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Modeling Issues Concerning
Motion of the Saturnian
Satellites

Steven G. Tragesser' and James M. Longuski®

Abstract

A study is performed to find the minimum-order model that can achieve an accuracy of
1 km in the dynamic propagation of the Saturnian satellites over a period of four years. The
need for such an investigation has risen out of recent advances in the accuracy of orbit deter-
mination techniques that are to be used in the Cassini mission. Effects such as Saturn’s
rings, tides on Saturn and the satellites, gravity harmonics on Saturn and the satellites,
other solar system bodies, small Saturnian satellites, coupling of the satellite attitudes with
translational dynamics, and general relativity are considered. A conservative assessment of
the effects that must be modeled is obtained with numerical simulation using a fixed set of
initial conditions for the satellites. This simple method is shown to exaggerate the impact
of new modeling effects, so a second method is employed where the initial conditions are
adjusted in order to minimize the perturbations of new effects. The second method suggests
that, in addition to the point mass interactions of the eight major Saturnian satellites, the
minimum order model includes zonal harmonics of Saturn up through eighth order, Saturn’s
rings, Janus, the asphericities of Mlmas and Enceladus, and the point mass effects of the
Sun and Jupiter.

Introduction

Recent developments in navigation software and data acquisition have improved
orbit determination to the point where modeling accuracy for a given planetary sys-
tem is an issue that must be investigated. Since navigation is often based on the po-
sition relative to natural satellites, knowledge of the spacecraft state can be no better
than that of the satellite ephemeris.

For the Cassini mission to Saturn, it is estimated that the dynamic model of the
Saturnian satellites must be capable of achieving a 1 km accuracy in the satellite po-
sitions over a period of four years (corresponding to the duration of the mission) [1].
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This requirement is made so that the model does not limit the accuracy of the orbit
determination.

In this paper, we find the minimum-order model that achieves the requirement for
the eight major satellites of Saturn, which from nearest to farthest are Mimas, Ence-
ladus, Tethys, Dione, Rhea, Titan, Hyperion and Iapetus. The method is primarily
numerical so the results are specific to the Saturnian system, but the same tech-
niques can be applied to other planetary systems. We investigate all gravity fields
that may significantly affect the satellite positions, namely:

e Saturnian harmonics

e Sun and planets (point masses)

e Rings

¢ Saturnian tides (using Love numbers)
Small satellites (Janus, Epimetheus, etc.)
Harmonics and tides at the satellites
Satellite attitude-translational coupling
General relativity

Nongravitational forces (drag, collisions, radiation pressure, Lorentz force),
oblateness of the Sun and exosolar system gravity fields (e.g. nearest star) are
deemed to be insignificant and are not analyzed. Furthermore, the parameters asso-
ciated with the gravity field (e.g. harmonic coefficients) are assumed to be known to
sufficient accuracy such that uncertainty in these parameters is not a significant
source of error (i.e. less than about 100 m over four years).

Modeling

The model of the Saturnian system is developed using a general form of the equa-
tions of motion that includes an inverse-square gravity field as the main term and an
additional term representing all other gravitational influences. The acceleration on
the ith body (of mass m;) due to n + 1 mutually interacting particles (the planet and
n satellites) and a perturbing acceleration, A;, is

55 0P o Gm; oPj oPi '

R =.§‘;]R0Pj__R0PiI3(R T=RT) + A (D
=
i

where the time derivatives are with respect to an inertial frame, R%" is the position
vector of the ith body with respect to a point fixed in that frame, and { =
1,2,...,n + 1. The first n position vectors refer to the satellites and the (n + D)th
position refers to the planet which will also be called R for convenience. The per-
turbing acceleration, A ;, accounts for such effects as the tides, rings, asphericity of
the bodies, etc. Since A; is often a function of coordinates that are relative to the
planet, it is convenient to solve equation (1) in terms of position vectors with a refer-
ence point located at the planet, “S.” Using the simple identity

ROPi — ROS + RSPi (2)
in equation (1) yields
.. o = Gm; ) . Gm .
R + R¥ = Z} [RSPj — i{SPilB(RSPJ — R%Y — ']Rsmls3 RS+ A 3)
=
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where mg is the mass of the planet. Setting P; = S in eqhation (3) we find
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ROS = }n: Gm;

AR
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Then substituting this expression into equation (3), we arrive at the final form of the
equations of motion for relative coordinates

. = Gmy . ; Gmg ; S Gm; ,
R = Z{ |RSPj _ izspila(Rspj - R¥) - lRSPilaRSP + A - ng |RSPjiBRSPJ — As
"*" ©)

where i = 1,2, ..., n. By solving for position relative to the planet, we have reduced
the degrees of freedom from 3(n + 1) to 3n. If we are interested in inertial positions
or the motion of the planet, equation (4) must be reclaimed. ‘

Equations (5) are integrated directly (by Cowell’s method) using a Runge-Kutta-
Verner fifth-order algorithm. We now investigate various perturbing accelerations.

Spherical Harmonics

The expansion for the gravity potential at coordinates r, A, L (see Fig. 1) of an
aspherical body of radius R, and mass M is [2]

1 = (Ru\' )
U= ~7GM 11— - J,Py(sin L)
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where J,, C,. and S,,, are coefficients determined by the asphericity of the body and

P, are Legendre polynomials.

To find the acceleration on the ith satellite (A; in equation (5)), the potential is
differentiated with respect to the Cartesian coordinates. The acceleration on the
planet, A, is simply the reaction force per unit mass, found by summing the scaled
A;’s from all the satellites.

>

A

FIG. 1. Spherical Coordinate System.
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Saturn Tides

The potential due to a tidal distortion in a body of mass m' located at (+', A’, L)
is [3]
* G lk R ! R I+1
=3 ’(—-,"—’) (—f’—’> P((sin L)P,(sin L)
=2 F r r

gl El ; ! cos[m(/\ — )1Py(sin L)P,,,(sin L' )} %)

where k, are the dimensionless Love numbers [4]. Comparing equation (7) with
equation (6), we see that the tides can be modeled as spherical harmonics with the
time-varying coefficients:

. ml Rp[ {+1 ) ,
Ji=—\—|—| kPfsinL) ®
M r

Cim d—=m!{m\ [R\"" . cos(mX)
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S,,,,} Crm\a )\ ) BEREREY X G ©
We ignore orbital evolution due to energy dissipation from viscosity since it
is only influential over much longer periods of time than we deal with in this

study. Burns [5] and Peale et al. [6] include this effect in their analysis of tidal
phenomena.

Rings

The accelerations at a point (x, y, ) due to a disk of radius a and density o is [7] -

X = [—4G(Txa”2/(kp3’2)] {a - %kz)K(k)_ — Ek)}
y = [—4Goya"(kp* ] {(1 — 3k)K(k) — E(k)} (10
Z=2Go(p> + 2> + a® + 2pa) ’K(k) — 2Go sign(z) {5 + Fsign(a — p)

— sign(a — p) [(E(k) — K(K)F(0,k) + K(K)E@, k')]}

where K(k) and E(k) are complete elliptic integrals of the 1st and 2nd kind, F(6, k')
and E(6, k') are incomplete elliptic integrals of the 1st and 2nd kind and

p2 = x2 + y2
k* = dpa/(p* + a* + 2pa)
kK = (1 _ k2)1/2 (11)

6 = tan”'|z/(p — a)|

Similar formulations are in Scheeres and Vinh [8] and Lass and Blitzer [9]. To get'
the acceleration due to a disk with inner radius a; and outer radius a,, we find the
acceleration due to a disk of radius a, from equation (10) and subtract the accelera-
tion due to a disk of radius a;. »
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Satellite Attitude-Translational Coupling

The potential at a distance r from the center of mass of a satellite with mass m
is [10] ‘
Gm 1
U=-—|1+
s

r mrz

L+ I+ 1~ 31)] (12)

where I, I,, and I, are the principal moments of inertia of the satellite and I is the
moment of inertia about the line connecting the point of interest and the center of
mass. This expression assumes that the largest dimension of the satellite is much
smaller than the distance r.

Without loss of generality, we assume I, < I, < I,. Then, to further simplify the
analysis, we assume that the & (longest) axis is always along the radial line to the
planet and the Z (shortest) axis is normal to the orbit plane (so the body is syn-
chronously locked in its stable configuration). The potential due to the satellite is
then

Gm

v--2 1
r

Zmrz(—ZIX + I, + IZ)j| (13)

Taking the derivative of the potential leads to the perturbing acceleration on the as-
pherical body with position r relative to the planet of mass M:

A = GMQIL, — I, — 1) Is"

' 2m r a4
This force is aligned with the position vector because a principal axis of the satellite
is always pointing toward Saturn.

Analysis could also be performed by modeling the satellite’s aspherical gravity
field using gravity harmonics. However, formulation (14) is more convenient for ir-
regularly shaped satellites where a large number of harmonics may be required to
obtain a reasonable approximation of the mass properties.

Other references in the literature include Goldreich and Peale [11] and Vinh [12]
who deal with the special case of resonant spin rates and stability of satellite attitude

dynamics.
Relativistic Effects

The perturbing acceleration provided by the parameterized post-Newtonian met-
ric theory of gravitation is given by Mease et al. [13]:

Ai = Gm{[2(B + 7) Gm/r) — y(k - Dlr + 2(1 + y) (¢ - DEY/(°c)  (15)

where c is the speed of light in vacuo and B and vy are the Eddington-Robertson-
Schiff parameters. Nominal values of B = y =] are used for the analysis here.
This is equivalent to the formulation by Will [14], for a non-rotating reference
frame.

Results for Fixed Initial Conditions
Baseline

To determine the effect of new additions to the dynamic model, a baseline
reference must be constructed. Our baseline model is the model used in 1996
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by the Navigation and Flight Mechanics Section at JPL. It consists of the
following [1]:

¢ Mutual interactions of the eight major Saturian satellites (Mimas, Enceladus,
Tethys, Dione, Rhea, Titan, Hyperion and Iapetus) modeled as point masses

® J2, J4 and J6 zonal harmonics of Saturn

¢ Gravitational perturbations due to the Sun and Jupiter

To verify our model, the positions of the satellites from our simulation of the
baseline were compared to those of JPL (which we will henceforth refer to as the
1996 JPL baseline model). The differences in position over four years (1461 days)
were less than 16 m.

The perturbation of a particular refinement to the dynamic model (e.g. addition
of the ring gravity field) is defined to be the difference between the satellite posi-
tions from the baseline simulation and a simulation that includes the new effect. We
first assume the initial conditions from the 1996 JPL model to be perfectly correct,
so they are kept constant when introducing a new model. It turns out that this fixed
initial condition approach exaggerates the perturbations, so small changes in the ini-
tial satellite states are considered in a later section.

Due to higher-order interactions, the changes in the dynamics of the system from
a new modeling effect is dependent on the baseline model, so the results given below
may vary somewhat for a different choice of baseline. For simplicity, we assume that
new effects can be modeled as independent perturbations, so they can be addressed
one at a time.

Higher-Order Zonals

We now investigate the effect of higher-order zonals (that is, terms of 8th order
and higher) on the positions of the Saturnian satellites. First, we simulate the well-
known effect of Saturn’s oblateness (the J, term of equation (6)) to get a reference
acceleration from which we can estimate the influence of higher-order terms. We
numerically arrive at the effect due to oblateness by eliminating that term from the
baseline model. The magnitude of the difference in the satellite position vectors, be-
tween the two simulations (the baseline and the one excluding J,), Ar, is plotted in
Fig. 2. The positions of the eight satellites change radically when oblateness is not
included in the baseline; a maximum effect of 7.5 X 10° km is shown for Dione.

These perturbations are caused by precession of the argument of periapsis, w, and
the longitude of the ascending node, (). Since these precession rates are integral
multiples of each other (for nearly circular, equatorial orbits) [2], the Ar will be pe-
riodic over long periods of time (see Fig. 2). However, for shorter lengths of time
and for higher-order harmonics, the effect on position appears to be secular (as it
does for the satellites with a large semi-major axis in Fig. 2). Thus, we can estimate
the change in position for J, through Jy, based on the apparent secular rate of change
of Ar from the case of J,. _

Mimas is the most strongly influenced by the spherical harmonics (since it is
closest to Saturn), so we will use its perturbation as the metric by which to assess
how many terms must be accounted for in the zonals to achieve 1 km accuracy. The.
secular rate of change in the pertubation of Mimas® orbit, determined from the
linear portion (the first 20 days) of Fig. 2 is

%(Ar) = 6304 km/day (16)
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FIG. 2. Effect of J;.

For nearly equatorial orbits, the lowest-order term (1/r"** for J,) dominates the ac-
celerations derived from equation (6). From this term we can arrive at simple ratios
between the J, acceleration and that of the higher-order harmonics. These are given
in the second column of Table 1. Multiplying this ratio by the secular rate of change
of Ar from equation (16) and a time of four years gives an approximation of the ef-
fect that a particular harmonic will have on Mimas. From Table 1 this estimate in-
dicates that zonals must be included up through Js for 1 km accuracy.

The actual effects of the higher-order zonal harmonics are found numerically by .
including the appropriate force model, derived from equation (6), in the simulation.
The plot for Jg is shown in Fig. 3. The maximum effect matches the semi-analytic
approximation quite closely. The secular change in position after four years is
10.9 km with a short period amplitude of 0.63 km. This indicates that this effect
must be modeled for 1 km accuracy. The result for Jio (not shown) also matches the
approximation very well. This term has a secular perturbation of 0.25 km with a
short period amplitude of 0.04 km.

TABLE 1. Approximate and Actual Effects of the Zonal Harmonics on Mimas

J./J7, Acceleration Approximate Secular Effect Actual Secular Effect®
n Ratio (km) (km)
4 7.38 X 107° 6.80 X 10* : 6.75 X 10*
6 1.02 x 1074 940 950
8 1.17 X 107° 10.8 10.9
10 2.71 X 1078 0.25 0.25

“Found by numerical simulation.
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FIG. 3. Effect of Jg.

Tides

A tidal bulge forms on Saturn due to the gravitational pull of each of the satel-
lites. Since Titan is the most massive satellite, we investigate the distortion due to
this body first. Titan’s mass and position are substituted into equation (9) to get the
time-varying coefficients C;, and S3, which are then substituted into the potential
function for an aspherical body (equation (6)).

The difference in the satellite positions between the baseline and the model in-
cluding the tide caused by Titan is shown in Fig. 4. The perturbation to the orbit of
Mimas is significant. After four years, the change in position is nearly 3 km and is
primarily due to a secular change in true anomaly. (Tides caused by the gravita-.
tional pull of Dione, Tethys and Rhea are also investigated; maximum perturbations
are given in Table 4. The tides due to Mimas, Enceladus, Hyperion, and lapetus
were approximated and found to be unimportant.)

This change in the true anomaly is due to a small change in the semi-major axis.
There is no secular change in semi-major axis since the same amount of energy that
is imparted to Mimas by the tidal bulge during one part of the orbit is taken away
during the other part of the orbit. (See Burns [5] for a more complete description of
the transfer of energy.) However, the mean value in the oscillation of a is not neces-
sarily zero, depending upon the initial conditions. :

To illustrate how bias occurs in the semi-major axis, we investigate a 51mple case
of two bodies in coplanar, circular orbits. (See Figs. 5 through 7.) The tidal bulge on
the planet is aligned with the outer, massive satellite. We simulate three sets of ini-
tial conditions to show the relationship between the initial geometry of the satellites
and the bias in a of the small, inner satellite. If the bulge initially lags the
inner satellite (Fig. 5), the transverse component of the gravity force is opposite
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FIG. 4. Effect of the Saturn Tide Due to Titan.

the satellite velocity and a begins to decrease. The net amount of energy transferred
to the inner satellite is zero over half of a synodic period (=0.29 days), so the semi-
major axis returns to its initial size. However, the mean value of a has a negative
bias and the period is therefore shorter than the baseline. Conversely, if the bulge
initially leads the inner satellite (Fig. 6), the mass value of a is positive and the pe-
riod is longer than the baseline. Halfway between these two cases there is no bias
(Fig. 7) and the difference in position between the nominal and tidal simulations is
minimized.

This case illustrates two faults in the simple approach of simulating the new mod-
eling effect using the same 1996 JPL initial conditions that were used in the baseline
(i.e. keeping fixed initial conditions between the two simulations). First, the size of
- the perturbation can be sensitive to the time at which the modeling effect is intro-
duced. Second, a new modeling effect (that changes the gravity potential), in
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FIG. 5. [Initial Orientation Causing a Phase Lag.
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general, leads to a secular change in position because of the perturbation to the
mean motion. This may exaggerate the actual effect since the mean motion is an in-
variant quantity that is known a priori (e.g. Titan has been observed for over
300 years and its period is well known). Both of these problems can be minimized
or eliminated by an appropriate change in the initial conditions when simulating the
new modeling effect. This is addressed later in the paper. »

Satellite Attitude-Translatibnal Coupling

Distortions away from sphericity have not been directly observed for the Satur-
nian satellites, so we must rely on theoretical values to determine the inertia proper-
ties. Zharkov et al. [15] provide values for the semiaxes of the satellites by assuming
equilibrium of the tidal and centrifugal potential. Conservative values (based on
uniform satellites) for the semiaxes a (directed at the planet), b (along the orbital
motion) and ¢ (perpendicular to the orbital plane) are given in Table 2. Except for
the irregular satellite Hyperion, the largest deviations from the mean radius occur at
Mimas where the tidal force and spin rate are largest.

From a, b and ¢ we obtain the inertia properties for an ellipsoid which we then use
in equation (14) to simulate the effect of asphericity. The perturbation of the posi-
tion of Mimas reaches a maximum of 390 km in 4 years which is almost entirely
due to a secular change in true anomaly. Effects for Enceladus, Tethys, Dione, Rhea

-4
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A= Ag = 45°
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Time (days)

FIG. 7. Initial Orientation Causing No Phase Change.
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TABLE 2. Semiaxes of Saturn’s Satellites [15]”

Satellite a (km) : b (km) ¢ (km)
Mimas 214.5 201.4 197.0
Enceladus 259.8 252.5 250.0
Tethys 541.6 532.9 530.0
Dione 570.0 561.2 560.0
Rhea 767.7 765.7 765.0
Titan 2575.5 2575.1 2575.0
Hyperion 175.0 120.0 100.0

“No values are provided for Iapetus.

and Titan (see Table 4) are also significant. While Hyperion seems a likely candi-
date for investigation because of its irregular shape, it tumbles chaotically. Thus, the
effect of Hyperion’s asphericity should average out, so we will not consider it here.

Other Solaf System Bodies

There are several bodies external to the Saturnian system that must be investi-
gated. The results from a simple force analysis are presented in Table 3 to indicate
the worst-case effects due to other bodies at their closest approach distances. The
criterion is that the relative acceleration must be less than 1 X 107" km/s* for a
change in lapetus’s position of less than 1 km in 4 years. These results are only a
rough approximation and are overly conservative. However, they can be used to rank
order the relative effects of the planets.

From the simple force analysis, Jupiter should have the largest effect. Simulation
shows that a maximum perturbation of 250 km occurs at Iapetus. Uranus is the next
candidate from Table 3. The effect due to this planet (also found by simulation) of
680 m is less than the 1 km requirement. The list in Table 3 indicates that all the
other planets will have a smaller effect, so Jupiter is the only planet that must be
included for 1 km modeling accuracy.

_ Rings

Equations (10) are propagated for a ring mass of 3 X 1077 Saturn masses, which is
the upper bound assumed by Campbell and Anderson [16]. Uniform density is as-
sumed with an inner radius of 70,000 km (corresponding to the C Ring) and an

TABLE 3. Accelerations Due to Other Solar System Bodies

Planet Perturbation acceleration (km/s?)
Mercury 2.5 X 107
Venus 43 X 1078
Earth 5.8 x 107"
Mars 7.5 X 107
Jupiter 1.4 x 1071
Uranus 58 x 107"
Neptune 7.1 % 1075

Pluto 1.1 X 107%
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outer radius of 137,000 km (corresponding to the A Ring) [5]. The results are given
in Fig. 8 and show that the rings have a large impact on the satellite motion.

To investigate how the rings affect the satellites, the perturbations (between the
baseline and ring simulations) to true anomaly, Af, argument of periapsis, Aw, and
longitude of ascending node, Af}, are plotted in Fig. 9. (Changes in the elements a,
¢ and i are not plotted because they are nearly constant.) The mechanics involved
here are very similar to those of J,. The gravitational attraction of the ring causes a
secular change in {) and w and the ratio between the slopes of these two variables,
1/2, is the same as for the case of oblateness.

A smaller estimate for ring mass [16], 3 X 107 Saturn masses, is also investi-
gated. The maximum effect (at Mimas) of 150 km shows that decreasing the ring
mass by an order of magnitude decreases the effect linearly.

Summary and Simultaneous Simulation of All Effects

A compilation of the results from the previous subsections is given in Table 4. The
maximum perturbation of each satellite is given for all the effects considered that
are not already contained in the 1996 JPL baseline model. Effects which decrease
the mean motion (or yield a negative slope for the equatorial phase angle) are given
a negative sign by convention, since the perturbation in position tends to cancel ef-
fects that increase the mean motion. These perturbations are so large that we only
provide 1 km resolution. As described above (in the section on tides), the errors pro-
duced by using fixed initial conditions from the 1996 JPL baseline exaggerate the
influence of the new effects. A method for reducing this artificial amplification is
discussed in the section entitled “Results for Adjusted Initial Conditions.” :

We investigate the validity of the assumption that new modeling effects are inde-
pendent by simultaneously propagating all the effects. The maximum difference be-
tween the baseline and the dynamic model including all of the perturbations is given

1600 - T .
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1400_ ............................... ............................. _1
1200- ..... ‘x ............................ -Encela,dus
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FIG. 8. Effect of Saturn’s Rings (Annulus Model).
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FIG. 9.  Ring Effect on Orbital Elements of Mimas (Fixed IC’s).

in Table 4 under “Simulation Result.” The maximum perturbation at Mimas is
2033 km after 4 years. This closely matches the value of 2032 km determined by
arithmetic addition of the individual perturbations to Mimas given in Table 4. Simi-
lar agreement occurs at all the satellites when comparing the simulation to the addi-
tion of individual perturbations, indicating that a superposition rule holds for
variations in the gravity model.

These results imply that the only effects in Table 4 that do not have to be modeled
(for 1 km accuracy) are the asphericity of Titan, Jyo, Uranus, and the Saturn tide due
to Rhea. This provides a very conservative bound for the phenomena that must be
modeled.

Equivalence of Rings and Spherical Harmonics

The similarities in the behavior caused by oblateness and the rings raises the
question of whether the rings can be modeled using gravity harmonics. The poten-
tial of a thin disk of uniform density o and radius a is

a (2 d
U= “GUJJ xdpdx
oJo Vx? + r2 — 2xrcosLcos ¢

an

where r and L are the spherical coordinates of the point of interest (assumed here to
be outside of the rings) as shown in Fig. 1 and x and ¢ are the polar coordinates of
a differential element of the disk. Using a series expansion, it is straightforward to
obtain the expression

1 @ n
Vx2 + r2 — 2xrcosLcosp = — 2, (‘)‘C“) P,(cos Lcos ¢) (18)
.

¥ n=0



288 Tragesser and Longuski

TABLE 4. Summary of Effects (Fixed IC’s)*

Satellite
Effect Mimas Enc. Tethys Dione Rhea Titan Hyper. Iapetus
Rings 1529 1141 965 816 665 423 423 242
Mimas Asphericity 390 0 0 0 0 0 0 0
Enceladus Asphericity 0 126 0 2 0 0 0 0
Tethys Asphericity 3 0 216 0 0 0 0 0
Dione Asphericity 0 17 0 112 0 0 0 0
Rhea Asphericity 0 0 0 0 17 0 0 0
Titan Asphericity 0 0 0 0 0 1 1 0
Janus 110 34 4 30 1 -14 -14 -8
Epimetheus 10 -8 6 -3 4 7 6 3
General Relativity —25 —-18 12 -8 =5 -1 -1 0
Js of Saturn 12 1 0 0 0 0 0 0
Jo of Saturn 0 0 0 0 0 0 0 0
Tethys Tide 5 1 0 0 0 0 0 0
Dione Tide 0 4 1 0 0 0 0 0
Titan Tide -3 -1 -1 0 0 0 0 0
Rhea Tide 1 0 0 0 0 0 0 0
Uranus 0 0 0 0 0 0 0 1
Total Sum 2032 1297 1179 949 682 416 415 238
Simulation Result 2033 1296 1179 948 681 416 418 238

“Perturbations with respect to the 1996 JPL baseline model to 1 km accuracy.

Substituting equation (18) into equation (17) and integrating gives the following po-
tential for the disk

GM ;s 1 2 1 3 M
U= — 224kl _ a PysinLl) + — - — 2 Py(sin L)
4 \r 4 6 \r

6
_1 3 i(%) Ps(sin L) + } (19)

which agrees with Danby {17]. This is the same form as the potential of an aspheri-
cal body, given by

. GM R, \? R, \*
U= _—”’[1 - J2<T”l> Py(sinL) — J4<Tp1) Py(sin L)

r

Rpl 6 .
—Js ~ >P6(SlnL) + .- (20)

Thus, the system of Saturn and its rings is equivalent to a single aspherical body
with the following characteristics:
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From equation (21) we find that the effect due to the rings is indistinguishable
from the zonal harmonics if Saturn’s mass and zonal harmonics are unknown. In
this case, the ring mass cannot be determined from the satellite dynamics. On the
other hand, if Saturn’s mass or zonal harmonics can be accurately calculated by
some means other than the satellite dynamics (e.g. hydrostatic equilibrium calcula-
tions), then the satellite dynamics can be used to calculate ring mass.

The values of the equivalent zonal coefficients (for a ring mass of 3 X 1077 Sat-
urn masses) are given in Table 5. When comparing the two ring models (elliptic
functions versus a series of zonal harmonics), terms up through the Ji¢ zonal har-
monic must be modeled in order to achieve 1 km accuracy over 4 years (for fixed
initial conditions). When compared to the zonal coefficients of Saturn [3, 16], we
see that the equivalent harmonic coefficients, calculated from equations (21), are
much larger for order Jy and higher. (In the absence of any data in the literature,
zonals higher than Jj, are set to zero for Saturn.) This suggests that the ring mass is
the primary contributor to the higher-order zonal coefficients that would be ob-
served from the satellite dynamics.

Results for Adjusted Initial Conditions
Method

. (Jé)eq = J6

We have seen how keeping the 1996 JPL baseline initial conditions (IC’s) fixed
when adding a new modeling effect can exaggerate the difference between the new
model and the baseline by perturbing the mean motion of the satellites. To mini-
mize this problem we can keep the mean motion invariant with an adjustment to the
IC’s since the period of an orbit is sensitive to changes in position and velocity.

We can reduce the difference between the baseline and the new modeling effect
even further by changing the mean motion so that the phase angle in Saturn’s

TABLE 5. Saturn Zonal Harmonics and Equivalent Harmonics for Ring System

Value attributed Equivalent value

Parameter to Saturn [3, 16] of ring/planet system
Js 1.62980 X 107? 1.629848 X 1072
Js —9.150 X 107*. —9.163 x 107*
Je 1.030 x 107* 1.073 x 107
Js —1.0 X 107? —2.6 X 107°
Jio 2.0 X 1078 6.3 X 107°
Ji 0 -2.5x%x 107
Jia 0 1.0 x 1073
Jie 0 —4.4 x 1072
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equatorial plane is matched between simulation of the baseline and the new model.
Most of the satellites are in nearly circular, equatorial orbits, so precession of the
longitude of the ascending node and precession of the argument of periapsis are dy-
namically similar to changes in the mean motion of the satellite. (Of course, as the
orbit becomes more circular and more equatorial these angles become indistinguish-
able.) Therefore, we can approximately match the equatorial plane phase angle by
removing any secular effects in AQ) + Aw + Af. Precession of the node and line of
apsides is insensitive to small changes in the satellite states, so a zero mean for
AQ + Aw + Afis attained primarily by manipulating the mean motion.

Illustrative Example

We will now demonstrate our method of adjusting IC’s for the analysis of Saturn’s
rings. Since maintaining a zero mean for the in-plane phase angle involves only one
degree of freedom, we elect to keep the initial osculating elements eq, io, ¢, ®o,
and 6 invariant. Following this procedure, we calculate the desired adjustment to
the initial position and velocity of Mimas (with respect to the 1996 JPL IC’s) to be

Arg = (—33% — 26§ + 5%) m

Avo = (0.43% — 0.61§ — 0.012) mm/sec (22)

Propagating the ring model for this altered set of IC’s yields a maximum perturba-
tion of 20 km after 4 years. This is only 1.3% of the effect for fixed IC’s shown in
Fig. 8 (which is 1530 km for Mimas). The change in the initial state is vanishingly
small compared to the known accuracy of these variables.

~ The perturbations of the true anomaly, argument of periapsis, and longitude of
the node are plotted in Fig. 10. When comparing this plot to Fig. 9, we see that ad-
justment of the IC’s has not changed the slopes of Aw and AQ (although the short
period amplitude appears somewhat diminished). With the adjustment in
equation (22), however, we are able to cause a slower mean motion that offsets the
precession of the node and line of apsides.

Results

The IC’s were adjusted to match the equatorial plane phase angle for all of the
modeling effects considered above. The maximum perturbation of each satellite (to
0.01 km resolution) is given in Table 6 for each effect considered. In most cases, the
perturbations for fixed IC’s are reduced by more than an order of magnitude. We
assign negative values to effects that precess the line of apsides opposite the direc-
tion of mean motion and to effects that precess the line of nodes in the +% direction.
These tend to offset the perturbation of the positive effects.

In our approach we assume that perturbations to each of the satellites are inde-
pendent (individual changes in the IC’s do not account for satellite interaction).
Therefore, in cases of resonance, where coupling between satellites is significant,
our method is not as effective in reducing the maximum perturbation. The most ob-
vious example is the Saturn tide caused by Dione. Due to the 2:1 resonance between
-Dione and Enceladus, the perturbation of 3.9 km occurring at Enceladus for fixed
IC’s is only reduced to 0.85 km for adjusted IC’s (see Table 6).

In some cases the resonance could be somewhat compensated for by special con-
sideration of the IC adjustment. To illustrate the method, we take the case of adding
Janus to the baseline model. For fixed IC’s, Janus perturbs the positions of both
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FIG. 10. Ring Effect on Orbital Elements of Mimas (Adjusted IC’s).

Titan and Hyperion by 14 km (as shown in Table 4). Using this perturbation to de-
termine new IC’s for Hyperion leads to poor results since most of the 14 km effect
occurs indirectly through the 4:3 resonance with Titan. To eliminate this interde-
pendence of the satellite perturbations, we perform new simulations (of both the

TABLE 6. Summary of Effects (Adjusted IC’s)”

Satellite
Effect Mimas Enc. Tethys Dione Rhea Titan Hyper. Iapetus
Rings 19.5 4.6 1.2 030 0.09 0.16 0.80 0.37
Mimas Asphericity 8.2 0 0.07 0 0 0 0 0
Enceladus Aspher. 0 4.0 0 075 0 0 0 0
Janus 1.8 0.60 012 002 001 003 -—0.15 0.24
Js of Saturn 1.1 0.33 0.01 0.03 001 0.02 0.04 0.08
Tethys Asphericity 0.07 0 =005 O 0 0 0 0
Dione Asphericity 0 —0.21 0 029 O 0 0 0
Rhea Asphericity 0 0 0 0 003 O 0 0
Titan Asphericity 0 0 0 0 0 0.04 0.09 0
Epimetheus 0.35 0.48 002 0.05 0.01 0.03 0.07 0.09
General Relativity 0.56 0.82 004 0.09 001 005 0.24 0
Tethys Tide 0.14 0.08 015 002 O 0 0.05 0
Dione Tide 001 —0.85 0 011 0 0 0 0
Titan Tide 0 0.01 0 0 0 0.01 —0.02 0
Rhea Tide —0.01 0.01 0 0.01 0.02 0.01 0.05 0
Total Sum 31.7 9.87 1.56 1.67 018 035 1.17 0.78
Simulation Result 29.1 7.76 1.18 102 038 0.73 5.07 2.16

“perturbations with respect to the 1996 JPL baseline model to 0.01 km accuracy.
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baseline and the baseline plus Janus) without Titan in order to isolate the direct ef-
fect of Janus on Hyperion and to determine the necessary differential correction to
the 1996 JPL IC’s. (The analogous simulation without Hyperion is not required
since Hyperion is so small that its influence on Titan is negligible.) Using this ap-
proach, the maximum perturbation at Hyperion is only 0.15 km (in the simulation
with Titan reinstated) as opposed to 4.0 km for the unmodified method.

Deducing the Minimum-QOrder Model

To determine whether the superposition rule observed for fixed IC’s applies when
secular changes in phase angle have been removed, we adjust the IC’s for a simula-
tion including all the effects from Table 6. The difference between the baseline and
this all-inclusive simulation is given under “Simulation Result” in Table 6. The
maximum change in the position of Mimas is reduced to 29 km for adjusted IC’s
(versus 2033 km for fixed IC’s). Adding the perturbations from the right column of
Table 6 yields a value of 32 km, so arithmetic addition of individual effects appears
to apply. The rule is least accurate when coupling is significant in the satellite dy-
namics as in the case of Hyperion (due to resonance with Titan).

We now deduce the minimum-order model that achieves a 1 km accuracy, where
the simultaneous simulation of all effects is taken to be the truth model. To arrive at
the minimum model, we eliminate unimportant effects from the truth model and
estimate the resulting perturbation to each satellite. Using the data in Table 6 and
the rule of arithmetic addition, we find that the last ten items in Table 6 do not need
to be modeled for 1 km accuracy. By adding the individual perturbations from these
terms, an error of 1.1 km is predicted for Mimas when this model is compared to
the truth model. Thus, the minimum-order model should include Saturn’s rings, as-
phericity of Mimas, asphericity of Enceladus, Janus, and Jg along with the 1996 JPL
baseline.

Numerical results validate this conclusion. Using the prescribed minimum model,
we are able to numerically match the truth model to an accuracy of 1.1 km or better
for all the satellites as shown in Fig. 11 (with the satellites labeled from top to bot-
tom in descending order of maximum perturbation). The resulting maximum errors
are 1.06 km for Mimas, 0.66 km for Enceladus, 0.19 km for Tethys, 0.31 km for
Dione, 0.03 km for Rhea, 0.09 km for Titan, 0.18 km for Hyperion, and 0.07 km for
Iapetus. The required changes in the satellite initial conditions are less than 3 m and
0.8 mmy/s. Thus, this minimum-order model fulfills the requirements of the study
with an unobservable change in the initial state.

Conclusion

Two methods are presented for determining the effects that must be retained in a
model to achieve a given accuracy. Using a fixed set of IC’s provides a conservative
assessment. Our opinion is, however, that the results for adjusted IC’s provide a
more realistic guide for determining the effects that must be modeled. The IC’s
themselves are not perfectly known quantities, but are solved for in the orbit deter-
mination process. Therefore, allowing minor adjustments in the state seems reason-
able. With this approach, adding the effects of Saturn’s rings, Janus, Jg, and
asphericities of Mimas and Enceladus to the 1996 JPL baseline model ensures 1 km
accuracy over four years. The modeling of the rings can be accomplished using ei-
ther the elliptic function formulation or zonal harmonics.
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FIG. 11. Comparison Between Minimum-Order Model and Truth Model (Adjusted IC’s).
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