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Floquet Approximation for a Nearly Axisymmetric
Rigid Body with Constant Transverse Torque

R. Anne Gick,* Marc H. Williams," and James M. Longuski*
Purdue University, West Lafayette, Indiana 47907-1282

We use Floquet theory to solve the problem of large angular excursions of the spin axis of a rigid body. A
semi-analytic solution is presented for the attitude motion of a spinning nearly axisymmetric spacecraft subject
_ to constant transverse torques. Based on the assumption that the spin rate remains nearly constant, we employ a
Cayley-Klein representation of the kinematic equations to cast them as a linear set of differential equations with
periodic coefficients. The attitude solutions are computed using Fourier series expansions. For cases where the - -
applied torque is small enough, we present a simple approximate solution. In addition, a lower bound is given
for the truncation level of the Fourier series. For the axisymmetric case (where the assumption of constant spin
rate is exact), highly accurate solutions can be ebtained with relatively few Fourier terms for typical spacecraft
maneuvers with purely transverse torque. However, when the solution is applied to the nearly axisymmetric case,

the errors are driven by the variation in the spin rate.

Introduction

INCE Gramme! defined the problem of the self-excited rigid

body, numerous investi gators'~? have contributed approximate
analytic solutions for its motion. The body is free to rotate about a
point fixed in the body and inertial space under the action of a torque
vector arising from internal reactions that do not appreciably alter
the mass or mass distribution. The forced motion of a spacecraft due
to thruster torques is a particularly relevant, modern example of the
self-excited rigid body. .

In the literature a number of simplifying assumptions are used
to put the nonlinear differential equations involved into tractable
form for analytic integration. In dealing with Euler’s equations of
motion, most authors assume the body is axisymmetric (or nearly
axisymmetric) and that the body-fixed torque components (which
may act on up to three axes) are constants. To solve the associ-
ated kinematic differential equations, the usual approach is to use
Eulerian angles and then to make small angle approximations (for
example, on two of the angles) to obtain approximate, closed-form
analytic solutions. Recently, interest has been stimulated in other at-

titude representations (see the excellent survey paper by Shuster'©). .

A new parameterization developed by Tsiotras and Longuski'! has
been employed to find an approximate solution® forlarge-angle mo-
tion of an axisymmetric or nearly axisymmetric rigid body due to
“ constant torque about three body axes. No exact solution is known
(even for the axisymmetric case) of constant torque on three axes.
In this paper we show that the axisymmetric case of constant trans-
verse torque, i.e., no axial torque, is amenable to Floguet theory!13
when Cayley—Klein parameters'™!* are used for attitude representa-
tion. We show that the ensuing standard eigenvalue problem, solved
numerically, can provide an arbitrarily accurate solution for all pos-
sible motion.
Exemplary applications of Floquet theory to the related problem
of stability analysis are given by Calico and Wiesel® (attitude dy-

namics), Mingori' (dual-spin spacecraft), and Noah and Hopkins'”:

(dynamic systems).
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Analytic Solutions
Euler’s Equations of Motion
The motion of a rigid body is governed by Euler’s equations,
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where M,, M,, and M, are torque components, @y, @y, and w, are
angular velocity components, and Iy, Iy, and [, are principal mo-
ments of inertia. We assume that the applied torques are constant
and purely transverse (M, = 0). Such transverse torques often ap-
pear in spacecraft thrusting maneuvers due to center-of-mass offset
and thruster misalignment. In addition, we assume that the mass
distribution is fixed, i.e., the case of the self-excited rigid body,' and

. that the body is nearly axisymmetric [(/; — I,)/I; « 1]. Thus, the

angular velocity about the z axis will be nearly constant

, =~ ©,(0) @
For the axisymmetric case (I, = I,), Eq. (4) is exact.

With this simplification, as discussed by Randall et al.,” Egs. (1)
and (2) reduce to a pair of linear, constant-coefficient, ordinary dif-
ferential equations with constant forcing terms. The solution for
(w;, w,) is a simple sine wave, which we can write in the compact
form,

i
o= 2";‘ 0nEy ®)
where
w(t) = wx (1) +iwy (1) (6)
E,=é&™" O]
o=t ®)

The constant i, determined by the mass distribution, is the transverse
mode frequency in units of w,. It ranges between « =0 (a sphere)
and x =1 (a flat disk). The three nondimensional constants w, are
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determined by the applied torques and the initial conditions through
‘he relations

L= I, — I
Ky = L Ky = I, )
K = KKy (10)
1 1
= Yoeg &+ 1/%y an
2
K= iy = 1/kx (12)
2
iM/(Lkye) — My/(IyKy)
F=—n , 13)
z
Qo= (wxlc, + tw),/cx) 14
@ 1=0
w_y = f}_@"_—_Q (15)
2
wo = aFtif (16)
2
Qo— F
o = 1 ( 02 ) an

where the overbar denotes complex conjugation. Note that this so-
lution, in which w, and w, are sinusoidal, relies on the effective
constancy of w,. The main point of this paper is to present a solu-
tion of the kinematic problem when this is true.

Kinematic Equations

A classical method of expressing the attitude motion of a rigid
body is to use a type 1: 3—-2-1 Euler angle sequence.'® The corre-
sponding kinematic equations are

¢ = w; + (wy sin ¢y + w, Cos ¢;) tan g, (18)
¢, = wy cosp; — w, sin g, (19)
é. = (w, sin g, + w, cos P;) sec (20)

where 5, ¢y, and ¢, are the Eulerian angles. These equations are
highly nonlinear and seemingly intractable for analytical solution,
although much progress has been made using linearization, e.g., by
_assuming ¢, and ¢, are small.5® )

An alternative and, for our purposes, preferable representation of
the kinematics is the Cayley-Klein parameters'®' [«, 8], which
are defined in terms of the Euler angles by

a = e'*[cos(¢,/2) cos(¢,/2) — i sin(¢,/2) sin(¢,/2)] (21)
B = '/ [cos(¢, /2) sin(g, /2) — i sin(py/2) cos(¢y/2)] (22)

These two complex numbers obey the normalization Jer|? +|8]> =1
as is easily confirmed from their definition.

The inverse relation, giving Euler angles in terms of Cayley—Klein
parameters, is

2Im{eB
b = tan™ [Wmt(‘%] 23)
¢y = sin"'[2Re(ap)] (24)
I 2 _ Qg
¢, = tan™! [%] (25)

The advantage of the Cayley-Klein representation is that [«, £]
obey linear ditferential equations, in sharp contrast to Egs. (18-20),

& = (iw,/2)a — (i@/2)8 (26)
B =—(iw/2)a — (iw,/2)B @7

This allows us to use the principle of linear superposition to construct
general solutions for arbitrary initial conditions. Moreover, with the
approximation w, = w,(0), the coefficient w (¢) in Egs. (26) and (27)
is periodic, so that the fundamental solutions can be developed using
Floquet theory, even for very large angular displacements.

Floquet Formulation and Solution of Kinematic Equations

We seek the general solution of Eqs. (26) and (27) for the Cayley—
Klein parameters. These equations form a second-order, linear ho-
mogeneous system, so that there are two independent solutions.
Also, by inspection, they have the symmetry that if [, 8] is a solu-
tion, then so is [8, —&]. Hence, the general solution must have the
form

o= Cia +C2/§| (28)
B=Cip — Gy 29

where [«;, Bi] is any solution pair.
Finally, as seen in Eg. (5), the coefficients are periodic in t with

period T =2/, so that Floguet theory'®!? applies. The essence
of Floquet theory is that there will be solutions of the form

o =e " Ty(t) (30

B =€ u(r) @D

where u and v will be periodic with period 7" provided that s is
suitably chosen.

1t follows that the general solution of Egs. (26) and (27) can be

written as
o = Cre” " u + Cpe* v (32)
B = Cie~"y — C2e"" il (33)

where C| and C, are determined by the initial conditions. The [u, v]
are any pair of solutions of the following differential equations:

du 1 i@
— ~lu=—-—— 34
> 1<s+2)u szv . (34
91—1' —l v=——-£-u (35)
dr 2 2w,

which are obtained by substituting Egs. (30) and (31) into Eqs. (26)
and (27). These equations have the symmetry that if [, v, s]is a
solution then so is [U, —it, —s].

Because [u, v] are periodic, they can be represented by Fourier
series,

oo oo
u= Y unkn, v= ) wE (6

n=- n=-o0
Substituting these expansions into Egs. (34) and (35), we get a set of
recurrence relations that determine the Fourier coefficients [u,, vs]
and the eigenvalue s,
SU, = (nk—%)u,,+(5)_|'U,,._1+(I)0vn+d)lun+l) (37)
SUp = (mc + %)v,, + (W Uy 1 + WOl + O1UL 1) (38)
These relations can be arranged in the form

sU =AU (39)

where U = [...., #—1, V-1, #o, Yo, %1, V1, .-} and A is an infinite-
dimensional, pentadiagonal matrix,

A = diag(D_s, Dy, Dy, Dy, D3) (40)
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where Dy is the main diagonal, D, the first superdiagonal, D_, the
first subdiagonal, etc. The elements of these diagonals are

Do=[-(m ~},me+4)] o)
D_y=Dy=[-(wo,&-1) ] 42)
D_3 =E3 =[(wl'0)] (43)

Itis easily seen that A is Hermitian, so that the eigenvalues s must be
real. Moreover, we can show [most easily from Eqs. (37) and (38)]
that if sq is an eigenvalue, then so is -ksq + N« where N is any inte-
ger. Therefore, although there are an infinite number of eigenvalues
of this infinite-dimensional matrix A, there is, in fact only one that

" is physically distinct. (The other eigenvalues and eigenvectors arise
from a trivial renumbering of the Fourier modes.)

In practice, only a finite number of terms, n =[-M, M], can be
retained in the series, Eq. (36). When this is done, the U vector will
be of length 43 + 2, and the matrix A will be square of the same
size. For example, the smallest such truncation, M =1, yields the
6 x 6 matrix

—K - % @y 0 @ 0
wy —K +% w-; 0 0 0
A= 0 -y —% o 0 )
W 0 wy +1 w 0
0 0 0 o, « —% o
1
| 0 0 W) 0 Wy K+ 7]

corresponding to the truncated state vector
U=[uy v uo vo w wil”

The truncated matrix will have 2M + 1 equal and opposite pairs
of real eigenvalues, but because the truncation breaks the transla-
tional symmetry, the eigenvalues will not be precisely related by
s+ N«. For any given M, some of the 4M + 2 eigenvalues will
be more accurate than others.

The key questions are: how big must M be to achieve a given
accuracy and how can the most accurate eigenvalue be selected?
These questions will be answered in more detail in a later section,
after we have looked at some numerical results. However, we can
now give a rough estimate of the how big M needs to be.

For very large n, the Fourier coefficients must decrease (or the
series would diverge). Thus for sufficiently large n, the dominant
terms in Eq. (37) must be u, and v,_; and in Eq. (38) must be
v, and u, . Eliminating «, we find that the ratio of alternating v
coefficients must behave as

Un -~ a)1£7)_.|
~

Upy o (nK)?

as n-—> o0 44)

with similar expressions for u and for r — —co. This demonstrates
the following two important properties.

1) The Fourier coefficients decay superexponentially for large n.

2) We must have n > v/« before the coefficients begin to decay,
where v = (3 _|w,|?)'/? (or similar norm of the Fourier coefficients
Wy).

The first property says the series will converge rapidly, so that not
many terms will be needed. The second property gives us a lower
bound on a reasonable truncation level,

M=1+v/k 45)

Evidently, when v « 1, only a very few terms will be needed. A
formal discussion of convergence properties of a similar problem is
given by Noah and Hopkins.!”

Small Torque Approximation

* When the applied torque is small enough so that v « 1, the matrix
A is essentially diagonal, and we can derive a simple approximate
solution of Eq. (39). The result is that the Fourier coefficients form
an asymptotic sequence in powers of v. The coefficients for |n| > 1
are O(v?) or smaller, so that to get @(v?) accuracy we only need to
compute the terms for n =[—1, 0, 11. This can be done recursively
starting with the scaling assumption vy = 1, with the result

'n=[~1,0,1] (46)

Uy & [—@1 /(1 + k), By, —@-1/(1 — )] @é4n

1{ wyd 1 wWold_.
v | | 2w ), 1, —=( @w + —— ) | @8)
k\1l+« K 1—x«

At this level of approximation, [u, v] are simple harmonic. The
eigenvalue s, to the same order, is given by

1 ' 1
1 wa|* 7 '
~~|1+4 —_— 49
s 2|: + n;ll-{-mc “9)

It is evident from the singularities in Egs. (47) and (48) that this
solution fails when « =0 (sphere) and « =1 (plate), regardless of
how small v is. When « is close to either extreme, the ordering of
the coefficients changes, so that the n =2 terms may be as large as
the n =1 terms.

The approximate solution given here is asymptotically equivalent
to an M = 1 truncation of Eq. (39), but is algebraically simpler.

Numerical Results
Test Case
To test the Floquet solution, we consider a Galileo-like spacecraft
maneuver. We assume the following axisymmetric mass properties’:

I = I, = 3012 kg m?, I, =4627kgm?>  (50)

and initial conditions

x(0) = wy(0) = Orad/s, w,(0) =0.33rad/s (51)

¢:(0) = ¢,(0) = ¢.(0) = 0rad (52)

Transverse torque can arise from a center-of-mass offset of the main
engine. We select a very large transverse torque (about 150 times
that of the Galileo) to demonstrate the theory for an extreme case
where the Euler angles (¢y, ¢,) approach 90 deg

M, =225 Nm, M, =0, M, =0 (83)

For this test case we note that the inertia parameter x = 0.5362 and
Eqs. (15-17) yield the following constant values:

w_1 =0, wy = 0.6397, oy = -0.6397  (54)

Baseline Numerical Integration

Because we expect the Floquet solution to be highly accurate, we
need a very precise method to test it. We employ an adaptive Runge—
Kutta fourth/fifth-order integration method using double precision
accuracy for the following simulations. In each case the accuracy
is controlled by a relative tolerance of 1 x 10~!2 and an absolute
tolerance of 1 x 1071, For our baseline numerical integration we
integrate Egs. (1-3) and (18-20). The errors in the baseline numer-
ical integration are on the order of 10~'2 rad for the Euler angles.
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Discussion of Test Case
This discussion pertains to the test case Egs. (50-52) with

M=7 (55)

From Floquet theory we know that the parameters u and v are pe-
riodic with period T =2 /«. In Fig. 1 we plot the real (solid line)
and the imaginary (dashed line) parts of the solution for Eqgs. (34)
and (35) for one period.

The Cayley-Klein parameters « and 8, obtained using Egs. (32)
and (33), are not periodic in general. The real and the imaginary
parts of @ and B are plotted in Fig. 2 for two periods of the u, v
solution (27'/e,). We note that the plots satisfy the normalization
constraint that |af? + |82 =1.

Figure 3a shows two solutions for the Euler angle ¢,: the Floquet
solution {obtained using the solutions for & and B and Eq. (23)] and
the baseline numerical integration. Because the results are indistin-
guishable at this scale, we show the difference between the results
in Fig. 3b. The maximum error is about 5.5 x 10~ rad out of 1.6 rad
(at ¢ = 16 s) or about 0.003%.

A similar comparison for the spin angle ¢, is shown in Fig. 4. We
note that ¢, is very large for large values of time. For convenience
we introduce a smaller angle &,, obtained by subtracting off the
linearized solution for ¢,

D, =9, —w,t (56)
In Fig. 4a, we show the baseline solution for the angle &, and the

Floquet solution obtained using & and 8 and Eqs. (25) and (56). To
check the accuracy, we again show the difference between the two
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Fig. 2 Cayley—Kleih functions o and 3 for test case.
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Fig.4 Angle $; = ¢, — w,t for test case.

solutions in Fig. 4b. Here we see the error is about 3 x 10~ rad out

* of 1 rad (at t =9 s) or 0.0003%. Because the errors in the baseline

solution are O(10~'2) rad, the difference represents the true error in
the Floquet solution.

Accuracy Assessment

To study the effects of M on the accuracy of the Floquet solution,
we conduct the following parametric study. We first fix a value
for M. We then compute the baseline numerical integration and
Floquet solutions for ¢, using transverse torque M, in the range of
0-225 Nm. For each of these trajectories, we compute the difference
between the two solutions. In Fig. 5, we plot percent error vs the
maximum absolute value |@, |max- As expected, the error increases as
the angle increases; larger values of M result in smaller errors. We
note that the plateau at the bottom of Fig. 5 occurs due to the'errors in
the baseline numerical integration and not the Floquet solution. (For
large values of M, the Floquet solution is more accurate than the
baseline solution.) Also as ¢, approaches 90 deg, the error increases
rapidly due to the well-known Euler angle singularity..

A similar study is conducted for the angle ®,. In Fig. 6, percent
error vs the maximum absolute value |®, |, is plotted. Again, the
error increases as the angle increases, and larger values of M result
in smaller errors. A similar numerical integration plateau occurs.
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1% error

Error
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0 0.5 1 1.5
toxl , (rad)

Fig. 5 Percent error in maximum absolute value of ¢, for various
transverse torques (axisymmetric case).

" L ¢

10 12 14 16 18 20 22
| @z | (rad)
max

Fig. 6 Percent error in maximum absolute value of ®; for various
transverse torques (axisymmetric case).

Figures 5 and 6 can be used to choose M to achieve a given
accuracy in the Floquet solution, but only for the test case. For the
general case it would be useful to have a method that selects M for
a desired accuracy.

Eigenvector Selection

At any given truncation level M, there are 2M < 1 distinct values
of s2 that arise from solving Eq. (39). Some of these values will be
better than others, and so we must sort the wheat from the chaff.
The essential idea is that because we centered the truncation about
n =0, then those eigenvectors that are most nearly centered about
n =0 should be most accurate. We illustrate this in Figs. 7 and 8,
which show 2 of the 30 eigenvector spectra for an M =7 truncation
of the test case. In Fig. 7, the peak occurs near the left edge of the
window, and so the neglected terms in n < —7 are not small, and
the solution is poor. In Fig. 8, the peak is near the middle of the
window, and the neglected terms on both the left and right (|n| > 7)
are clearly less than 10~5 in magnitude. This is the best we can do
with M =7.

“The described selection process can be automated by measuring
the error in a spectrum, €, from the size of its end elements,

€ = lu_y| + [yl + luar] + |val 57

There will be 4M + 2 values of ¢; the best solution is the one for
which ¢ is minimum. For the test case with M =7, this optimal
solution is shown in Fig. 8. Note that the poor result in Fig. 7 corre-
sponds to s + 6« = 0.1183, which is 5% off the target of s = 0.1245.

10°

s = -3.0989

-8 -6 -4 -2 0 2 4 6 8

Fig. 7 Suboptimal eigenvalue/eigenvector selection of M, = 225 Nm,
M=1 .

10°

s =-0.1245

! 0—8 -6 -4 -2 0 2 4 6 8
n

Fig. 8 Optimal eigenvalue/eigenvector selection of M, = 225 Nm,
M=17.

The occurrence of errors of this order is to be expected from the size
of the n == —7 Fourier coefficients (about 10~!) seen at the left in
Fig. 7. .

Automatic Error Control

Having shown how to select the best eigensolution at a given
truncation, we can easily see how to automatically select M to give
any specified accuracy in the solution.

1) Pick a tolerance €n,, and the smallest reasonable truncation:
M=14+v/«k.

2) Solve the truncated eigenproblem, selecting that vector with
minimum error, €py;,. '

3) If €min < €max» SLOP. If €min > €max, increase M; repeat steps 2
and 3.

The assumption made in this algorithm is that the errors in the
solution (for 4 and v) are smaller than the last retained Fourier
coefficients.

It is, naturally, wasteful to compute all 4M + 2 eigensolutions
when all but one are thrown away. For this reason, a practical ap-
proach is to use an iterative eigensolver that computes only a few of
the eigenvalues closest to the previous optimum. On the first step, the
center eigenvalue is setat s = %, based on the small-torque solution,
Eq. (49).

Results for a Nearly Axisymmetric Case
1t is only natural to be curious as to what happens when the afore-
mentioned Floquet solution is applied to a more realistic case. We
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choose the following nearly axisymmetric mass propemes (which
are closer to the values of the Galileo spacecraft®):

I, = 3012kgm?, I, =2761kgm?, I, = 4627 kg m?
(58

with a moderately large transverse torque
M, =100 Nm, M, =0, M, =0 (59)

and use the same initial conditions as the earlier test case. Here we
note that the inertia parameter k is slightly larger with a value of

x = 0.6020 (60)
and Egs. (15~17) yield the following smaller w, values:

w_; = 0.0036i, wy = 0.24614, w; = —0.2496i (61)
We see in Fig. 9 that w, is periodic with a small-amplitude fluctuation
of 5%, not constant as assumed from Eq. (4). Figures 10 and 11 show
the results for ¢, and &,, respectively. We notice that the Floquet
solution seems to track reasonably well for a while then diverges
from the baseline solution. However, the accuracy is significantly
poorer (than the ax1symmetr1c test case), even in the first oscillation.
We know that this error is not due to truncation because varying M
from 2 to 10 makes no difference. The reason for the inaccuracy is
because w, is not constant. It is possible to improve the solution by
including perturbations to w, due to the neglected term in Eq. (3).
The additional terms will be periodic, and so Floquet theory still
applies; however, the analysis is beyond the scope of the current

paper.

0.35 T T T T T T T

0 345y

0.34f
0 335}
0'33 60 100 20 140

t (S)

Fig.9 Angular velocity w, for nearly axisymmetric case.
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Fig. 10 Euler angle ¢, for nearly axisymmetric case.
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~o t
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Fig. 11 Angle ®; = ¢, — w;f for nearly axisymmetric case.

The amplitude of the w, oscillations is proportional to the square
of the applied torque. Therefore, if we reduce M, from 100to 10 Nm,
the 5% fluctuation seen in Fig. 9 drops to 0.05%. Based on simula-
tions over the same duration as Fig. 10, the errors in the Euler angles
drop significantly [to O(10~3) rad]. Therefore, even though large er-
rors are possible in the nearly axisymmetric case when large torques
are applied, the present method is still quite accurate and useful for
typical spacecraft maneuvers with small transverse torques.

Conclusions

The Floquet solution presented, based on a Cayley—Klein for-
mulation of the kinematic equations, is much more accurate and
efficient than any previously found linear solutions, even when the
angular excursion of the spin axis is large. The major assumption is
that the spin rate is constant. This method is highly accurate for the
axisymmetric case regardless of how large the torque is; however,
when the theory is applied to the nearly axisymmetric case, the er-
rors are small only when the torques are small. This solution may
find applications in onboard computations of spacecraft maneuvers
and in maneuver analysis and optimization.
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