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Annihilation of Transverse Velocity Bias
During Spinning-Up Maneuvers

R. Anne Beck* and James M. Longuski'
Purdue University, West Lafayette, Indiana 47907-1282

During spinning-up maneuvers of a spacecraft, the spin thrusters can produce a finite transverse velocity offset
or bias in the plane perpendicular to the spin axis. A two-burn scheme is introduced to eliminate this offset.
The fundamental transcendental equation for the two-burn scheme is of the same form as Kepler’s equation.
The relationship between the transcendental equation and Kepler’s equation is investigated. Numerical results

demonstrate the effectiveness of the two-burn scheme.

Introduction

HE Galileo spacecraft uses a single thruster for spinup and

a single thruster for spindown maneuvers. Eke and Man! de-
scribe the spin-rate-control flight algorithm that is used both to alter
and to maintain spin rate. The problem is challenging because the
thruster causes body-fixed torques about three axes and body-fixed
forces along two axes.

In this paper, a maneuver scheme is presented that annihilates
the transverse velocity bias accrued during spinning-up maneuvers.
This offset velocity is directly dependent on the unbalanced force
of the spinup thrusters and so is particularly noticeable if there is a
large thruster couple mismatch or if (as in the case of the Galileo
spacecraft) there is only one spinup thruster (i.e., no couple available
as depicted in Fig. 1). The maneuver scheme consists of two burns
with a coast period in between. The initial burn angle is given by
a transcendental equation similar to Kepler’s equation. However,
in contrast to Kepler’s equation, which has a unique solution for a
given eccentricity, the transcendental velocity equation can have an
infinite number of solutions. (The fact that there are close analogies
between the classic problem of rigid-body motion and the orbital
motion of two bodies is not new—it has been noted in an interesting
paper by Cochran et al.%)

Our problem is related to that discussed by Longuski et al.,® where
a two-burn scheme is introduced to annihilate angular momentum
bias due to transverse torques during a spinning-up maneuver. We
consider the problem of transverse velocity accumulation due to
transverse forces, which is not addressed in Ref. 3. Our approach
makes use of the analytical approximation? for velocity accrued due
to applied forces in a spinup maneuver. The resulting transcendental

equation is different from that of Ref. 3 but is closely related. Finally, -

we investigate the existence of multiple solutions for the two-burn
scheme. :

Analytical Solutions

In this section we derive the transcendental equation for the ve-
locity two-burn scheme. The equations of motion for a spacecraft
subjected to forces and torques are highly nonlinear and difficult to
analyze. However, some assumptions that simplify the dynamics, yet
retain the fundamental behavior of the velocity errors, can be made.

Simple Model for Velocity Offset
We take a formal approach in the derivation of analytical solutions
for the transverse velocity of a rigid body subjected to forces and
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torques. Let us consider Euler’s equations of motion

oy = My /I = (I, = 1)/ L]y, M
d)y —1 I‘Jy/l.y - [(1,‘ - Iz)/]y]wlwx (2)
o = M /1, — [y — L)/ L]wxw, 3

where' M., M,, and M, are torque components; wy, wy, and ,
are angular velocity components; and I, 1, and /, are principal
moments of inertia. By assuming a near-symmetric rigid body (I, ~
1,) subjected to constant torques,* the spin rate is found to vary
nearly linearly with time:
w, & (Mz/lz)t + Wz (4)

and the solutions for w, and w, can be found from Egs. (1) and (2)
interms of Fresnel integrals. When I, = [,, the w, solution, Eq. (4),
becomes exact. ' :

The attitude motion of a rigid body can be expressed using a
type-1 3-1-2 Euler angle sequence.’ The corresponding kinematic
equations are

$e = w, Cos Py + @, Sin gy )
by = 0, — (@, 08 Py — w, sin ) tan B, (6)
é, = (w, cos ¢, — w, sin ®y) sec g, Q)

where ¢, ¢,, and ¢, are the Eulerian angles. Equation (7), under the

dssumption that ¢, and ¢, are small, can be integrated analytically.

~ The resulting solutior for ¢, is
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¢, ~ ’%(Mz/lz)t2 + Wt + ¢n (8)
Without loss of generality, we may assume that
(0} = =0 ®
wz

Fig. 1 Spinning-up maneuver
(single thruster).
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This is equivalent to choosing the inertial reference frame to be
coincident with the spacecraft body-fixed frame when the spinup
begins.

The change in velocity in inertial space during spinning-up can
be found by integrating the acceleration equations

ax C¢zc¢y - S¢z5¢x5¢y
ay | = s¢zc¢y + C¢zs¢xs¢y
az ~ChrSPy

where ¢ and s denote cos and sin, respectively; f:, fy, and f; are
body-fixed force components; and m is the vehicle mass. The terms
[+ fv, and ¢, can be large during the spinning-up maneuver. On
the other hand, f,, which results from thruster misalignment, plume
impingement, and wobble angle, is usually a small term. We note,
however, that nonzero values of f; result in secular velocity terms,
not only along the inertial Z direction, but also in the inertial XY
plane, This problem is analyzed by Beck and Longuski. For the
current problem we assume that f, = 0. So when ¢, and ¢, are
small, the transverse acceleration equations reduce to

. ax _ i)X _ C¢z —s¢z fx/m (11)

ay i)Y s ¢z C¢z f ¥y / m
Under further assumptions (corresponding to the self-excited rigid-
body problem”) that the body-fixed forces and vehicle mass proper-
ties remain constant, the resulting linear equations can be integrated
directly to obtain the transverse components of the velocity in in-

ertial space, namely vy and vy. To state the velocity solution in
compact form, we define the following complex quantities:

f=r+ify 02
The transverse acceleration equation then becomes
a = (f/m)exp(i¢;) 13

and the corresponding transverse velocity is

a=ay +iay, v =vx +ivy,

v=vy+ -'f; / exp(i¢,) dt 14)
m Jy

where vy = v(0).

For subsequent analysis and computatlons it is convenient to
introduce a time-like independent variable T and rewrite the velocity
solution. We define the new independent variable 7 to be

) =w,() = (M/ L)t + o (5

where
' T(0) = 7 = wy (16)
Then Eq. (8) becomes .
¢(0)~ 0/2)(x* - 1) an

where
A=1L/M, (18)

The transverse velocity Eq. (14) becomes

A ¥ A
v = v+ %A exp(—iirg) /;0 exp<i-2-r2> dr 19)

The integral in Eq. (19) can be written (in a way similar to that of
Tsiotras and Longuski?) as

/10 exp(i%ﬁ) dr = /l—%[sgn(r) E* (‘/ l—:;l-r>

— sgn(zo) E* ( ml’o)] V (20)
V7 ,

where E(x) is the complex Fresnel integral defined as

E®x) é/ exp (ﬂ%uz) du @1
0 .

—5$,Cdy cp. 5Py + sdshrcy Jfe/m
Ch.CPx

S¢z5¢y - C¢zs¢xc¢y fv/m (10)
c¢xc¢_v Sfo/m

and E*(x) in Eq. (20) represents the complex conjugate. Fresnel
integrals can be approximated using the z-method of Lanczos dis-
cussed by Boersma’® or using asymptotic expansions, series expan-
sions, or rational functions as in Abramowitz and Stegun.'?

Figure 2 represents a typical transverse velocity profile during a
spinning-up maneuver, The velocity vector (vx, vy), starting from
the origin, slowly spirals inward toward an offset (nonzero), limiting
value (v, v9°). The behavior can be analyzed by taking the first-
order terms of an asymptotic expansion of the Fresnel integral ap-
pearing in the transverse velocity solution [and employing Eq. (9)]
to obtain*

vy ~ (f/m) (0] sing,) — (fy/m) (~
vy ~ (fo/m) (o' cos ¢, + o) + (fy/m) e

w ' cosd, + w;(,') 22)
"sing;) (23)
For long sbinup durations, the real transverse velocity components
vy and vy approach the finite limit:

vy 2 tl_l’rralo vx ~ (mwg) ™ [—fy + fra + O(aﬁ)] @4

T —
vy = Hm vy ~ () i+ Hae+06@hH] @9
where o = &,/w?, and where we have included, for the purpose of
discussion, the second-order terms from the Fresnel integral expan-
sion. For small values of «, that is, when the velocity spiral winds
in slowly toward the limiting velocity, Eqs. (24) and (25) reduce to

vy & =~ f,/ (may) (26)
v’ & fo/(mwy) @n

If « is large, then the second-order expansion [Egs. (24) and (25)]
and the first-order approximation [Eqs. (26) and (27)] are both in-
sufficient to provide an accurate solution for the velocity limit point
(vy, vy°). The addition of higher-order terms will not improve the
accuracy because of the nature of asymptotic expansions. In this

vy

o
Vx

Fig. 2 Transverse velocity spiral: velocitv offset o (1.
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case, we can add terms from the numerically derived Boersma
expansion.” In any event, the concept of the two-burn scheme (which
we discuss next) remains viable but may require refinement through
numerical methods if o is large.

Consider now the vector p(¢) defined with its origin at the limit
point (v, v§°) and its tip at the current position on the spinup spiral
curve (as shown in Fig. 2). :

That is,

p(t) = (Avg, Avy) (28)
where

Avy = vy — V%, Avy = vy — vy
At time t = 0, the vector p(0) = p, defines the transverse velocity
offset due to the spinup maneuver. The magnitude of p(¢) given by

[FE 72
o(t) =/ Avy + Avk = -—£+—f’ ' 29)

mw(t)

shrinks inversely with the current spin rate, w, (t), spiraling inward
" to the limit point. We note from Eqgs. (22) and (23) that 6 in Fig. 2
is, in fact, the first Euler angle .

0=¢. (30)

To understand how the two-burn velocity scheme works, we make
the following simple observations.

1) If spinning-up (thrusting) is discontinued, the motion along the
velocity spiral ceases.

2) Subsequently, the vehicle continues to spin, but at.a constant
rate. :

3) When spinning-up (thrusting) is resumed, the new velocity
spiral is reoriented and has a different limit point.

In the two-burn scheme, we attempt to orient the velocity limit
point of the new spiral to coincide with the origin of the velocity
plane. If the velocity can be made to return to the origin, then the
total accrued transverse velocity is zero.

For a slowly winding velocity spiral, it turns out that there are
multiple return options in the two-burn scheme. These options occur
when the perpendicular bisector between the origin and the limit
point intersects the original spiral path (Fig. 3). These intersections
mark locations where thrusting may be discontinued, to allow the
spacecraft to rotate (coast) to a new orientation before resuming

thrusting. The second burn reorients the spiral and continues its -

evolution in such a way as to encircle the origin.

Transcendental Equation for Burn Angle
Thus far, we have outlined a method to compute the transverse
velocity and the velocity offset accrued during a spinup maneuver.

e = return options

vy

Fig.3 Transverse velocity spiral: two-burn scheme return options.

velocity spiral
po/2

origin

8y

return option

Fig.4 Transverse velocity spiral: burn angle 6.

Next, we derive the governing equations for the two-burn scheme.
Figure 4 illustrates the intersection of the velocity spiral with areturn
option. A return option establishes a switching point for the velocity
two-burn scheme. The distances from this point to the origin and
the limit point are equal, establishing the isosceles triangle depicted
in Fig. 4.

We wish to determine the value of the burn angle 6,. Note that in
Fig. 4,

P COS 8 = 3P0 €2y

provides the distance between the perpendicular bisector and the
origin (as well as the limit point), We can nondimensionalize the
variable p, given by Eq. (29), as follows:
t
5= o) — Waty (32)
Po W, (t )

At this point it is convenient to find w, in terms of ¢, (=86). By
elimination of time in Eqs. (4) and (8), we obtain

w, = /20,6, + W)y = V20,6 + o2, (33)
Combining Egs. (32) and (33), we have
A= (1+20,0 /wf(,)—% (34)
Our governing equation for §,, from Egs. (31) and (32), becomes
cos 8y = 1/25, ' (35)
Squaring Eq. (35) and using Eq. (34), we get
cos® 6, = 4 (1 + 20,6, / k) 36)

Using the trigonometric identity, 2cos*8 = 1 4 cos 26, Eq. (36)
can be reduced to the transcendental velocity equation
2.6,

— =0 (37)
@y

14 2cos26, —

Some remarks about Eq. (37) are in order. We first observe that wg,
and w, are known a priori, and hence, in principle, the burn angle
8, can be found from Eq. (37). This defines the two-burn scheme
for annihilation of velocity offset. Depending on the specific prob-
lem parameters, there may be multiple return options (as discussed
earlier), which allows for greater flexibility in implementing the
two-burn scheme. ‘

Once the burn angle 6, is found from Eq. (37), the burn time #, is
extracted from the quadratic equation [by referring to Egs. (8), (9),
and (30)]: :

6 = (1} /22) + warty 38)
It now becomes necessary to define a related variable, @, as follows:
®, =0, —2nmw (39)

where n is an integer such that 0 < ®;, < 2. To consider only the
physically meaningful solutions, we require that ®, must lie in the
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first or the fourth quadrant. Using the isosceles triangle in Fig. 4 and
the angle ®;, of Eq. (39), we see that the coast angle is given by

6, =m —20, (40)

Because the perpendicular bisector can intersect the velocity spiral
twice for a given revolution, as shown in Fig. 3, there may exist

" a large coast angle corresponding to the second return option. The
two coast angles (illustrated in Fig. 5) are given-as

T —20, if 0<@®p<m/2 1)
‘T s —20, if m/2<©,<2n

The small angle corresponds to the return associated with the first
half revolution, whereas the large angle is for the return associated
with the second half revolution. Because the spin angle ¢, varies
linearly with time (during coast), \

0:(1) = w; ()¢ - 42
the corresponding coast times can be found by
. 0.
fe= 43)
Wy (tb)

where w, (f,) is the spin rate at the time when the thrusters are turned
off for the coast period.

Comparison to Kepler’s Problem

To show the relation between the transcendental velocity equa-
tion (37) and the well-known Kepler’s equation, we define the wind-
ing parameter o and the angle ¢ as

o= a,/0k _ (44)

D =126, (45)

27 return option

origin (vg, o)

1** return option

Fig. 5 Transverse velocity spiral: coast angle 0..

Rewriting Eq. (37) and using Eqgs. (44) and (45), we obtain the
transformed transcendental equation associated with the two-burn
scheme:

& — (2/c) cos ® = (1/a) (46)
Kepler’s equation is
E—esinE=M 47

where E is the eccentric anomaly, e is the eccentricity, and M is
the mean anomaly. The similarity between Eq. (46) and Kepler’s
equation is clear.

A comparison of Kepler’s equation (47) and the transcendental
velocity equation (46) can be drawn by considering the application
of a well-known graphical solution technique, traditionally used in
analyzing Kepler’s equation.!! This procedure, applied to Eq. (47),
involves plotting the functions

y=sink, y=(E—-M)/e (48).
and finding the point of intersection. Because the sine curve can be
constructed independently of M, only the slope and the y intercept
of the straight line can vary. Figure 6 illustrates this method.

Similarly, the graphical solution for the transcendental velocity
equation requires plotting

y =cos &, y = (ad—1)/2 49
and finding the points of intersection. The corresponding plot for two
values of « is shown in Fig. 7. Note that, unlike Kepler's equation,
the transcendental velocity equation can have multiple solutions,
where each solution corresponds to a return option. .

This is because the winding parameter & can take on any value
(0 < a < o0), whereas the eccentricity e is limited in range (0 <
¢ < 1). Thus, the dashed line in Fig. 6 has a slope 1/¢, which ranges
between infinity and unity, whereas the dashed line in Fig. 7 can
have any slope.

We see from Fig. 7 that a small spin torque (corresponding to a
small winding parameter) results in a large number of points that can
be considered for the two-burn return scheme. The zero-slope case,
which has an infinite number of solutions, occurs when the spin
rate is a constant (@ = 0). On the other hand, a large spin torque
(i.e., alarge winding parameter) approaches the limiting velocity ata
faster rate, reducing the number of return options. One might wonder
whether there are cases in which only one return option exists. Using
the theory described above, this would occur for very high values
of spin torque, for example a fictitious value of M, = 400 N m for
the Galileo spacecraft (or & = 0.9), as shown in Fig. 7.

In general, not every solution of the transcendental Eq. (46) pro-
vides a realizable two-burn return option. We are interested only in

2 . T T

(2] 50 100 150

200 250 300 350
£ deg

Fig. 6 Kepler relations: a simple graphical method.
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Fig. 7 “Transcendental velocity relations: a simple graphical method: M, = 400 Nm (c = 0.09) and M, =13.5 Nm (o = 0.03).
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=15 -10 iy o 5 10 15
vx mm/s

Fig.8 Two-burn maneuver: first return option.

the physically meaningful solutions corresponding to the burn an-
gles, where the related angle @, lies in the interval (0 < ©, < 7 /2)
or(37/2 < ©, < 2m). It turns out that only every other intersection
in Fig. 7 corresponds to a realizable return option. For the case of
the Galileo, which nominally has a spin torque of M, = 13.5N m
(o = 0.03), the graphical method predicts 17 return options.

Numerical Results

It is very important to test these theoretical results as they might
be applied to spacecraft maneuvers. We employ a Runge-Kutta—
Verner fifth/sixth-order integration method using double-precision
accuracy for the following simulations. In each case the accuracy is
controlled to a tolerance of 1 x 107! mmys for the velocity plots.

Axisymmetric Case
We first demonstrate the effectiveness of the two-burn scheme

for an axisymmetric case. The following quantities, representative

of the Galileo spacecraft,®” are used in the numerical studies:

I, = 4183kgm?,

I, = I, = 2985kg m?, m = 2000kg

fe=T66N, f,=-643N, f,=0, M,=M, =0,

M, =135Nm, wy = 3.15rpm, w;r = 10.0rpm

30
%
20
15
vy
mm/s

-5

vy mm/s

Fig.9 Two-burn maneuver: 17th return option.

where we have selected axisymmetric values for [, and I,. This
permits us to test the ideal case where Egs. (4) and (8) are exact. We
further note that the value of & is small (& = 0.03) so that Egs. (22)
and (23) provide accurate approximations.

In the numerical simulations, for zero initial conditions on
(@x0, @yo, D0, &y, $0), we only need to integrate the exact
differential Egs. (3), (7), and (10) to obtain the transverse veloci-
ties. From Egs. (26) and (27) the velocity limit point is found to be
g, vP) = (9.74, 11.6) mm/s. The velocity vector, for this case,

-spirals inward toward this limit point as expected and as shown in

Fig. 2. Our objective is to cause the velocity to spiral about the origin
by employing the two-burn scheme.

Figure 3 shows the 17 return options (indicated by the circles) for
the case where M, = 13.5 N m. Figures 8 and 9 demonstrate that
the offset is returned to encircle the origin for the 1st and the 17th
cases. In fact, it has been verified that the two-burn scheme reorients
the velocity offset to encircle the origin in all 17 cases.

Near-Symmetric Case

In the real world, few spacecraft are axisymmetric. To study the
effects of the near-symmetric case, we use the following values for
I, and I, (Refs. 3 and 7): .

I, =2985kg m?, I, =2729kgm*
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0.02 T T T T + T

0.015¢

-0.0151

~0.02 . - + — + "
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

Uxdiff Mm/s

Fig. 10 Difference between near-symmetric and axisymmetric cases:
first return option.

which more realistically represent the Galileo spacecraft. Of course
these terms will have no effect on the validity of Eq. (4) unless
both w, and w, are also nonzero, as can be seen from Eq. (3).
The Galileo spacecraft has significant nonzero transverse angular
velocities because of the fairly large transverse torque components
produced by its single spinup thruster:

M, =—-1253Nm, M,=-1494Nm

We now use these values in Egs. (1-3), (5-7), and (10) to simulate
the two-burn scheme, again assuming zero initial conditions for
(@0, @y, Do, Dy, P0). The results are nearly identical with
those of Fig. 8. To compare the two cases, we plot (in Fig. 10) the
velocity differences: vyaitr = Vynear — Uysym VS Uxditt = UXnear — UXsym
(where the subscripts near and sym refer to the near-symmetric and
axisymmetric cases, respectively). The plot shows that the maximum
difference between the velocity components approaches 0.02 mm/s
near the end of the maneuver. In the near-symmetric case the final
values for vy and vy after the maneuver are vy; = 2.35 mm/s and
vy = 4.15 mm/s as compared to vy = 2.28 mmy/s and vy; = 4.19
mm/s in the symmetric case.

These results imply that the two-burn scheme is highly practi-
cal for the more realistic case of near-symmetric spacecraft with
nonzero transverse angular velocities.

Conclusions

The fundamental transcendental equation for the velocity two-
burn scheme is similar to Kepler’s equation but is more complicated
because it has multiple solutions. This open-loop control scheme is
remarkably simple to implement because it requires knowledge only
of the initial spin rate and the angular acceleration to provide the
burn and coast times. Major assumptions are that the thrusters can be
turned on and off, that the spin torque is constant when the thrusters
are on, and that the vehicle is spinning about a stable principal axis.
The method applies to symmetric and near-symmetric rigid bodies.
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