1260 J. GUIDANCE, VOL. 20, NO. 6: ENGINEERING NOTES

Global Minimum Mass
for Aerobraking Tethers

Steven G. Tragesser* and James M. Longuski®
Purdue University, West Lafayette, Indiana 47907-1282
and
Jordi Puig-Suari
Arizona State University, Tempe, Arizona 85287-6101

Introduction

HE proposed system consists of an orbiter and a probe con-

nected by a long, thin tether (see Fig. 1). When the space-
craft arrives at a planet, the probe travels through the atmosphere
and aerodynamic forces provide the change in velocity required to
capture the vehicle into orbit around the planet, thus eliminating
the need for chemical rockets. During the maneuver, the orbiter re-
mains outside the sensible atmosphere and requires no aerodynamic
shielding. Near periapsis, large aecrodynamic torques on the vehicle
tend to spin the tether and plunge the orbiter into the atmosphere, but

this effect can be eliminated by spmnmg the tether in the opposne'

- direction during approach, as shown in Fig. 1.

There are two maneuver types for the tethered-aerobraking
maneuver.! In the vertical dumbbell maneuver, the tether is closely
aligned with the local vertical near periapsis, i.e., omin = 0in Fig. 1.
The maximum tension for this maneuver occurs outside of the at-
mosphere and is primarily due to spin rate. The case of oy, greater
than zero is referred to as an inclined maneuver; it exhibits maxi-
mum tension during the atmospheric flythrough. Knowledge about
the dynamics of these maneuvers permits us to bound certain vari-
ables in the following analysis.

In Ref. 1, the (local) optimum tether mass is found using an exte-
rior penalty, direction set method.? This direct search technique has
several drawbacks including computational intensiveness, sensitiv-
ity to the initial guess, convergence problems, and lack of feedback
to the user if the algorithm does not converge. In this Note, a method
is employed that alleviates these problems and shows that previously
found local minima are globally optimal solutions.

Problem Formulation

In general, there are five parameters that govern the aerobraking
maneuver and tether design for a given spacecraft and approach
trajectory. Three pertain to the system initial conditions: tether ori-
entation o, spin rate dyp, and target periapsis altitude ry.. (Here we
note that a and ¢ can be specified at any point in the trajectory
before atmospheric entry.) The other two parameters are the physi-
cal characteristics of the tether: length [ and (uniform) diameter d.
Constraints must be included in the formulation to guarantee that
the resulting optimum maneuver is acceptable. First, the final ec-
centricity (after aerobraking) e, must be equal to the eccentricity
of the target orbit e.. Next, the maximum force on the tether during
the maneuver Fp, cannot exceed the ultimate strength o times the
cross-sectional area of the tether A. Also, an inequality constraint
is introduced so that the minimum altitude of the orbiter minus the
minimum altitude of the probe (known as the orbiter’s clearance),
Ah, is greater than (or equal to) a set minimum, A#k.. This ensures
that the aerodynamic forces at the orbiter are insignificant. Finally,
we require the minimum tension on the tether Ty, to be nonneg-
ative because compressive forces (negative tension) could cause
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severe bending in actual application. Mathematically the optimiza-
tion problem of finding the maneuver with the minimum tether mass
m can be written as follows.

Minimize
m(.i), = {a()) d(), Tpers d: I}T
subject to
er—e =0, Fox—0cA=0
1)
Ah — Ahc = O: Tmin = 0

The solution can be obtained using a number of numerical op-
timization procedures. Here we present a simple technique that is
well suited for the problem under consideration.

Solution via Mapping Techniques

A simple way to verify a local minimum (or maximum) is to
evaluate the objective function at neighboring points and determine
whether it is always higher (or lower) at these points than at the
candidate point. By expanding the region in the state space in which
the objective function is-evaluated, a map is made that can be used to
search for local minima rather than verify a proposed solution. If the
states of the problem are bounded, then the objective function can
be completely characterized. This requires infinitely many points,
but if the objective function is (piecewise) smooth, a finite number
of points can be used to approximate the function.

Characterizing the objective function for the five state variables
of Egs. (1) would require an unreasonably large number of function
evaluations. Furthermore, the objective function cannot be graph-
ically depicted for a five-dimensional problem. To remedy these
difficulties, the dimension of the state space is reduced using the
equations of constraint. We set the inequality constraint for clear-
ance identically equal to zero. (The results from Ref. 1 all achieved
the minimum required clearance even though the constraint was
enforced through an inequality. This seems physically reasonable
because the tether can be made shorter to reduce the mass if excess
clearance is obtained.) Then the eccentricity, tether strength, and
clearance constraints of Eqs. (1) can be solved simultaneously to
specify values for three of the parameters in X, thereby reducing the
number of free parameters to two. This allows the objective func-
tion to be completely characterized in two dimensions, with fewer
points.

From experience, the process is quite robust if we choose to solve
the constraint equations for rp, d, and [. Then ay and &, can be
varied over some range, and the value of m can be calculated at
each point. After choosing the values of o and &, we find the
solution for the required tether mass by simultaneously solving

Siky=er —e. =0, foE) =
[E) = Fux —0A=0

Ah— AR, =0
@

where X = [rper, d, {17. This is accomplished using 2 modified Pow-
ell hybrid method,? which is a variation of Newton’s method. By
repeating this process at many points, we obtain contours of the
tether mass required for some subspace of e and &j.

Numerical Results

In Ref. 4, an analytic characterization of the optimal-mass tether
problem proves that the atmosphere-bearing planets of the solar

Fig.1 Aerobraking maneuver.
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system can be categorized (by a particular scaling parameter) into
two distinct groups, the terrestrial planets and the gas giants (where
the satellite Titan turns out to be a gas giant). Within each group,
the behavior of the optimal maneuver is very similar for a given
AV. Accordingly, we now apply the mapping technique to one
representative from each group, namely, Mars and Jupiter.

The case of aerocapture at Mars is investigated for capture into a
nearly parabolic orbit (e, = 0.9999) from a Hohmann transfer from
Earth, using a Hercules AS4 graphite tether. Figure 2 shows the
tether mass contours of aerocapture maneuvers that satisfy Egs. (2).
The «y and ¢, shown are for simulations where the initial altitude
of the spacecraft center of mass is 256 km, which is well outside the
sensible atmosphere. The orbiter and probe masses are each 1000 kg.
A grid resolution of 61 x 51 (3111 data points) is used to generate
the plot. Note that every point on the plot represents the tether mass
required for the initial conditions indicated by the coordinates of the
point (o, &g). For example, if we choose an initial orientation of
0 deg and an initial spin rate of —0.0251 rad/s, then solving Egs. (2)
yields

Tper = 88.3km, 1 =183km, d=17mm (3)
This length and diameter correspond to a tether mass of 75.0 kg,
which corresponds to the value of the contour at 0 deg, —0.0251
rad/s in Fig. 2.

The initial orientation and spin rate are ideal variables for the two-
dimensional search because they are both bounded for this problem.
Because the tether orientation repeats itself every 360 deg, Fig. 2
includes all possible variations in o. (Notice how the plot matches
exactly at ¢y = —180 and 180 deg.) To bound ¢, we recall that
the maximum tension of the vertical dumbbell maneuver is due to
the exoatmospheric spin rate of the system. Thus, maneuvers with
an initial spin rate greater (in magnitude) than the vertical dumbbell
spin rate always have a higher maximum force (and larger tether di-
ameter) than the vertical dumbbell. Therefore, the optimal solution
maust be located in the region where the magnitude of a is less than
that of the vertical dumbbell maneuver. In this example the vertical
dumbbell maneuver has an &, of —0.0377 rad/s (and is indicated
by an x in Fig. 2), and so the optimal solution must lie in the range
—0.0377 < &y < 0.0377 rad/s. The positive range of ¢, was in-
vestigated but it is excluded from Fig. 2 for clarity. (Positive values
correspond to spinning in the same direction as the orbital motion,
opposite.to the d shown in Fig. 1, and are intuitively suboptimal.)

Within the search region of Fig. 2, there are combinations of e
and & for which the altitude of the orbiter is lower than the altitude
of the probe near periapsis. Because of this upside-down orientation,
no tether length achieves the required clearance and, therefore, no
solution is possible. These no-solution regions are shaded in Fig. 2
with dark gray and cannot contain the optimum.

When solving Egs. (2), we ignore the constraint for Ty, as given
in Egs. (1). Thus, maneuvers with compressive forces are present
in the contours of Fig. 2. To exclude these areas from the search,
any maneuvers containing compression are shaded in Fig. 2 with
light gray. The boundary between the regions of no solution and
compression is fairly irregular and probably not entirely accurate
in certain areas due to numerical sensitivity. However, because this
inaccuracy occurs in a region where the maneuvers already violate
the compression constraint, more effort was not spent on improving
this portion of the map.

Now that the search variables are bounded and the unacceptable
maneuvers are eliminated, the global minimum tether mass is ob-
tained simply by a visual inspection of the mass contours. In Fig. 2,
there are closed elliptical contours in the center of the plot with
values of 75 and 90 kg. Near the center of these contours is a local
minimum mass of 65.7 kg. Further refinement of this solution with .
a map of the immediate vicinity (not shown) yields a tether mass of
64.9kg. A quick survey of the rest of Fig. 2 reveals no other minima
that satisfy the constraints, indicating that this solution is the global
minimum.

The computational time needed to generate the 3111 data points of
Fig. 2 [each requiring several trajectory simulations to solve Egs. (2)]
is comparable to the computational intensiveness of the direct search
method in Ref. 1. In practice, however, a much lower resolution
can be used in the mapping technique to visually determine the
approximate region where the optimum is located. Then successive
enlargements (with relatively few data points) can be used to im-
prove the accuracy of the solution. This is typically a faster and more
robust process than the local search technique.

The reason for difficulties with the direct search method in Ref. 1
can be deduced from Fig. 2. There are local minima present in the
compression region (near the no-solution areas) toward which the
direct search and descent methods are drawn because the numerical
search is initially driven by the unconstrained problem. (Note that
an exterior penalty method is used in Ref. 1.) This region is numeri-
cally very sensitive, however, and the conventional search algorithm
would sometimes fail to converge.

NO SOLUTION

OPTIMAL MASS
MANEUVER
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Fig.2 Mass map and compression constraint at Mars (¢; = 0.9999); contours are in kilograms.
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Table 1 - Optimal mass aerobraking tethers using mapping technique

Values Venus Earth Mars Jupiter Saturn Uranus Neptune Titan
AV, km/s 0.35 0.39 0.67 027 041 0.50 0.34 1.31

Tether mass, kg 25.9 30.1 64.9 18.8 44,4 67.2 32.5 279
Length, km 12.2 10.5 193 361 544 72.7 72.7 108

Diameter, mm 1.22 1.42 1.54 0.608 0.760 0.809 0.562 1.35

Maximum force, N 4210 5720 6730 1040 1630 1850 894 5160
Minimum «, deg 27.8 312 404 -028  —0.21 —-0.57 -1.07 38.1

Maneuver type? I I I \% v A% v 1

21 js inclined maneuver, and V is vertical dumbbell maneuver.

NO SOLUTION
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Fig.3 Mass map and compression constraint at Jupiter (€7 = 0.9999); contours are in kilograms.

. The mapping technique also allows for insight to be gained re-
garding the nature of the optimal solution. In Fig. 2, we see that the
mass contours are smooth near the optimum and that the solution
is far from areas where the constraints are not satisfied (in regions
of no solution or compression). This illustrates the attractiveness of
the inclined maneuver for possible guidance and control applica-
tions inasmuch as small perturbations in the initial conditions are
not likely to be catastrophic.

The mass map is similar for the other terrestrial planets (Venus
and Earth). In the same manner as just described, we can bound the
area that must contain the optimum solution. Within this region we
find that there is a unique minimum that turns out to be an inclined
maneuver. We can then conclude that this is the global minimum.
The results are shown in Table 1.

The behavior for the cases of aerocapture at the gas giants is very
different from the optimal inclined maneuvers at the terrestrial plan-
ets. To illustrate, we analyze aerocapture at Jupiter (forey =0.9999).
The contour plot representing the solution for Egs. (2) is shown in
Fig. 3, where the initial orientation and spin rate correspond to an
initial altitude of 1220 km.

For this case, the only (unconstrained) local minimum mass is
located in the region of compression. Once we enforce the com-
pression constraint, however, the best answer is found at the edge of
the constraint with a value of 18.9 kg. Thus, the minimum tension
during atmospheric flythrough is equal to zero, which is charac-
teristic of the vertical dumbbell maneuver. This constrained opti-
mum is the global minimum tether mass for aerocapture at Jupi-
ter. :

The optimum-mass tethers for the other gas giants (Saturn, Ura-
nus, Neptune, and Titan) are given in Table. 1. Except for Titan, the

unconstrained minimum in each of these cases contains compressive
forces just as it did at Jupiter. Consequently, the (constrained) solu-
tion is a vertical dumbbell (bordering the region of compression). At -
Titan, the mass map is more closely related to the terrestrial planets,
and it yields an inclined solution for the optirum.

Both the maneuver type and tether mass for all of the cases given
in Table 1 closely match the results from Ref. 1. The results here,
however, were found with less difficulty and greater precision.

Conclusion

The local minimum mass solutions obtained previously for the
aerobraking tether appear to be global optima. An exhaustive search
reveals no new type of tether aerobraking maneuver; therefore, -
the optima consist of vertical dumbbell maneuvers and inclined
maneuvers.

The mapping technique is a direct method that does not require
an initial guess for the location of the optimum, retains information
about other maneuvers, and is very robust.
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