84)

On <D lnluom @)

Zy < (1/4n5)(Qn — 0-a), n#0 (86)

tn = [1/(n¥ — Zo)(—iptduo — ZoLa + Pa), n#l (87

where p =, +ip,. At the end of each iteration, we check if the
magnitude of the tail-end Fourier coefficients and the changes in the
coefficients fall within the specified error bound. The iteration stops
when the convergence criteria are met.

A similar procedure is used for kinematic equations (64) and (65).
We begin this process with an initial guess of u, =8, and v, =0
and precomputed dynamics coefficients. The iteration equations are

1 - .
§ <« E Z(wzmu—m — O_pnVop) . (88)
. m

-t
2(s +nv —w,g/2)

B

X | —woltn + Z(wzm”n—m - d)-—mvn—m)]y n#0 (89)

- m

Un

-1

L S —
2(s + nv + w,/2)

X | —wy v, + Z(wmun—m + wzmvn—m)] 90)
L m

which are repeated until the accuracy criteria are met.

The solutions for u, and v, given in both the Newton and pertur-
bation methods generate a particular solution for a, and B,. We use
symmetry to get a second solution.

Numerical Tests

To determine the relative merits of the three solution methods, we
conduct numerical experiments. The one-period numerical integra-
tion method applies to any torque. On the other hand (for cases with
very large torque), Newton’s method and the perturbation method
sometimes diverge. The total number of floating point operations
(FLOPs) to achieve a fixed accuracy is used as the criteria for rating
the methods.

We use the one-period integration method to specify a yardstick
for comparing FLOPs. The unit measure includes the number of
FLOPs to solve for the period using Eq. (33), the number of FLOPs
to integrate the governing differential equations (5-7) and (40) and
(41) using an adaptive Runge—Kutta fourth/fifth-order integrator,
and the number of FLOPs to convert the discrete time histories to
Fourier coefficients via FFT. Henceforth we refer to this measure of
FLOPs with respect to the one-period method as unity.

We consider Galileo-like spacecraft maneuvers?' to test the algo-
rithms. The principal moments of inertia are

1, =2761 kg - m?, 1,=3012 kg - n?, I,=4627 kg - m?
on

which correspond to the nondimensional parameters, «,, Ky, and k;,

ke = 5.455, iy =5.614, x, = 1.661 92)
The following angular velocity initial conditions are chosen:
we(0) =wy(0) =X(0)=Y(0) =0 93
and
w,(0) = 0.33 rad/s (94)

Intermediate-Axis Torque Case

When torque is applied along the intermediate axis, p=
[0, 1, 01", the angular velocity vector is periodic for (essentially)
any initial condition and torque magnitude. For the initial condi-
tions specified, we find that Newton’s method always converges.
However, the perturbation method diverges in the kinematic solu-
tion where M, > 115N -m [Z(0) < 2.41] and in both (dynamic and
kinematic) solutions when M, > 490 N-m [Z(0) < 1.17].

To demonstrate that only a few Fourier terms are needed when
the torque is small, we select

My, =10N -m, [Z{0) =8.17] (95)

Here, all three methods converge for both the angular velocities and
the kinematic parameters, and the maximum nutation angle is quite
small, just over 0.09 rad or 5 deg (Fig. 4). Figure 5 shows the spectra

1.8

| — M,=300Nm
=" M =100Nm

1.4r T M= 10Nm

10 15 20 25 30 35
time (s)

Fig.4 Nutation angle ®() for M, =[10, 100, 300] N - m.
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Fig. 6 Angular velocity wy(t), wy(®), and w, () for M, =100 N - m.

for the nondimensional angular velocity coefficients X,, Yy, and Z,.
We notice that the largest Z, coefficient (Z) is at least four orders
of magnitude greater than the other terms, confirming the appropri-
ateness of the constant spin assumption in the small-torque case.'
The largest X, and Y, coefficients correspond to simple harmon-
ics (n =1, 0, 1), with all other terms being at least four orders of
magnitude smaller. For an error bound of 1079, Newton’s method
uses 1.1 times the number of unit FLOPs whereas the perturbation
method uses only 3% of the unit FLOPs. The success of the pertur-
bation method is due in large part to the rapid decay of the Fourier
coefficients (Fig. 5).
The moderately large torque,

M, =100N-m, [Z(0) = 2.58] 96)

corresponds to the nearly axisymmetric case presented in Ref. 10.
Time histories of the angular velocities, w,, @y, and w, are plotted in
Fig. 6. The spin rate w, is not constant (as assumed in Ref. 10), but
periodic with a 10% fluctuation in amplitude. The corresponding
nutation angle (Fig. 4) achieves a maximum value of 0.79 rad (just
over 45 deg). In this case, Newton’s method uses 2.7 unit FLOPs,
whereas the perturbation method uses only 17% of the unit FLOPs.
Figures 7 and 8 show the spectra of the nondimensional angular
velocity coefficients X, and the kinematic parameters u, and v,.
(The spectra of ¥, and Z, are similar.) From Fig. 8, we see that
we need just as many Fourier terms for the kinematic parameters
as for the angular velocities regardless of the tolerance chosen. The
number of terms required is proportional to the logarithm of the
tolerance.
We select a large torque,

My =300N-m, [Z(0) = 1.49] 7
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Fig. 7 Spectral plot: angular velocity X, for My =100 N -m.
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Fig. 8 Spectral plot: kinematic parameters u, and v, for M,
100 N-m.

to demonstrate the theory for an extreme case where the spacecraft
nutation angle @ is about 90 deg (Fig. 4). In this case, Newton’s
method uses 2.2 unit FLOPs. Although the perturbation method
converges for the dynamics problem, it diverges for the kinematic
problem. Further tests show that even when the exact Fourier co-
efficients are given as the initial guess, the perturbation method
diverges, and so the method is locally unstable.

Minor-Axis Torque Case

When torque is applied along the minor axis, u =11, 0, 0]7, the
motion is periodic when M, <215 N-m [Z(0) > 1.66]. Newton
iteration and the perturbation expansion for the dynamics both con-
verge over this entire range. However, the perturbation series di-
verges for the kinematics at torques of M > 85N -m [Z(0} < 2.64].

For the small torque,

M,=10N" m, [Z@©)=17.71] 98)

corresponding to the circle in Fig. 2, all three methods converge
for both the angular velocities and the kinematic parameters. The
maximum nutation angle is quite small, just under 0.104 rad or 6
deg (Fig. 3). Newton's method uses 1.7 unit FLOPs whereas the
perturbation method uses only 3%.

The large torque,

M, =200N-m, [Z(©) = 1.72] 99
corresponds to the x in Fig. 2, near the upper boundary. The angular
velocity time histories and spectra are similar to the results of Figs. 6
and 7. The nutation angle, shown in Fig. 3, achieves a maximum
of about 1.7 rad (97 deg) at 22 s. In this case, Newton’s method
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Table1 Summary of results for test cases

Intermediate-axis torque Minor-axis torque

My,N-m M, N-m
Method 10 100 300 10 200
One-period integration, 1 1 1 1 1
unit FLOPs .
Newton’s method, 1.1 2.7 22 1.7 17
unit FLOPs
Perturbation method, 0.03 0.17 Div® 0.03 Div?
unit FLOPs
Number of harmonics, 4 5 8 4 8

106 error bound

3 Algorithm diverges.

uses 17 times the number of unit FLOPs. The perturbation method
converges for the dynamics, but diverges for the kinematic solution.

Discussion :

In Table 1, we present a summary of the results for the five test
cases. For small to moderate torques, the perturbation method is
by far the most efficient. However, it diverges when the torque is
excessive. Newton’s method, although fairly robust, always uses
more FLOPs than the other two methods to achieve the (10~5) error
bound specified. The efficiency of the one-period integration method
could be improved by using a higher-order method, particularly
when high accuracy is required. . .

1t is apparent from these results that relatively few harmonics are
needed even for high accuracy. Once the Fourier coefficients have
been determined, the solution can be continued through any num-
ber of periods with negligible additional cost (FL.OPs). Of course
any error in the determination of the fundamental frequencies will
produce an accumulated phase error, but no accumulation of ampli-
tude error can occur. In contrast, if solutions are obtained by pure
numerical integration, both amplitude and phase errors will gener-
ally accumulate over time, and the cost will be proportional to the
number of periods simulated. To ensure a given error bound in the
Nth period, an even tighter integration tolerance must be imposed
throughout the simulation than would be needed for just the first pe-
riod. Therefore, the cost (in unit FLOPS) for a fixed terminal error
would be greater than N.

Conclusions

Floquet techniques are used to analyze the motion of an asym-
metric rigid body with principal axis torque. For typical spacecraft
torque levels, only a few Fourier terms are needed. Of the three
methods presented, the one-period integration is the most robust. It
is guaranteed to work whenever the motion of the angular velocity
vector is periodic. Whereas the perturbation method diverges for
large torque, for small to moderate torque it uses fewer FLOPs than
the other methods to achieve a specified accuracy. These methods
are more efficient than brute force numerical integration and may
find application in onboard computations for spacecraft maneuvers,
where speed, accuracy, and memory place severe constraints on nu-
merical algorithms.
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