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Abstract—In the aerobraking tether concept, a probe, connected to an orbiter by a long, thin tether,
passes through the atmosphere of a target planet to provide a desired velocity change, while keeping
the orbiter above the sensible atmosphere. In earlier work, simple analytic models have been developed
which accurately describe the characteristics of the mass-optimal tether. In this paper these models are
generalized so that design of the spacecraft and the aerobraking maneuver can be completely character-
ized by four independent parameters. By comparing the tether mass (e.g. for aerocapture) with the pro-
pellant mass required to capture the orbiter, we show that aerobraking tethers have a clear advantage
for a wide range of maneuvers. © 1999 Elsevier Science Ltd. All rights reserved

1. INTRODUCTION

As an alternative to chemical propulsion, the aero-
braking tether is proposed as a means to decelerate
a spacecraft at atmosphere-bearing planets. The
spacecraft is comprised of a probe (or lander) and
an orbiter connected by a long, thin tether. During
the maneuver, the probe flies through the atmos-
phere to provide the necessary braking, while the
tether allows the orbiter to remain at a certain alti-
tude, or clearance, above the probe to eliminate
-aerodynamic effects (Fig. 1).

The first mention of the concept of an aerobrak-
ing tether in the literature appears to be by
Carroli[1], although the idea was being discussed at
the Jet Propulsion Laboratory at least as early as
1984 by Sirlin et al.[2]. Another early reference to
the aerobraking tether concept is made by Purvis
and Penzo[3].

There are many important papers which deal with
the general problem of a tether in an atmosphere.
Here we refer to Lorenzini et al. [4], Bergamaschi and

Bonon[5], Keshmiri and Misra[6], Guilahorn{7],

Krischke et al.[8], Pasca and Lorenzini[9], Bae et
al.[10] and Warnock and Cochran[11]. (For a more
general treatment of tethers in space see the hand-
book by Penzo and Ammann [12] and the first book
on space tether systems by Beletsky and Levin [13].)

fCorresponding author. Tel.: +1-765-494-5139; fax: +1-
765-494-0307; e-mail: longuski@ecn.purdue.edu.
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The first demonstration of the physical feasibility
of using aerobraking tethers is presented by Puig-
Suari and Longuski[14,15]. They model the tether
as a rigid rod subject to distributed aerodynamic
and gravitational forces and show that the orbiter
altitude can be maintained above the sensible
atmosphere during the aerobraking maneuver.

There are several papers which address the design
of aerobraking tethers and the aerobraking maneu-
ver. The vertical dumb-bell maneuver is considered
in[16] in which the tether flys through the atmos-
phere in, roughly, the local vertical orientation.
Several design criteria are applied to minimize nor-
mal forces on the tether (in order to minimize bend-
ing when the tether model includes flexibility
effects[17,18]). For example, the area of the probe
is chosen so the ballistic coefficient of the tether and
probe are equal (i.e. aeromatched)[16]. The design
rules are applied to the major atmosphere-bearing
bodies in the solar system (Venus, Earth, Mars,
Jupiter, Saturn, Titan, Uranus and Neptune). In
every case, the resulting mass of the tether is signifi-
cantly lower than the propellant required to achieve
aerocapture. The efficacy of these design rules in
minimizing bending is demonstrated in[17,19].

Numerical, quasi-gradient -optimization tech-
niques are employed in[20] to determine if the verti-
cal dumb-bell design yields the optimum tether
mass. It was discovered that the vertical dumb-bell
maneuver is optimal in some cases, but often the
minimum mass tether is achieved with a maneuver
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. Fig. 1. Aerobraking tether.

in which the tether is tilted away from the local
vertical. This inclined maneuver requires a longer

tether to obtain clearance, but the forces can be -

dramatically reduced, resulting in a net reduction
in tether mass. The parameter optimization is im-
proved upon in [21,22] by mapping the cost function
(tether mass) for varying initial conditions.

Two analytical models- are developed in[16,20]
to characterise the two optimal maneuvers that
emerged from numerical investigation. The vertical
impact model (VI) gives an approximation of the
tether mass for the vertical dumb-bell maneuver,
based on an impulsive drag force. The sliding pen-
dulum model (SP) is used to approximate the
inclined maneuver (by analogy) with the equations
of motion of a rigid pendulum with a sliding
attachment point. In[22], these models are used to
show that the optimal mass problem is a function
of three parameters: the mass ratio of the probe to
the orbiter, m,=m,/m,, the required altitude clear-

J. M. Longuski et al.

ance, h.=h,/H (in scale heights, H), and a nondi-
mensional speed variable:

u=(AV/Vi )/ 2nree/(He)

where AV is the required change in velocity for
aerobraking, V. is the local circular velocity, rp, is
the radius of periapsis and e is the approach eccen-
tricity. Figure 2 illustrates the results when one of
these parameters, the speed variable u, is varied.
The circles in the figure represent the mass optimal
solution from -a precise numerical optimization
using the equations of motion from[14,15]. The
nondimensional mass, #,, is defined by

- m{/(ma V,ZCer>
2NV per O

where m, is the tether mass, m, is the orbiter mass,
p is the density per unit volume of the tether and ¢
is the ultimate strength per unit area. In the figure
we see remarkable agreement between the theoreti-
cal predictions and the numerical results. The letters
J,N, S, U, V, E, T and M stand for aerobraking at
Jupiter, Neptune, Saturn, Uranus, Venus, Earth,
Titan and Mars, respectively. We notice the numeri-
cal solutions for J, N, S and U lie on the dashed
curve corresponding to the vertical impact model,
while V, E, T and M follow the sliding pendulum
model very closely. When we consider large vari-
ations of each of the three parameters u, k., m,
(while the other two are constrained to finite, non-
zero quantities), we can summarize the results
of [22] by the following observations:

20 T T T T

18F | — Sliding Pendulum Model

- — Vertical Impact Model -
Numerical Solution

16 | o

14

T

12

Fig. 2. Theoretical and numerical tether mass (m,= 1, k.= 1.8).
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1. The optimal mass maneuver approaches a verti-
cal dumb-bell maneuver when u decreases, #,
increases or mi,. increases.

2. The optimal -mass maneuver approaches an
inclined maneuver when u increases, &, decreases
or m, decreases.

These -analytic models were developed for the cases
where the tether mass was much smaller than the
total system mass[22]. Unfortunately, this assump-
tion limits the scope of investigation since the tether
mass can become quite large (e.g. when the AV is
large). In this paper we extend the theory to cover
massive - tethers. In conjunction with earlier
work [14-22], this provides a general approach to
designing the tether system and the aerobraking
maneuver through the introduction of a fourth non-
dimensional scaling parameter [23].

2. VERTICAL DUMB-BELL AND INCLINED MANEUVERS

The aerobraking maneuver is illustrated in Fig. 3.
The tethered system arrives at the target planet
spinning clockwise (opposite to the orbital motion).
As the probe enters the atmosphere, aerodynamic
torque decreases the spin rate of the system until
the tether reaches its minimum orientation angle,
Omin. At this point, drag on the probe begins to
spin the tether in the opposite direction. To mini-
mize the forces on the tether, the magnitude of the
spin rate leaving the atmosphere should be roughly
equal to the spin rate entering the atmosphere (a
design concept referred to as spin matching [16]).

The time histories of the orientation angle, «, and
the forces exerted on the probe end of the tether for
typical examples of the wvertical dumb-bell and
inclined maneuvers (Jupiter and Mars, respectively)
are shown in Figs 4 and 5. In each of these cases,
the tether is launched from Earth to the target pla-
net via a Hohmann transfer. The simulations shown
in Figs 4 and 5 start from a point outside the at-
mosphere, reach periapsis at about 250 s and termi-
nate when the system is completely out of the
sensible atmosphere at 500s. The final orbit, after
aerobraking, has an eccentricity of 0.9999. The
clearance requirement is that the minimum altitude

of the orbiter be at least 1.8 H (scale heights) above
the minimum altitude of the probe. The solutions
shown provide the minimum tether mass, which in
each case is significantly less than the propellant
mass required to capture the orbiter.

The optimal tether mass solution for Jupiter is
the vertical dumb-bell maneuver shown in Fig. 4.
This maneuver is characterized by the vertical orien-
tation of the tether at closest approach; conse-
quently, drag at periapsis acts in a direction normal
to the tether and the tension is zero at this point
(when ¢ = 240 s). Thus the maximum tension is due
to the spinning of the tether outside of the atmos-:
phere. Note that the normal forces are nearly zero
due to careful consideration of the system design
parameters [16].

The inclined maneuver, which is optimal at Mars,
never reaches a vertical orientation during closest
approach, so ami, > 0. For the case at Mars, we find
from Fig. 5 that o, =40°. This inclined orientation
at periapsis, where aerodynamic forces are very
large, results in an axial component of drag along
the tether. As a result, the tension history reaches
its maximum value during the atmospheric fly
through (when ¢ ranges between 150 and 350 s).

In the next sections, models are developed to pro-
vide insight into the dynamics of the aerobraking
tether and to give a rough approximation for the
minimum tether mass. The characteristics of the
two maneuver types just described are very differ-
ent, warranting two different models, namely the
vertical impact model (for vertical dumb-bell maneu-
vers) and the sliding pendulum model (for inclined
maneuvers).

3. VERTICAL IMPACT MODEL FOR MASSIVE TETHERS

Since the maximum tension of the vertical dumb-
bell maneuver occurs outside the atmosphere (due
to spin rate), the tether mass can be estimated by
modeling the atmospheric fly-through as an impact
problem, as discussed in[16]. In this previous inves-
tigation, the tether was designed for small AVs, so
the tether mass was assumed to be much less than
the system mass. The resulting approximation for

Fig. 3. Aerobraking maneuver.
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Fig. 4. Orientation angle and forces of vertical dumb-bell maneuver (Jupiter).

the tether mass is not accurate for the range of
maneuvers we are now considering.

By allowing for massive tethers in the vertical
impact model (VI), we encounter two major differ-
ences. First of all, the tension is now dependent on
the tether mass (which is dependent on the tension)
so the equation for the mass is transcendental.
Second, the tension due to spin rate varies along
the length of the tether since the tether must now
support its own weight in addition to the end
masses. Consequently, a tapered tether yields the
lowest tether mass. Since a simple expression for
tether mass is desired, we avoid this complication
and restrict our discussion to tensions at the endbo-
dies (probe and orbiter) of a uniform tether. (For a
detailed discussion of the tapered tether problem,
see[24].) _

To determine the expression for the tether mass,
we assume all the aerodynamic drag acts impul-
sively on the probe, as shown in Fig. 6. The
impulse, P, is found from the principle of linear
impulse and linear momentum:

250
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P =(m+m, 4+ mp)AV 1)

where m,, m, and m, are the masses of the tether,
orbiter and probe, respectively, and AV is the
change in velocity of the system center of mass. The
linear impulse, P, causes an angular impulse that is
equal to the change in angular momentum so we
have

Pl, = (m; 4+ my + mp)AVL, = TAQ 2)

where AQ is the change in the angular velocity and
I is the system-inertia about the center of mass,
given by[16]:

I =mpl} +myl2 + m(l} +12)/(3D) 3)
where /, and /, are the distances from the orbiter
and probe, respectively, to the center of mass and
are given by:

lo = lm, +my)/m
L, = l(my +m;)/m 4

where / is the total tether length and m is the total
system mass.

TETHER FORCES (KN)

200 250 300
TIME (SEC)

Fig. 5. Orientation angle and forces of inclined maneuver (Mars).
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Fig. 6. Vertical impact model.

In order to minimize the tension on the tether we
design the aerobraking maneuver so the angular
velocity before impact and the angular velocity
after impact are equal. Thus, the maximum spin
rate 18

Qmax = AQ/2 = mAVI, /(2]). 5)
The maximum tensions -on the probe and orbiter,

(Tp)max and (To)max, respectively, due to the spin
rate are

mym m3
(Tp)max = miply Qrznax = 472 LAV
myl,m?
(To)max = M,l, Qrznax = —SZ—I"-E'AVZ (6)

The calculation of the tether mass is obtained by
making the tether just strong enough to withstand
the spin tension. We then have a tether mass ap-
proximation, #1,, based on the tension at the
probe, and another, m,,, based on the tension at the
orbiter:

,m* 1 lp
i

m2L,12lp

My = (To)maxlp/a - TA V2 (7)

Myp = (Tp)maxlp/U = AVZ

where p is the density per unit volume of the tether
and o is the ultimate strength per unit area. If Egs.
(3) and (4) are substituted into eqn (7), the tether
-length, /, cancels out; that is, the tether mass for the
vertical dumb-bell maneuver is independent of
tether length. (The reason for this cancellation is
discussed in[16].) To show this independence expli-

citly, we define the following mass ratios
Py = myfmy, My =mp[m, (8)

and a set of nondimensional parameters that are
functions of these two ratios only:

m=m/m,=1+m,+m,
1, =L/l = (m, +m) /(1 +m, + my,)
I, =L/l= (1 +m)/(1+m, +m)

_ 2
I=1/(m,l% = [ﬁ%]

— 2
+m, [%] /12, ©)

Thus, the ratio of the tether mass to orbiter
mass, m, can be written as a function of the two
mass ratios and AV only (assuming fixed tether
characteristics, p and o):

—273
ﬁ’l,p = m,p/mo = 4——[2— V =ﬁ)(ﬁ11ps my, AV)
_ w212 ,,P 2 _
Py = Mo /Mo = 4o AV = fo(fg, my, AV)  (10)

where r;z,p and m,, are the tether mass ratios deter-
mined from the probe and orbiter tensions, respect-
ively. Note that Eqgs. (10) are transcendental
because /,, /, and [ are all functions of m,. They
can be solved numerically using a root finder to
obtain m,, and m, for given m, and AV.

Taking the ratio of Egs. (10) yields

Z—i‘j:mr%: "E%r_t-_%' (11)
Defining
mo=1+c (12)
the ratio in eqn (11) can be written as
m em .
%f =1 +m (13)

This ratio is unity' only in the special case that the

. probe and orbiter have equal masses (i.e. € = 0) or

the unrealistic case of m,=0. Otherwise, the larger
of the two mass predictions is chosen since the
tether must be made to withstand the maximum
tension. If the probe mass is larger than the orbiter
mass (m,>1), then ¢>0 and the ratio in eqn (13) is
greater than one. Consequently, the prediction
based on the probe tension, m,,, has a larger value.
On the other hand, for m,<1 (but greater than or
equal to zero by a physical argument) we have
—1 <€ < 0 and the tether mass ratio in eqn (13) is
less than one, indicating that m,, is larger than m,,.
The resulting tether mass prediction for the vertical
impact theory can be summarized as

1y Cif om > 1
My = My = My, if m=1 (14)
Mo if m <1

where m,, and my,, are calculated using Egs. (10).
Note that if we neglect the tether mass in the ex-
pressions for /,, [, and I, then Egs. (7) simplify im-
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mediately to the result giver_l in[l16]:

_ my(m, + mp)p

= AV2.
! dmyo (13)

* For cases where the optimal aerobraking maneu-
ver is a.vertical dumb-bell, eqn (14) yields fairly
accurate results (typically within about 10% of the
numerically optimized solution).

4. SLIDING PENDULUM MODEL FOR MASSIVE TETHERS

Since the maximum tension of the inclined man-
~euver occurs during the atmospheric fly-through, the
mmpact model does not provide a suitable approxi-
mation for the tether mass. A more realistic rep-
resentation of the drag force is required. Longuski
et al.[20] and Tragesser et al.[22] provide surpris-
ingly accurate estimates of the optimal tether mass
with a sliding pendulum model (SP). In the model,
a rigid pendulum with a sliding attachment point
(see Fig. 7) is subjected to a forcing function that
exponentially decreases with increasing altitude.
The sliding pendulum model accurately represents
behavior previously observed in simulation of opti-
mal maneuvers; namely, the orbiter remains at a
constant altitude during the atmospheric fly-
through while the probe “swings down” to achieve
the necessary deceleration [20].

The cases under investigation in previous
work [20,22], had small AVs so the tether mass was
assumed to be very small. The consequences of
extending the sliding pendulum theory to include
massive tethers are the same as in the vertical
impact theory: the equation for the tether mass
becomes transcendental and the tensions (and hence
the tether mass approximations) at the probe and
orbiter are not equal. Furthermore, normal forces
in the tether must now be taken into account.

The generalized coordinates for the sliding pen-
dulum system (shown in Fig. 7) are the orientation
angle, «, and the location of the sliding attachment
point (orbiter). The equations of motion [20] are:

. Y m 0 m o A
orbiter
trajectory I i 4.%" ¢
|\ ?
I o . T (amin )
min
D m Before
per P Periapsis
Periapsis

Fig. 7. Sliding pendulum model.
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. —ml,l,6* cosasina + [,Dcosa
- -mi2sin®a+ 1
2
v_D lol,,'cc2>s a 1
mi2sin“a+1 m

ml,l, cos? o
—_— 16
mi2sin® o+ I (16)

—1,&? sinoc(l +

where the drag force, D, applied to the probe end
of the pendulum is

D = Dpe; expll(cos & — €08 ttmin)/ H] an
and where H is the scale height and / is the length
of the pendulum. The magnitude of the drag force
at periapsis, Dy, is approximated by an impulse
analysis for a particle [20] as

Tper€ Vie
Do = mAV, | 22K
per 2nH rper -
where rpe, is the radius (of the center of mass) at
periapsis, e is the eccentricity of approach and ¥V is
the local circular velocity at rpe;.

The acceleration of the probe, R, and the orbi-
ter, R,, are given by[20]

(18)

Ry = (& — lic, + 162508 — (lisy + I62¢,)j;

R, = i (19)
where s, and ¢, represent sin « and cos a, respect-
ively. Then applying Newton’s second law to each
of these particles we obtain

Probe end:

Ty + Npto — D = mp(% — licy + li*sy)

TpCo + Npsq = —mp(lisy + 16%c,).  (20)
Orbiter end:
—Tpsq + Nycy =myX
TyCo+ Npsoy — R =0 1)

where T, and T, are the tensions at the probe and
orbiter and N, and N, are the normal forces (in the
i direction at & = 0°) at the probe and orbiter, re-
spectively. The force, R, at the orbiter is caused by
the reaction that is needed to constrain the motion
of the pendulum sliding attachment point to a hori-
zontal line. This constraint force is solved for by
applying Newton’s Law and Euler’s Law to the sys-
tem to get [20]

R = ml, (s, + &2cy). (22)

Solving Eqgs. (20) and (21) for the tensions and nor-
mal forces (at both the probe and orbiter ends of
the tether) and substituting for R yields
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Probe end:

Ty, &) = Dsq + mysyx + myli? 23
P p p

Np(e, &) = Dcy + mpcy X — mplé. 24

Orbiter end:
To(ot, &) = —moSeX + mlyco (s, + G2cy) 25)
No(a, &) = mycyX + mlyse(0isy, + o'czca). (26)

Note that these forces can be written explicitly in
terms of o and & by substitution of Egs. (16) and
(17). For the case where m,=0, Egs. (24) and (26)
are equal to zero, confirming the analysis for small
tethers which excluded normal forces. For the mas-
sive tethers, however, these forces are nonzero and
must be included in the modeling to achieve satis-
factory results.

Following [20,22], we adopt the hypothesis (based
on experience with numerically obtained solutions)
that the minimum-mass maneuver maintains a
nearly constant tension during the atmospheric fly-
through. By evaluating eqn (23) (or eqn (25)) at
two points in the atmosphere and equating the
resulting expressions, we obtain a transcendental
formula for the minimum orientation angle, otmyin,
which approximates the value for the optimum
inclined maneuver.

We have closed-form expressions for & when
o = Omin and when the spin rate has not been
altered significantly from the value it has outside
the atmosphere (where we assume o« = 90°). At
o = omin We have

& = 0. @7

At o = 90° we have

@& = Gmp = MAV, cOS tmin/(2]) 28
where d&;,; is obtained using impulse theory as in
eqn (5). We can now evaluate the tensions (at the
probe) for these two points of the fly-through tra-
jectory by substituting Eqgs. (16), (17), (27) and (28)
into eqn (23) (and, likewise, into eqn (25) for the
orbiter):
Probe end:

. AVV[L"\/E

T,(a ins 0) =
p( min ) ,—2 rperH
mlol,, 2

X [msm + MpSm (r—n-lg—s‘gn—-*_—lcm - 1)] (29)
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A VV/C‘\/E

/27 per H
m,,mzlp2

4]2

Tp(90°, dimp) = (m — my) eClem/H

+ (30)

(I = L) AV,

Orbiter end:

AVVlc\/E

V2 per H

ml,,lps,,,c,z7l
S + (M — my,) m

MoAVVie (oo
V2nroe H
m2l,12

7 AV

Ty (otmin, 0) =

G0

TD(90°, O.Cimp) =

(32)

where s,, and c,, represent cos tpm;, and sin oy, re-
spectively.

We equate the two tensions at the probe in Egs.
(29) and (30) (and Egs. (31) and (32) for the orbi-
ter) and use the nondimensional parameters from
(8) and (9) to obtain an equation that governs tpm;y,.

Probe end:

ﬂ(mlpv Omin, My, hc’ u) = iSm + MySm

mhl,
x <;;fz—+1m - ‘)

o m
=272
) _p e lp
— (m - mr) € + 42572
x (l _70)5’3"1{ = 0. (33)
Orbiter end:
) ) ) lylySmC?,
Jo(Muo, Omin, My, ey U) = S + (2 — I)W
I INE '
R EIR )
(4

where we have defined nondimensional speed and
clearance variables, respectively, to be

u=(AV/Vi)y 27'”'pel'/(Hve)

he=h,/H (3%5)
where k. is the clearance required between the mini-
mum altitude of the orbiter and the minimum alti-
tude of the probe. In eliminating the tether length,
I, from Egs. (33) and (34) we have assumed, as
in[20,22], that the tether length is just long enough
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for the required clearance to be achieved. This
dependence on clearance can be expressed as

I = h./ coS onin. (36)

Neglecting the tether mass (i.e. setting m,=0) in -

Egs. (33) and (34), yields an identical result for
both probe and orbiter, namely, the o, expression
found using the small tether theory [22]:

L (—m exp(—Fe)
Sm 1+ m,s2, RN

_l<1+mr)—_l—l-c3 =0
4\ m Jh "
Since m, does not appear in eqn (37), we can
directly solve for the optimal o, (e.g. using a root
finder), given m,, k. and u. A scaled tether mass can
then be calculated that is dependent on the three
parameters, m,, b, and u. Consequently, the optimal
mass problem for small tethers is a function of only
three parameters[22]. For the ‘large tether theory,
however, Eqs. (33) and (34) are coupled with the
expression for the tether mass. This expression is
found using the maximum tension at the probe
(and obiter) as follows:

37

Myp = Tp(tmin, 0)lp/o = Eﬁ:;p
X [rhsm + M8 <ﬁ?§§;ﬁ-_7 2 — 1>:| (38)
o = o, Olofe =" 7
X [s,,, + (m — 1)%’{%}. (39

Equation (38) is solved simultaneously with
eqn (33) to get a solution for the optimum o, and
m,. (Similarly, eqn (39) is simultaneously solved
with eqn (34) to find m,,.) Not only does this add
to' the difficulty of solving the equations, but it
introduces another independent parameter into the
problem, namely AV. Thus, the optimal mass pro-
blem for massive tethers is a four-parameter problem
(m,, h,, uand AV) for a given tether material. For
convenience, we remove AV from the parameter u
to create a new parameter, #, that is a function of

Table 1. Gas giants

Planet a

Jupiter 3.453
Neptune 3.751
Uranus 4214
Saturn 4.417
Titan 4.754

J. M. Longuski et al.

planetary parameters and the approach trajecfory:
i = /201 /(He)/ V. (40)

Then, rewriting Eqgs. (33) and (38), the solution for
Omin and m,, is found by simultaneously solving

ml,l, _ -k
RS +mr3m(%7g;‘é':—_—7 C%n — 1> - (m — mr) e he

matlz
+ T (L =) uAV =0
_ hAVp[ mll,
Myp — oG [msm + mpS (”T”ZJTN Cm 1)f{=0.

(41)

Similarly, from Egs. (34) and (39), the solution for
Omin and w1, is found by solving

}’71707 SmCE —h 1’7’127072 -
f— 1) Bm _o=he _ TP BOAY =0
smot M=) ona 11 an1z
B hAVp _ ol SmC2
y — L " —l)—ermim b g, 42
© ~ Sem [S M (42)

Since the tether has uniform diameter and must
be made to withstand the maximum tension
between the probe and orbiter, the final estimate of
the optimum tether mass is the larger of the two
estimates given by the expressions above. That is

my = max{m,, My, (43)

Values for 7 are given in Tables 1 and 2 for the
major atmosphere-bearing bodies in the solar sys-
tem. The approach eccentricity, e, is calculated for
the hyperbolic trajectory with respect to the target
planet, resulting from a Hohmann transfer from
Earth (or from Mars when Earth is the target pla-
net). The scale heights and planetary gravitational
parameters are given in[16]. The periapsis radii can
be approximated by the radii of the planets. Note
that the s fall into two distinct categories made up
by the gas giants and the terrestrial planets. (While
the astute reader will observe that Titan is not even
a planet, much less a gas giant, its thick atmosphere
places it within this category for the purposes of
aerobraking tether design.) We now investigate a
candidate from each of these categories, since,

Table 2. Terrestrials

Planet i

Venus 10.41
Earth 10.75
Mars 11.91
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theoretically, there are really only two cases (either
d~4oridm1l).

5. RESULTS

The optimal tether mass predicted by the vertical
impact theory in eqn (14) and the optimal tether
mass predicted by the sliding pendulum theory in
eqn (43) are plotted as solid lines in Fig. 8 for vary-
ing AVs at Jupiter (where #=3.453). We assume
that the probe and orbiter have equal mass (so that
m,=1) and that a clearance of 1.8 scale heights is
required between the orbiter and the probe (i.e.
h.=1.8). We assume the tether material, Hercules
AS4, has the following characteristics [16]:

p = 1800 kg/m®, ¢=3.6 GN/m?®.  (44)

The minimum-mass tether is given by the lower
‘value predicted by the vertical impact and sliding
pendulum theories. For instance in Fig. 8, at a AV
of 1.5 kmy/s, the optimal-mass tether is approxi-
mated by the sliding pendulum theory to be about
0.7 times the mass of the orbiter. The lower curve
also indicates what type of maneuver is required for
the lowest tether mass. Thus, for AVs between 0
and 092 km/s the optimal-mass maneuver is
expected to be a vertical dumb-bell maneuver since
the vertical impact theory yields the lowest tether
mass. For AVs greater than 0.92 km/s, an inclined
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maneuver is optimal, as predicted by the sliding
pendulum theory.

To test these predictions we numerically optimize
the maneuver using the tether equations of motion
with distributed aerodynamic and gravitational
forces [14]. (Note: these equations of motion are far
too lengthy to include in this paper.) The optimiz-
ation is accomplished by mapping the tether mass
as discussed in the introduction and in[22]. Five
different maneuvers were optimized at Jupiter and
are indicated by asterisks in Fig. 8. The AVs for
these maneuvers are 0.2686, 1.017, 1.393, 1.775 and
2.002 km/s and the corresponding final eccentrici-
ties, e are 0.9999, 0.9500, 0.9250, 0.9000 and
0.8850, respectively. The approach eccentricity is
1.018 in all cases (associated with the @ given
above). The numerical values for the minimum
tether mass match very closely with the theoretical
values. The type of maneuver is also well predicted
by the theories: the numerical solution for the AV
of 0.2686 km/s is a vertical dumb-bell maneuver
and all the others are inclined maneuvers.

The usefulness of extending the theories to
include massive tethers is clearly shown in Fig. 8.
The tether mass values using the small tether theory
are plotted as short dashed lines for both the verti-
cal impact (eqn (15)) and the sliding pendulum [22]
theories. For AVs where the tether mass is more
than about a third of the orbiter mass (i.e. for
AV>1.1 km/s), the massive theory diverges signifi-

2 i T T
© 1.8} | — Massive Tether Theory (VI & SP) SP |
- == Small Tether Theory (vi & sp)
1.6F |- — Propellant Mass (P) E
vi
*  Numerical Results /‘.’
14 s
./ e
o/ s
1.2 KA 4 o
.7 P
my 1 _
meo e
0.8 s 7
0.6 J
04 4
0.2 J
0
0 0.5 1 1.5 25

AV (km/s)

Fig. 8. Theoretical and numerical tether masses at Jupiter.
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cantly from the small mass theory and provides
much better results.

The merit of the aerobraking tether can be par-
tially assessed by comparing the optimal-mass pre-
dictions with the propellant required to achieve an
identical AV on the orbiter (without the use of any
aerobraking). The propellant mass, mp.op, is easily
determined using the rocket equation:

AV
Mprop = M, | €XP Tz -1
sp

where the acceleration due to Earth’s gravity, g, is
assumed to be standard freefall (9.80665 m/s?) and
the specific impulse, I, is assumed to be 300 s. The
propellant mass in Fig. 8 is greater than the tether
mass for AVs below about 1.55 km/s (where
e,=0.915), showing that aerobraking tethers have a

43)

mass savings over a wide range of maneuvers. Since:

the analytic theory is accurate for this entire range
of AVs, the massive tether theory is an excellent
tool for preliminary design at Jupiter.

When comparing the numerical results to the slid-
ing pendulum theory, we find that the
AV = 0.2686, 1.017 and 1.393 km/s cases are
slightly below the curve, the AV = 1.775 km/s case
is almost exactly on the curve, and the AV = 2.002
km/s case is significantly higher than the sliding
pendulum theory. The excellent correlation between
the analytic theory and numerical solution at
AV = 1.775 km/s seems to be related to the flatness

7.22
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of the orbiter’s trajectory when the numerically
optimized maneuver is simulated. Figure 9 shows
the time histories of the radial distances from the
center of Jupiter to both the orbiter and probe.
During the atmospheric fly-through (about 210 to
295 s), the altitude of the orbiter only changes by
about 4.5 km while the probe swings down more
than 40 km to achieve the necessary aerodynamic
braking. This behavior constitutes the ideal sliding
pendulum motion: the orbiter maintains a nearly
constant altitude, while the probe swings -down, col-
lides with the atmosphere (at og;;,=30.1°) and
bounces back out of the atmosphere. Hence, it is
reasonable to expect that the theory is most accu-
rate for this case.

Figure 10 provides further evidence for the con-
jecture that flatness in the orbiter trajectory is an in-
dicator of when the sliding pendulum theory is
most accurate. Here, the orbiter trajectories are
plotted for all five of the numerically optimized
maneuvers. discussed above. The duration of the at-
mospheric fly-through and the shape of the probe’s
trajectory are very close in all these cases. The
AV = 2.002 km/s case, where the sliding pendulum
prediction is lower than the actual value, has an
irregularly shaped orbiter trajectory. For this
example, the motion seems fundamentally different
from the cases with lower AV in which the orbiter
height monotonically decreases as it approaches
periapsis and then monotonically increases as it
leaves periapsis. As we will see in the Mars results,

7.215

7.21

7.205

7.185f

7.18 1
0

! !
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250 300 350 400 450 500

Time (sec)

Fig. 9. Orbiter and probe radii for AV = 1.775 km/s.
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Fig. 11. Tension histories for different AVs at Jupiter.

In Fig. 11, a history of the tension at the probe
end of the tether is plotted for each of the numeri-
cally optimized examples. (The shape of the ten-
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sions are similar to the orbiter, but the magnitudes
are different.) The plots exhibit the same classic
behavior shown in Figs 4 and 5. For instance, the
AV = 0.2686 km/s case has a vertical dumb-bell
tension history characterized by vanishing tension
at periapsis (when ¢~ 250s). The tension histories
of  the other cases have the shape of the classic
inclined maneuver, namely, nearly equal tensions
before and after atmospheric fly-through (due to
- spin rate) with two humps during the aerobraking
maneuver caused by a combination of spin rate and
aerodynamic drag. The tension profiles demonstrate
that increasing AV causes the optimal maneuver to
transition from a vertical dumb-bell to an inclined
maneuver. Note that the spin temsions start to
become slightly asymmetric for the case where
AV = 2.002 km/s (where spin rate after atmospheric
impact is 96% of the spin rate before impact). This
asymmetry seems to accompany the irregularly
shaped orbiter trajectory discussed above.

The theoretical tether mass from the sliding pen-
dulum model for varying AV at Mars (@=11.91) is
plotted in Fig. 12. For clarity, the results for the
vertical impact model are not shown since they only
yield lower tether masses for AVs below 0.25 km/s
(or e,>1.35) where the two curves are indistinguish-
able on the given scale. Thus, the optimal maneuver
is predicted to be inclined for any aerocapture man-
euver (e;< 1.0).

J. M. Longuski et al.

Again, we use numerically optimized cases to test
the merit of the analytic theory. The asterisks in
Fig. 12 are at AVs of 0.6636, 0.9180, 1.187, 1.328
and 1.548 km/s which correspond to final eccentrici-
ties of 0.9999, 0.8000, 0.6000, 0.5000 and 0.3500.
The approach eccentricity is 1.571. All of these
maneuvers are inclined (but not necessarily in the
classic sense, as is shown below) so the maneuver
type is correctly predicted by the theory.
Unfortunately, the theoretical values for the opti-
mal tether mass become progressively worse as AV
is increased. In fact, the massive tether theory has
little use at Mars (for this 7). At low AVs, where
predictions are accurate, the large tether theory is
nearly the same as the small tether theory; at high
AVs the massive tether theory yields a small
improvement in accuracy, but it is still a poor pre-
dictor. :

The sliding pendulum curve (for massive tethers)
intersects the propellant curve of Fig. 12 at 4.8
kmy/s, implying that the tether has a mass savings
for AVs below this value. (Note that this intersec-
tion is not actually shown on the plot.) The numeri-
cal results, however, show that this crossing
actually occurs at a much smaller velocity change.
Using a polynomial curve fit, the break-even point
between the propeliant and tether mass is at about
1.46 km/s (where e,=0.409). Fortunately, this range
of AVs encompasses a wide range of final eccentrici-

-—- - Small Tether Theory (sp)
- = Propellant Mass (P)

% Numerical Results

— Massive Tether Theory (SP) ’

AV (km/s)

Fig. 12. Theoretical and numerical tether masses at Mars.
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Fig. 13. Orbiter and probe radii for AV = 0.6636 km/s.

ties, making the aerobraking tether an attractive
prospect for terrestrial planets as well.

The divergence between theoretical and numerical
values at Mars is puzzling, particularly in light of
the success attained at Jupiter. One possible expla-

nation could be the low values for the final eccentri-
cities. The numerical examples at Jupiter all had
final eccentricities greater than 0.8850, but at Mars
four out of the five cases were below this final eccen-
tricity and involve somewhat different dynamics
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Fig. 14. Orbiter radii for different AVs at Mars.
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(such as a slightly longer fly-through time and a
much flatter exit trajectory).

To study the effect of final eccentricity, the
approach eccentricity was increased (which decreased
#) for each case such that the previous five AVs
resulted in a fixed final eccentricity of 0.9999. We
found that the change in the & for each case raised
the theoretical sliding pendulum prediction while the
tether mass for the numerical value decreased. Thus,
the accuracy of the theory can be improved a bit

when we constrain the final orbit to have e,=0.9999,

but the discrepancy between the numerical solutions
" and the analytic theory is still nearly as large as in
Fig. 12. We conclude that the final eccentricity is
only a second-order effect and that the divergence is
an unavoidable result at large 7 for large AVs.

As illustrated by the Jupiter example, the orbiter
trajectory can serve as an indicator of when the
analytic theory will be accurate. The best corre-
lation between predicted and actual tether mass
values occurs at a AV of 0.6636 km/s (where
e,=0.9999). The orbiter and probe trajectories are
plotted for this example in Fig. 13. The radial dis-
tance to the orbiter is relatively constant during the
aerobraking portion of the maneuver which is ideal
behavior as modeled by the sliding pendulum.

The other cases at Mars are shown in Fig. 14
and have irregularly shaped orbiter profiles with
two local minima and nonconstant orbiter altitudes,
just as the AV = 2.002 km/s case did at Jupiter. All
the cases at Mars with this oscillatory behavior
have sliding pendulum tether mass predictions that

J. M. Longuski et al.

are much.lower than the numerical values. (The
exception at AV = 0.9180 km/s is -accurately pre-
dicted despite oscillatory behavior in the orbiter tra-
jectory, but the altitude is still fairly constant,
varying by less than 2 km during fly-through). Note
that this behavior is not modeled by the sliding pen-
dulum equations of motion, so inaccurate results
seem to be inevitable. Furthermore, the assumption
employed in eqn (36) is now invalid since the clear-
ance altitude can no longer be approximated . at
periapsis due to the large loss in the orbiter altitude
before and after periapsis passage.

The tension histories in Fig. 15 all have charac-
teristics of the inclined maneuver: low spin tension
outside of the atmosphere and large tension during
fly-through due to a combination of spin rate and
aerodynamic drag. However, only the AV = 0.6636
km/s case has a classic profile characterized by
nearly equal exoatmospheric tensions and sym-
metric maxima during the aerobraking portion of
maneuver. As mentioned above, the asymmetries in
tension seem to be correlated with the oscillatory
orbiter trajectory near closest approach and, hence,
with inaccurate results from the sliding pendulum
model.

6. CONCLUSIONS

The optimal mass theory developed here for the
massive tether provides very accurate results for
aerocapture at the gas giants. In the case of the ter-
restrial planets, however, the theory diverges and
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g. 15. Tension histories for different AVs at Mars.
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we must resort to numerical techniques for large
AV. The theory for massive tethers is characterized
by only four parameters which greatly simplifies the
analysis. (In the case of small tethers, the theory
reduces even further, requiring only three par-
ameters for a complete description.) These con-
cepts, coupled with the work presented-previously,
provide some guiding principles in the design of
aerobraking tethers. '

[N
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