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The problem of the time evolution of the angular velocity of a spinning rigid body,
subject to torques about three axes, is considered. An analytic solution is derived
that remains valid when no symmetry assumption can be made. The solution is
expressed as a first-order correction to a previous solution, which required a symme-
Iry or near-symmetry assumption. Another advantage of the new solution (over the

Sormer) is that it remains valid for large initial conditions of the transverse angular

velocities.

1 Introduction

In recent years a considerable amount of effort has been
devoted to the development of a comprehensive theory that will
allow a better understanding of the complex dynamic behavior
associated with the motion of rotating bodies. A cornerstone in
this effort is the development of analytic solutions that can
describe—at least qualitatively—the problem dynamics. The
system of the associated equations, the celebrated Euler’s equa-
tions of motion for a rigid body, consists of three nonlinear,
coupled differential equations, the complete general solution of
which is still unknown. Special cases for which solutions have
been found include the torque-free rigid body and the forced
symmetric case. Solutions for these two particular cases were
known for some time and have been reported in the literature
(Golubev, 1953; Leimanis, 1965; Greenwood, 1988). The dis-
covery of complete solutions for those and other special cases,
initially gave rise to optimism that a general solution was in
sight; however, since then progress has been remarkably slow.
The conjecture that studying several special cases would eventu-
ally lead to a comprehensive theory of the problem proved to
be false. In fact, a complete characterization of the motion of
a rotating solid body quickly turned out to be a formidable task,
eluding the wit of some of the most prominent mathematicians
of our time; see, for example, Leimanis (1965 ) and Golubev
(1953) and the references therein. Even today, it is still not
Clear that a complete solution even exists. (It is well known,
however, that for the closely related problem of a heavy rigid
body rotating about a fixed point, integrability is possible for
only four special cases (Golubev, 1953).)

Most attempts to generalize the previous results were con-
fined to some kind of perturbation approach of the known and
well understood integrable, torque-free, and/or symmetry cases
(Kraige and Junkins, 1976; van der Ha, 1984; Kane and Levin-
son, 1987; Or, 1992). Recently, significant results made it possi-
ble to extend the existing theory to include the attitude motion
of a near-symmetric spinning rigid body under the influence of
constant (Longuski, 1991; Tsiotras and Longuski, 1991a) and
time-varying torques (Tsiotras and Longuski, 1991b, 1993;
Longuski and Tsiotras, 1993). The purpose of the present work

Contributed by the Applied Mechanics Division of THE AMERICAN SOCETY
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. .

Discussion on this paper should be addressed to the Technical Editor, Professor
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston,
Houston, TX 77204-4792, and will be accepted until four months after final
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.

Manuscript received by the ASME Applied Mechanics Division, Jan. 7, 1994;
final revision, Feb. 15, 1995. Associate Technical Editor: E. J. Haug, Jr.

Journal of Applied Mechanics

is to extend these results to a spinning body with large asymme-
tries, subject to large initial angular velocities.

2 Equations and Assumptions

We are mainly interested in the problem of spin-up maneu-
vers of a non-symmetric spinning body in space, subject to
constant torques and nonzero initial conditions. To this end, let
M,, M,, and M, denote the torques (in the body-fixed frame)
acting on a rigid body, and let w;, w-, and w, denote the angular
velocity components in the same frame. Then Euler’s equations
of motion for a rotating rigid body with principal axes at the
center of mass are written as ‘

M L-1
Wy =I—l'+-ZT3wzw3 (la)
Wy = ’A& + 13 — Il Wik (lb)
L L
. M, I,-1L
w3=l—33+%w.wz (l¢)

These equations describe the evolution in time of the angular
velocity components w,, w,, w; in the body-fixed frame. For
consistency we will assume that the spin axis is the 3-axis,
corresponding to the maximum moment of inertia, and also that
the ordering of the other principal moments of inertia is given
by the inequalities 5 > I, = I,. :

We henceforth define the spin-up problem of a rigid body
rotating about its 3-axis, when the following conditions are
satisfied:

Mi+MisM? and Bw}0) + Bwi(0) s Bwi(0) (2)

along with the condition that sgn (M;) = sgn (w3(0)). (Here
sgn denotes the signum function defined as usual by sgn(x) =
+1 for x > 0 and sgn(x) = —1 for x < 0.) This last condition
simply states the requirement for spin-up, whereas the inequali-
ties in (2) restrict the angles of the torque vector and the angular
momentum vector at time 7 = 0 to be less than or equal to
45 deg from the body 3-axis. This, according to the previous
discussion, implies that the transverse torques M,, M,, as well as
the initial conditions w, (0), w,(0), are considered as undesired’
deviations or perturbations from the pure spin case, namely
when M, = M, = w; = w, = 0. In practical problems these
unwanted deviations tend to remain indeed small throughout
the maneuver.

One more parameter needs to be introduced in order to de-
scribe the “‘relative effect’” of the two inequalities (2) in the
solution. This parameter, defined by
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describes the angle of departure of the angular momentum vector
from its initial state (the angular momenturn vector bias). During a
spin-up maneuver (Longuski et al., 1989), the angular momentum
vector traces out a spiral path about a line in inertial space having
an angle p, from the inertial 3-axis (see Fig. 1). The angle p, is
small for cases where the transverse torques are *‘small’’ compared
with the quantity Lw3(0). The formula for p, applies even for
asymmetric bodies as long as the angle of departure is small and
the body is spinning about a stable principal axis. Throughout this
work we assume that g, is relatively small, an assumption that is
usually true for most satellite applications.

3 Analytic Solution

3.1 Assumptions. If we assume a near-symmetric (or
symmetric) spinning rigid body with the spin axis being its
axis of near-symmetry (or symmetry), then the near-symmetry
assumption (/, =~ ) allows one to neglect the second term on
the right-hand side of (1¢) and therefore safely assume that the
solution of w; is approximated very closely by

wi(t) = (Ms/L)t + ws(0). 3)

This allows the decoupling and complete integration of Egs.
(1). The use of complex notation facilitates the analysis (Tsio-
tras and Longuski, 1991a, 1991b, 1993; Longuski and Tsiotras,
1993). Also introducing, for convenience, the new independent
variable 7 & w3(7), one then writes the differential equation
for the transverse angular velocities w; and w, as

Q' +iptQ=F 4)

where prime denotes differentiation with respect to 7, i =
v—1 and where (Tsiotras and Longuski, 1993)

Q & wyk; + iwvk, (5a)

F & (M/L)(LIM)ky + i(My/ L)Y (LIMWk,  (5b)
p & k(5IMs), k & (I, — L),

k & (I — I, k& ik, (5¢)

Integrating (4) one obtains the solution for w, and w, from

Q7)) = Qp exp (z‘%rz)
+ exp (igrz)FJ:’ exp (—-iguz)du
= Qg exp (i§7'2> + exp (ig'rz)F

X \/g {sgn (T)E(0) — sgn (70)E(do)} (6)

where 7o = w3(0) and % & Q(7,) exp (—i(p/2)73) and
where ((7,) is the initial condition at T = 74 (+ = 0). The
function E(-) in (6) represents the complex Fresnel integral
of the first kind (Abramowitz and Stegun, 1972; Tsiotras and
Longuski, 1993), defined by

E(x) & f exp (—i§u2>du.

0

The parameter ¢ is defined by o 2 7V p/7. (Here we obviously
assume M; > 0, so that p > 0; the case when p < 0 can be
treated similarly (Tsiotras and Longuski, 1993). Equation (6)
gives the complete solution for the transverse components of
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the angular velocity w,; and w, in the body-fixed frame, and
for the symmetric case it provides the exact solution. For the
nonsymmetric case, the accuracy of solution (6) depends on
the **smallness’’ of the product wyw,, which will be discussed
next.

32 The Effect of Asymmetry. In order to have a mea-
sure of the body asymmetry, we introduce the following asym-
metry parameter:

L -5
L

Because of the well-known relationship I, + I; = I, between
the moments of inertia (Greenwood, 1988 ) —for the assumed
ordering of the principal axes—the parameter e takes values in
the range 0 = ¢ = 1. The case of ¢ = 0 corresponds to complete
symmetry (about the 3-axis), whereas the extreme case of ¢ =
1 (not considered here) corresponds to complete asymrmetry
(about the 3-axis). For the latter case one has L=Land [, =
0, i.e., the body resembles a thin rod along the 2-axis. (In the
current work when we discuss a nonsymmetric problem we
have in mind values of e greater than 0.1 and perhaps as high
as about 0.7.)

We note in passing, that the validity of solution (6) is not
confined to near-symmetry cases. To understand this point, no-
tice that the neglected term

I] —Iz

e s

&(t) = wi(B)wz (1) N
in Eq. (1¢) is small not only for the near-symmetry case, i.e.,
when I, = I, but also when the transverse angular velocity
components w; and w, are small. This is indeed the case, for
example, for a spin-stabilized vehicle (spinning about its.3-
axis), when w, and w, tend to remain small for all times. For
the pure spin case of a symmetric body we have of course that
wy = wy = 0. This fact justifies the often used terminology in
the spacecraft dynamics literature which refers to w, and w, as
the angular velocity error components. The previous assump-
tion about the smaliness of the term in Eq. (7) however does
not incorporate the case where the initial conditions w;(0) and
w2(0) are large (compared to the initial spin rate w;(0)). As
can be easily verified in such cases, the initial error

Il - 12
L

propagates quickly and renders the analytic solution inaccurate
after a short time interval. On the other hand, as can also be
easily verified through numerical simulations, analytic solutions
based on the near-symmetry assumption remain insensitive to
large inertia differences, as long as the initial conditions for w,
and w, are zero. Therefore, the intent of this paper is to extend
the analytic solutions for a near-symmetric rigid body subject
to constant torques (Tsiotras and Longuski, 1991a), when both
large asymmetries and nonzero initial conditions for the trans-

2(0) = w1(0)w2(0)
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verse angular velocities are considered at the same time. In such
a case, the neglected term (7) may not be negligible and the
exact solution for w; may depart significantly from the linear
solution (3) for w;.

3.3 General Theory. A first comrection to the linear zero-
order solution w3(-) is obtained as follows. Using solution (6),
the differential equation for w; can be approximated by

Wy = M/l + e wluw)

(8)

where the superscript zero denotes the zero-order solution of
(1) (i.e., the solution with the term (7) in (1l¢) neglected).
From (6) we can equivalently replace equation (8) with

wi =1+ ¢ Im{(Q°)?] )

where € & (I, — L)/2Msk and Q° = w Vk, + i w3 Vk;, prime
again denotes differentiation with respect to the independent
variable 7 = w3 and Im(-) denotes the imaginary part of a
complex number. Under these assumptions and integrating (9)
with respect to T, one gets for the first-order correction for ws:

wi(t)=7+elm f [Q°u))?du (10)

The first-order solution for w; and w, is then given by the
solution of the differential equation

Q' + ipuy(T)Q = F, (11)

Integrating, one obtains

Q) = Q7o) exp [ip f wg(u)du]

0

+ exp [ipfv wg(u)du]F
X J.' exp [—ip f“ w;(v)dv] du. (12)

Notice that this expression provides the general exact solution
for () if knowledge of the time history of w; is available a
priori. Of course, this is not possible, in general, because of the
coupled character of Egs. (1). However, we will assume that
Eq. (10) gives a very accurate approximation of the exact w;,
which can be used in (12).

The zero-order. solution £2°(-) required in (10) is given in
(6). From the asymptotic expansion of the complex Fresnel
integral one has that (Abramowitz and Stegun, 1972)

—- _. z
E(x)=1 i exp( .urx/2)
2 itx
1 1-3
X4l=———=+————,..}. (13
{' inx*  (inx?)? } (13)

Thus, the Fresnel integral appearing in (6) can be approximated
by

id , — 2
f €xXp (‘l E uz)du ~ i [“'—_exp( I(P/Z)T )
7o 2 P

T

_ exp(=i(p/2)73)
To )

Substituting this expression in (6) and carrying out the algebraic
manipulations, one approximates [Q°(-)]2 by
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i 2
[Q°(7)]* = ro exp(ipT?) + % +r -—-———-—exP(‘(plz)T )
-
where 7; (j = 0, 1, 2) are complex constants given by
' 2
r 2 [Qo - i—f-exp(—ig-rﬁ)]
PTo 2

F2
’s)

r éZiE[Qo— i—F—exp<—i£-r§)] .
P pT 2

[}

naA-—

A

The integral of [Q°(+)]? is then given by
f [Q°u))?du

= roho(7o, 75 p) + rhy (7o, T) + R (To, T p)

where

ho(To, T3 p) & f exp(ipu®)du

= \/EZ?; [sgn(T)E(TV2p/m) — sgn(ro)E(ToV2pim)]

hx(To,;l')éfd—:= 1.1
. o U

To T

) i 2
hy(To, 75 p) & Jw_exp_(l(gﬂ_)du

To

z#(67) -5(3-)]

where bar denotes the complex conjugate and where
iu
Ei(x) & r Zdu
x U
is called the exponential integral (Abramowitz and Stegun,

1972). The integrals of ; (j = 0, 1, 2) can be then computed
as follows:

Ho(Tgo, 73 p)

& f ho(To, u; p)du

“\ /57':; sgn(ro) E(ro\2p/m)(T — 7o)
T
+ 4 ,— sgn (7o) J" E(u\2p/n)du (14)
ZP 7o

where the last integral is given by
f E(r\2pim)dr = rE(m2pin) + T‘—- explipr?). (15)
20w

Similarly,

_»'ro

Hy(7o, T) & f hy(To, ¥)du = T "D ln(l)
To To To
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and

Hy(To, T3 p) & f hy(To, u; p)du
70

= % Ei(-g ﬁ)(r — 7o) — -;-J'o Ei<§ uz)du (16)
where the last integral can be evaluated using
fEi(-‘zi Tz)d‘r = ‘rEi(-;- r’) +2 f exp<i§u2>du. \a”n

We therefore have that the integral of ws(-) required in (12)
is given by

2 2 ' 2
f w(u)du = -"5- Dt em(T nH).  (18)

2 =

Equation (18) gives the final expression for the integral of
w3(*) required in (12).

In order to proceed with our analysis, we need to calculate
the last integral in (12). Any attempt to evaluate this integral
by direct substitution of (18) into '

17T, T3 P) = f exp[-—ip Jw w;(v)dv]du (19)

- is futile. Notice however, that because of the oscillatory behav-
jor of the kernel of the integral (19) one needs to know only
the secular behavior of (18) in order to capture the essential
contribution of (19). Thus, we next compute the secular effect
due to the integrals Ho(7o, 7; ) and Hy(7o, 7; p). The integral
H,(To, T) already has the required form.

From (14) and (15) and the asymptotic approximation of
the Fresnel integral ( 13) one can immediately verify that, within
a first-order approximation, the integral Ho(70, 7; p) behaves
as }

Ho(To, T; p) ~ AJ + AST (20)

where

AS 2 —  exp(ipTd),
2p

2

Al 2 JE;; [1 ti_ sgn(ro)E(’row/Zp/r)] .

Similarly, using (16) and (17) and the fact that lim, .. Ei(x)
= 0, one can show that the integral H.(7¢, 7; p) behaves, to a
first-order approximation, as

Hy(7o. T3 p) ~ A% + AlT

where

»
[S)-)
e

- [l ri SST‘(TO)E(TO‘/P/W)] :

=™

[

1.
Al 2 E.Ez(g ‘r%) .
Also writing the integral H; (7o, 7) in the form

Hi(7o, 7) = A} + AlT — In(7) (21)
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where
Alaln(re) 1, Alal
To
we have for the secular part of (18)
2
To

T 2
f ws(u)du = fz— ~ 24 bt b+ byln(r) (22)

where

by £ e In(rpAd + nAY + rAY)
bl L€ IID(roA(l) + rlA} + rzA%)
bz & —¢ Im(r,).

Unfortunately, the logarithmic term in (22) leads to an intracta-
ble form when substituted into (19) and we therefore approxi-
mate the former expression by

>

2 2
J"w,(u)du:z%—%+b3+b,r

To

(23)

where b; = ¢ Im(r,A) — r, + 7A%). This approximation
amounts to the assumption that In(7/7,) = 0 in Eq. (21).
Since the logarithmic function is dominated everywhere by any
polynomial, we expect the error committed in passing from
(22) to (23) to be relatively small, at least as 7 = . Using
(23) in (19) we can finally write

f exp[—ipf wg(v)dv]du
To To
~ exp(ig 10) f exp[—iﬁ(u + b.)z]du
27 J., 2

= exp(i : 'Yo)\/g [sgn(7)E(3) — sgn(#)E(5o)]

where yo £ 73 + b} — 2b;, ¥ =7 + b, and & = Fp/~.

34 Simplified Analysis. The analysis of the previous
subsection allows for a direct calculation of the solution (+)
from (12). In most cases encountered in practice, however, a
simplified version of the previous procedure is often adequate.
For example, for the case when p, < 1 (see Fig. 1) the initial
conditions have a more profound effect than the acting torques
in solution (6), and we can take just the asymptotic contribution
of the nonhomogeneous part of (6) to approximate the zero-
order soluzion 2°(+). Writing

Q%) ~ {93 + F\/Z;£ sgn (To)[(1 — i)/2 - E(Uo)]}

e exp(ig-rz> 2 By exp(ig-fz) ,

substituting this expression into (10), and approximating E(-)
by its asymptotic limit E(x) = (1 — i)/2, as x = =<, we get
for wy(+) that

wi(T)=7T+
where aq is the constant

@ & e\7/2p sgn (o) Im{ BA[L(1 + i) — E(rol2p/m)]}.

We can therefore write for the first-order solution (11) of the
transverse angular velocities
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Q1) = Qf expliph(T)] 24

+ exp[iph(r)]Ff' exp[—iph(u)ldu

where

”

h(T) 2 % + agr

and 2§ & Q(7,) exp[—~iph(7,)]. From Egs. (6), (12), and
(24) it is seen that the first-order solution for the transverse
angular velocities w, and w, may be obtained in the same form
as the zero-order solution; the initial condition of 7, however,
has to be modified to include a,. In other words, (24) can also
be written in the more explicit form

Qr) = 8exp(i§?2) +exp(i§?‘z)F£{sgn(i‘)E(&)

- sgn(%o)E(30)} (25)

where now 23 & Q(ro) exp(—i(p/2)*3), * =7+ ayand &

2 #/p/n. It is interesting to compare Eq. (25) with (6). We
see that the two equations have exactly the same form, but that
Eq. (25) has a frequency shift which depends directly on ¢.

4 A Formula for the Error

In this section we derive an error formula for the zeroth-
order solution derived in (6), that is, we seek an expression for
the difference between the exact solution and the approximate
solution for the angular velocities, obtained by omitting the
term (I, — L)wyw,/L in Eq. (1¢). Throughout this section, for
notational convenience, we rewrite Eq. (1) in the form

X = a1xx3 + Uy (26a)
Xy = QpX3Xy + Uy (26b)
X3 = G3X1X2 + Us (26¢)
where a;, x; and u; (j = 1, 2, 3) are defined by
x; & hwy, x4 Lw,, x5 2 hws (27a)
mAM, u,AM, wm2M (27b)
P %’—’ @2 ”I;‘I‘ , @l Ill,_lzlz . (270)

We also rewrite the equations that describe.the reduced (zeroth-
order) system in the form

(28a')

x'? = a;xgxg + uy
X3 = ax3x% + u, (28b)
) = us. (28¢)

Given any positive number T € [0, =), our aim is to compute
the error between the solutions of (26) and (28) over the time
interval 0 = ¢t = T. We can rewrite equations (26) and (28)
in the compact form

(29)
(30)

X =f(x)+ g(x)
£ = f(x°)

where x = (X1, X2, x3), x° = (x¢, x3, x3) and f: R* » R and
g: R? = R? are the functions defined by
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A X X3 + uy 0 :
(2] axx+u], gx)se 0 . 3D
U3 asx; X,

We also assume that (29) and (30) are subject to the same initial
conditions, that is, x(0) = x°(0). Throughout the following
discussion || - || will denote the usual Euclidean norm (or 2-norm)
on R®?, namely, |l & (x? + x3 + x2)V2.

Lemmad.l. The solution of the exact system ( 26), satisfies
the inequality

Ix() = uiT + Iix(O)ll 2 B
for all 0 =< ¢ < T, where u = (u;, us, us).

Proof. Multiplying Eq. (26a) by x;, Eq. (26b) by x, and
Eq. (26¢) by x; and adding, and since @, + a; + a; = 0, one
gets that

X1 Xy + Xoxy + X3x3 = uyx) + Upxy + UrXxs.

In other words,

1d, > _
v Idl* = (u, x) (32)

where (:, ) denotes the usual inner product on R>, namely
{x,y) & 2., x;y;. Using the Cauchy-Schwarz inequality (32)
gives

14,4 .
5 ¢ 1A = el - el (33)

The 2-norm || || is a differentiable function on R?, so the differ-
ential inequality (33) can be solved for }lx(-){| (here u is con-
stant) to obtain

(Ol = lullt + [lx(O)H, (34)
In particular, |x(2)|| = suposi=r llullt + Ix(0)]| = B, as claimed.
, O

O0=st=sT

This result should not be surprising. If one looks carefully,
ones sees that the vector x defined in Eq. (27a) is the angular
momentum vector H, which obeys the equation dH/dt = M.
This differential equation for H requires that both H and M be
expressed in the same coordinate system and that differentiation -
be carried out with respect to an inertial reference frame. In
general, given the components M,, M., M; of M in the body-
fixed system, does not provide any immediate information about
the components of M with respect to another (inertial ) coordi-
nate system. However, the magnitude of M is independent of the
coordinate system. Equation (34) simply states the relationship
between the magnitude of the acting torques and the time history
of the magnitude of the angular momentum vector H. With this
observation in mind, one can easily re-derive (34) starting from
Euler’s equation dH/dt = M.

Lemma 4.2. Given a fixed positive number T, there exist
positive constants M and L, such that the following conditions
holdforall 0 =t < T.

lg(x(Nlf = M
If(x()) = fF(x° (DI = Liix(e) - x°(D)]

(35a)
(35b)

Proof. From Lemma 4.1 we have that for ¢+ € [0, T] all
solutions of (26) satisfy {x(¢)}| = B. In particular, | x;(1)} =

B,j=1,2,3,forallt € [0, T], where |-| denotes absolute
value. Clearly,

lg(x(MI = lasl | x (D] x(2)| = |a| B* 2 M.
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Now let B, & maxos:sr { [ x3(2)], | x2(2), [x8(2)] }. This num-
ber can be computed immediately, since the solution x°(-) of
the system (28) is known. If we define B, £ max{B, B, }, then
we have that all solutions of (29) and (30) are confined inside
the region {x € R*:|x|| < B,} for all 0 = z = T. The partial
derivatives of f are then bounded by

[8fi/dx| = R, il = Bo

where R 2 max{|a,|, ]a.|} B, and by the Mean Value Theo-
rem (Boothby, 1986), we have

I (x(8)) = fF(x°(NI = 3R Ix(2) — x°(1)]

for all 0 = ¢ = T, and therefore (35b) is satisfied with L &
3R. This completes the proof. O

Lemma 4.2 implies that over the time interval 0 < 7 =< T the
function g is bounded by M and the function f is Lipschitz
continuous with Lipschitz constant L. These two results allow
us, as the next theorem states, to find an explicit bound for the
error of the approximate solution.

Theorem 4.1. Let T be a given positive number and let M,
L as in Lemma 4.2. Then, for x(0) = x°(0), the error between
the solutions x(*) and x°(- ) over the time interval 0 = t < T

is given by

I=<i,j=3 0=s:sT,

Ix(r) — x°()|| = %’ e¥, 0=t=T.
Proof. Subtract (30) from (29) to obtain
2 =20 =f(x) - f(x°) + g(x).

By integrating (36) and consxdenng norms, we obtain the fol-
lowing estimate:

(36)

lx(2) = x°()ll = L If(x()) = F(x°(s))llds

: + f le(x(s)lds.

Now, use of Lemma 4.2 implies that

LARGE ASYMMETRY PROBLEM
T SPIN-UP FROM 3. 15 RPM TO 10.0 RPM
e

0.0

WX (rad/sec)
ql:l
WX0 (rad/sec) ---woreeemeesees

-0.2
L
-0.2

1
T (sec)

Fig. 2 Zero-order versus exact solutions for w;
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LARGE ASTMHETRY PROBLEM
2, 2. SPINUP FROM 3

0.0

WX (rad/sec)

0.0
WX1 (rad/sec) e

-0.2
1
~0,2

0 45 20 135 180 225
T (sec)

-0.4
L
-0.4

Fig. 3 First-order versus exact solutions for o,

e - Rl s L [ 1x(e) - x0)bs + Me. (37)
0

Now, applying Gronwall’s Lemma (Hille, 1969) to (37) gives
finally that

Ix(e) — x°(0)] = % e, (38)

This completes the proof. ' a

This error formula, involves only known quantities of the
problem (time duration T of the maneuver, inertias I, I, L,
acting torques M, M,, M;, and initial conditions x,(0), x,(0),
and x3(0)) and can be computed immediately once these data
are given. For most of the applications encountered in spacecraft
problems it turns out, however, that (38) provides a very con-
servative estimate of the true error, but usually this is the
most one can expect, without resorting to the numerical solu-
tion of (1).

Having established an error formula for the angular momen-
tum, it is an easy exercise to find a corresponding error formula
for the angular velocity vector, using the simple relation be-
tween the two. Thus, the following corollary holds.

Corollary 4.1. Let K & max{1/1,, 1/L, 1/L;}. The error
between the exact and the zeroth order solutions of the angular
velocities over the time interval 0 = t = T is given by

lo(t) — wO()] = ——LK‘—’ et (39)

Proof. 1t follows immediately from the fact that

wh 1/11 0 0 X1
Wy | = 0 /1 0 X2
Wi 0 0 1/13 X3

and therefore that
lw(f} = max {1/5;, 1/1,, 1/L} {Ix(&)| =
foral0 =t =<T. ]

K|x()ll
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Fig. 4 Zero-order and first-order versus exact solutions for w,

5 Numerical Example

The analytic solution of Euler’s equations of motion for an
asymmetric rigid body is applied to a numerical example. The
mass propemes of the spmmng body are chosen as I; = 3500
kg m?, I, = 1000 kg-m?® and J; = 4200 kg*m’. The constant
torquesareassumedtobeMl = —12Nm,M;, =15 N-m,
M, = 13.5 N-m and the initial conditions are set to w,(0) =
0.1 r/s, wa(0) = —0.2 r/s and w,(0) = 0.33 r/s. Figure 2
shows the zero-order solution versus the exact solution for w;.
Figure 3 shows the first-order solution versus the exact solution
for w, . Notice the dramatic improvement of the first-order solu-
tion over the zero-order solution for this problem, where the
asymmetry parameter, ¢, is 60 percent. The results for the w,
component of the angular velocity are similar. Finally, Fig. 4
presents the zero-order and the first-order solutions (given by
(3) and (10), respectively) versus the exact solution for w;.
Note the bias between the zero-order and the first-order secular
terms (which is responsible for the frequency shift between
Fig. 2 and Fig. 3). We mention at this point, although not
demonstrated here, that the solution also remains valid for spin-
down maneuvers, as long as the initial conditions w;(0) and
w,(0) are small and as long as the spin rate w; does not pass
through zero. These observations are in agreement with the
previous results of Tsiotras and Longuski (1991a).

6 Conclusions

Analytic solutions are derived for the angular velocity of a
nonsymmetric spinning body subject to external torques about
three axes. The solution is developed as a first-order correction
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to previously reported solutions for a near-symmetric rigid
body. The near-symmetric solution provides accurate results
even when the asymmetry is large, provided the initial condition
for the transverse angular velocity is near zero. The problem of
the asymmetry becomes apparent when the initial transverse
angular velocities are not small. It is shown that the first-order
solution for the angular velocity takes a simple form and is very
accurate, at least for the cases when the effect of the transverse
torques is not too large compared with the effect of the initial
conditions. The formulation of the problem therefore allows for
nonzero initial conditions in the transverse angular velocities,
in conjunction with large asymmetries. Finally, an explicit for-
mula for the bound of the error of the approximate solution is
derived and a numerical example demonstrates the accuracy of
the proposed analytic solution.
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