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Aerocapture with a Flexible Tether

Jordi Puig-Suari, James M. Longuski, and Steven G. Tragesser
Purdue University, West Lafayette, Indiana 47907-1282

" In previous work, the authors have demonstrated that the aerobraking tether, modeled as a rigid rod, could
achieve aerocapture at any atmosphere-bearing planet in the solar system for less mass than the corresponding
propellant of a typical retro-rocket system. In this paper, the great promise of the aerobraking tether is further
explored by developing the equations of motion for the analysis of flexible tether behavior during the maneuver. A
standard Lagrangian approach is taken with the tether modeled as a chain of linked rigid rods. Since an arbitrary
number of rods can be used, the flexible behavior can be approximated to an arbitrary degree of accuracy. The re-
sults indicate that the aerobraking tether concept remains feasible when flexibility effects areincluded in the model.

Introduction

I N recent years. with new developments in tether technology, the
use of tethered spacecraft in an atmosphere has received much
attention from the scientific community.'~® The research areas have
addressed a wide range of interesting topics such as upper atmo-
sphere research,>* equilibrium configurations,’ and orbit decay.*
With the exception of a paper describing the hypersonic parachute,®
most of the literature on tethers in an atmosphere has been devoted
to applications in which the aerodynamic forces are usually less
significant than the gravitational forces. In this paper we analyze an
application closely related to the hypersonic parachute, namely that

the vehicle into a capture orbit about the target planet (Fig. 1). The
model used in the earlier analyses’~'? assumed a rigid tether. planar
motion, and an exponential atmosphere. The results obtained with
this simplified model were very encouraging and indicated that per-
forming aerobraking maneuvers with tethered spacecraft is feasible.
In the next step we extend the analysis to include the effect of a flex-
ible tether. Before doing so, we briefly review the basic assumptions
and results of the previous work.

Design Considerations and Rigid-Body Results
InRef. 10 the possibility of using aerobraking tethers in the explo-

of the aerobraking tether.
In the acrobraking maneuver, very large aerodynamic forces (sig-
nificantly greater than the force of gravity) are required to decelerate

ration of the atmosphere-bearing planets and satellités in the solar
system is studied. The analysis includes missions to Venus, Mars,
Jupiter, Saturn, Uranus, Neptune, and Titan and a Mars—Earth return
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Table 1 Aerocapture results for solar system exploration

Parameter Venus Earth Mars Jupiter Saturn Uranus Neptune Titan
AV, km/s 0.35 0.39 0.67 0.27 0.41 0.50 0.34 1.31
Propellant mass, kg 126 142 256 96 149 185 122 559
Tether mass, kg 31 38 112 18 42 63 29 426
Savings, % 75 73 56 81 72 66 76 24
Savings. kg 95 104 144 78 107 122 93 133
Length. km 10.8 9.0 14.5 36.1 54.4 72.7 727 84.2
Diameter, mm 1.42 1.73 234 0.60 0.74 0.78 0.53 1.89
Probe area, m* 999 818 605 2,370 1.910 1.810 2,670 747
Design tension, N 5.670 8,450 15,500 1,010 1.550 1,720 795 10.100
Actual tension, N 5.500 7,860 12,700 1,050 1.630 1.860 899 9.700
Percentage of design 97 93 82 104 105 108 113 96

Fig.1 Aerobraking maneuver.

mission. In this preliminary study, certain specifications were made
that ultimately led to unique designs for each tether mission. These
specifications include the following:

1) The fly-through maneuver (Fig. 1) is designed so that the tether
achieves a vertical orientation at closest approach. In addition, the
inertial spin rate before atmospheric entry, £2;,, is equal and opposite
to the spin rate after exit, 2o,

Qnut = —nin (1)

This requirement is called spin matching.

2) The tether length is specified so that the location of the center
of pressure, I, is equal to that of the center of percussion, /.. This
requirement is called center matching:

lp.\' = lpc ]

Note that the location of the center of percussion is only a function
of the length of the tether and the mass ratio of the orbiter and the
probe. On the other hand, the position of the center of pressure is pri-
marily a function of the scale height of the atmosphere. This makes
the center matching condition relatively insensitive to variations in
atmospheric density or small changes in scale height.

3) The ballistic coefficient of the probe is equal to the ballistic
coefficient of the tether:

n/(Cnd) =m,/(Cn,S,) 3

where 7 is the tether linear density, which depends on the tether
mass and length; Cp, and Cp,, are the drag coefficients of the tether
and the probe. respectively; d is the diameter of the tether; and
S, is the frontal area of the probe. The values assumed for Cp,
and Cp, are 2 and I, respectively.'® This requirement is called
aeromatching.

4) The mass of the orbiter, m,,, and the mass of the probe, m ,, are
both assumed to be equal to 1000 kg.

5) The tetheris assumed to be made of Hercules AS4 graphite with
a tensile strength o, of 3.6 GN/m? and a density p, of 1800 kg/m?.

6) The planets are assumed to be in circular, coplanar orbits.
Arrival conditions are calculated by assuming an interplanetary
Hohmann transfer into a near-parabolic capture orbit about the target
planet (e < 1).

From condition (1), it can be shown'? that the mass of the tether
is given by

_ pimo(my +mp)

M= NG @)

4o,m,

where AV is the change in velocity required at closest approach of
the target planet in order to achieve capture.

In Ref. 10 a comparison is made between the mass of the tether
(4) and the propellant mass required (to slow down the orbiter) with
a chemical rocket system. Am:

Am = m(e®V ot — 1) (5)

where g is the acceleration due to gravity at the Earth's surface. m
is the final mass of the orbiter, and Am is the propellant mass. The
value for I, is assumed to be 300 s. The results of this comparison,
presented in Table 1, are quite exciting because in every case the
tether mass is smaller than the required propellant mass. The greatest
absolute savings are at Mars (144 kg) and the greatest percentage
savings are at Jupiter (81%). The design tension, computed by the
simple formula'®

T = TM AV2 (6)
4m,l

is a very good approximation to the actual tension observed in the
simulation of the fly-through maneuver.

The promising results obtained for the rigid-rod model and sum-
marized in Table | demand that a deeper examination of the potential
of aerobraking tethers be made. In the above analysis, the tether is
modeled as a rigid rod but is designed [by conditions (2) and (3)] to
minimize normal forces. The next logical step is to introduce a flex-
ible tether model to test the virtue of the aforementioned designs. In
addition, a flexible model will allow a study of how variations in the
design will affect normal forces, bending, and aerodynamic forces.

Of primary concern are the following questions. Will the bending
behavior of the tether invalidate the assumptions and conclusions
made with the rigid-rod model? For example, if the tether bends
significantly, the drag forces may be dramatically altered. Bending
can also raise the periapsis of the probe, causing it to miss the target
altitude and, hence, not achieve aerocapture. Can elastic stretching
cause the reverse effect? If the tether stretches significantly, it may
drop the probe too deeply into the atmosphere, perhaps resulting in
a crash instead of the intended capture orbit. Finally, what happens
if the matching conditions (2) and (3) are not adhered to? Are they
required for a well-behaved aerocapture maneuver?

Planar Flexible Model

The flexible model developed in this paper approximates the flexi-
ble tether as a chain of linked rigid rods with the end masses modeled
as particles (see Fig. 2). This makes full use of the rigid-rod model
previously developed,” which includes an aerodynamic model for
the distributed forces along the tether. This integrated modeling of
the aerodynamic forces is fundamental in the analysis of the aero-
braking problem where large changes in velocity and atmospheric
density occur along the tether. The linked rigid-rod model also pro-
vides an accurate description of the inertial and gravitational forces
on the tether. In addition, the model includes a spring damper at the
orbiter end of the tether that can be used to approximately model the
elastic behavior (stretching) of either the tether or a shock absorber
at the orbiter attachment point. The number of rods and the length of
each rod are arbitrary, so that flexible effects can be modeled to any
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Fig.2 Generalized coordinates for flexible tether system.

desired degree of accuracy. Changing the length of the rods along
the tether allows an increase in accuracy in the portion of the tether
where the flexible effects are most significant. The motion of the
system is constrained to the plane of the orbit, as in the rigid-rod
model. Finally, the orbit is assumed to be equatorial. This model
should permit adequate analysis of the bending and stretching be-
havior of the tether and thus allow us to address questions raised
about the rigid-rod analysis.

Lagrange’s Equations of Motion
The equations of motion will be found by Lagrange’s equations,
written in the form!?

d /3T aT oV
(=) -=+==0; 7
dt (3‘ii> ag; * dg; e @

where the Q; are generalized forces not derivable from a potential
function (i.e., the aerodynamic and damping forces). This form of
Lagrange’s equations is used because the potential energy of the
system, V, is not a function of 4. The use of Lagrange’s equations
facilitates the derivation of equations for an arbitrary number of
tether elements by eliminating the internal forces between the rods
from the analysis. The generalized coordinates in the system are the
orientation ¢; of each rod, the position coordinates of the probe, R,
and 6, and the elongation of the spring, x; (see Fig. 2).

Kinetic Energy

From Fig. 2 we see that the radial position vector R.,,; from the
center of the planet to the center of mass of the ith rod (assuming
each rod is uniform) is given as

i-1 i1
l,' - li a
R, = (R,, + E ,.Ca, + ECO!>01 + ( E ,Sa, + ESa,-)cz

n=1 n=1

8)

where Ca = cosa and S = sin . Noting that the angular velocity
of reference frame ¢ with respect to inertial frame é is

W = 685 ®

the inertial velocity of the center of mass of each rod, v, is given
by

n=i

i1
5 Z C A Lo .
Vemi = [Rp - l,,(l!,, +9)S(¥,| - 3(“1’ + 9)5‘![]01

n=1

i-1
. . . I . . .
+|:R,,6 + E I (&, +6)Ca, + E(a,- + G)Cot,»:lcz (10)

Thus the total kinetic energy of the tether, 7}, for N rods is given by

N
1 m,lz ) . q
To= ) 5 MiVans Vemi + o (G +6)° (1

i=1

where the last term on the right-hand side is the rotational kinetic
energy. Similarly, the radial position vectors to the probe, R p+ and
to the orbiter, R, are given by

R,,=RPE| (12)

N
R,= (R,, +Y hCa, +x.,c¢z,v>él

n=1

N
+(Zl,,Sa,, +x,SaN)Ez (13)

n=1

Thus, the inertial velocities of the probe, v, and the orbiter. v,, are
vy = Ryéy + R,66; L)

N
v, = [R,, = )l + XeBun) (G + 6)Set, + x,CaN]a,

n=| .

N
+ I:R,,é + Y (U + Zebo) G + 6)Coty + i,SaN]Ez (15)

n=1

where 8, is the Kronecker delta. The kinetic energies of the probe,

. T, and the orbiter, T, are given as

=1 .
Tp=3mpv, vy,

T, = %m,,v,,-v,, (16)
Finally, we have the total kinetic energy of the tethered system:

T=T,+T,+T, ' an

Potential Energy
The potential energy V of a Newtonian gravity field is given by

V =—um/R) ' (18)
where p is the gravitational constant of the planet, m is the mass of

a particle, and R is the radial distance from the center of the planet
to the particle. The potential energy of the ith rod is given by

1y

dg

Vi=—un / — (19)
o Re

where 7 is the linear density of the rod, assumed constant, and Ry

is the radial distance from the center of the planet to a differential
element located at a distance & along the ith rod. Thus, we have

i=1 i—1
Ry = (R,, +Y LCay+ SCa,-)E, + (Zl,,Sa,, + gSai)éz

n=1 n=1
(20$)
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i-1 i=1
RE=R+Y [ZR hhCay + Y b (CatnCoy + s«,s«,,)]

n=1 k=1

i-1
+2[R,,Ca,- +) 1 (CanCai + SanSa;)}é +§

n=1

=a; + bt + & @2n

and the potential energy of the ith rod, V;, is given by the integral

- (22)

P =

2 dt
K v/{: v/ Qi +b,$ +€2

Solving (22) and summing over all N rods, we find that the total po-
tential energy of the tether, V; (not including the orbiter and probe),

18
ul 2ya + bl + 12 + 2L+ b;
D WL EELIEL A P

i=1

Since the probe and the orbiter are modeled as particles, their po-
tential energies V, and V,, respectively, are given by

Vp = —u(m,/R,), Vo = —u(m,/R,) (24)
The potential energy stored in the spring is

V, = tkx? 25)
where k is the spring constant. Finally, the total potential energy of
the system is

V=V, +V,+V,+V, (26)

Generalized Forces
We model the aerodynamic drag as

F= ——-pCDva @7

where Cp is the drag coefficient, S is the frontal area of the body, v
is the velocity with respect to the atmosphere (the wind), and p is
the atmospheric density given as

p = prelr+fu= R 28)

where p, is the reference density at the reference altitude k., Ry
is the radius of the planet, and H is the scale height corresponding
to oy.

Assuming that the atmosphere rotates with the planet at a rate Q,
we find that the velocity of the atmosphere (wind) with respect to
the probe, v, is given by

Vup = Rpé1 + Rp(6 — Q)é, (29)
Thus, the aerodynamic force on the probe, from Egs. (27-29), is
Fp=—10,Cp,Sp/Vup VuplRpE1 + Rp(6 — ;] (30)

Similarly, the velocity of the atmosphere with respect to the or-
biter, v,,,, is given as

n=1

N
= [Rp = )+ xXeBan)(Gtn + 6 — D Sexy +i,CozN:|él

N
+[Rp(é =D+ Dl + 28 (&n + 6 — RCary +x,Sa~]ez

n=1

€3))

and the aerodynamic force on the orbiter, F,, is given by

1
Fa = _'2"poCD, va Vwo * Vuwo

N
X { [Rp - Z(ln +X_\-5,,,v)(d,, + 9 - Q)Sd,, +X.:.\-CUN]E|

n=1

N
+[R,,(é ~ @+ Y s + 28 (G + 6 — )Car, +)l':Saleéz]

n=1

(32)
’IB obtain the generalized forces on the probe and the orbiter, we
use
AR
Z Feo o= (33)
i qi

where R, must be written in inertial coordinates. Using the é frame
in Fig. 2 as the inertial reference, we have, for the probe,

R, = R,é, = R,(C68, + 56&,) 34
Fp = plél + széz = (F,,[Cg - F,,ZSB)él
+ (Fp1 86 + Fjp,C6)e; (35)
and the generalized forces on the probe are
R, oR,
Qrop =F _"Fn Qop =F, -

R
P 3R, 30 P (36
Qajp = Qx:p =0
Similarly, for the orbiter we have

N
R, = ( »+ Zl,,Coz,, +xxCaN)£'|

n=]

N
+ ( le,.So:,; +x,,$a~)z-2

n=

N
= [R,,CG + Y (U + X:8.)(CanCO ~— Sa,,SO)Jél

n=1
N
+ | RpS8+ Y (U + x:8,)(Coa S8 + Sa,,CO)]éz 1))
n=1

F, = Folél + Fozez = (F,;CH — F,,2S9)é, + (F, 50 + Fazce)éz

(38)
and so, the generalized forces on the orbiter are
dR,
QRpo=Fp'aRp = fo1 39
oR,
Q90=F0'W =RpF02
N
+ D + Xebuw) (— For Sty + FioCar) (40)
n=1
R
> = —FaSaj + FaCaj) (41)
aaj
Qx:o = ol ozsaN (42)

5
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The analysis of the aerodynamic force on the tether is more com-
plicated because each point of the tether is located at a different
altitude, so the density of the atmosphere varies along the tether
length, and also because each point of the tether is moving at a dif-
ferent velocity with respect to the atmosphere. The differential force
dF; on the ith rod can be written as

dF; = —'pé'rchwE: Vwgi ds; (43)

where p¢; is the atmospheric density at a distance £ along the ith rod,
vy 18 the velocity of the point at £ on the ith rod with respect to the
atmosphere, and as in the rigid-rod model,” dS; is the cross-sectional
differential area projected perpendicular to the wind direction. The
velocity v,¢; can be written as

i1
Vuti = [Rp - Zln(a,. +8 - Q)Sdn

n=1

—&(& +6 — Q)Sa,-]é,

i1
+ {R,,(é — D+ ) (@ +6 - DCa,

n=1
+E(@ +6 — Q)Ca}éz

= (By — B2§)C: + (B3 + Bs§)er - 44
where the B; coefficients are introduced for convenience. The dif-
ferential area dS is

w,b
E 24, dg 45)

dS; = sgn(vyg - by) ———=
where d; is the diameter of the ith rod and the body frame b is
defined in Fig. 2 (b, is along the tether and b, is normal to the
tether). Substituting Eq. (45) into Eq. (43), we have

dF; = ""pé'l CD[Sgn(VwEJ bZ)Vwa bZd ]vw51 dg 46)

where
Vugi by = Vugi - (Caiéy — Seié1) = R, (6 — Q)Co; — R, S

i-1
+ Zz,,(a,, + 6 — Q)(SanSet; + CanCos) + (& +6 — Q)

n=1

=D+ Dy§ “n
and where the D; coefficients are introduced for convenience. Eval-
uating the signum function in Eq. (46) and assuming that the function
does not change sign along the ith rod, we have (by setting £ = 0)

sgn(vuoi - b2) = sgn(Dy) = o (48)

which defines the symbol o.

The assumption of an exponential atmosphere with constant scale
height [Eq. (28)] results in the following expression for pg; in
Eq. (46):

P = pre(Hr+Rpl—REi)/H

= p,efr+Ro/H o= Rei/H (49)

where
e~ Ry /H —

[(R +Y T L Can +6Ca) + (D aSars +ss¢x,~)z]’
"

exp

(50
As discussed in Ref. 7, no closed-form expression in terms of ele-
mentary functions is possible for the integral f dF; when Eq. (50)

is substituted into Eq (46). However, very accurate, approximate,
closed-form expressions can be found by assuming that

[,'SC!,' _
() =0 s

-(® i) InCa, + ECo
l: (Ro+ 3,21 lnCan + € “)} (52)

so we have

e Rei/H ~ exp

H

and Eq. (49) is approximated by
i=1
Pri X ,Drexp< B+ Ro— RPH_ Z"“ l"can)e’ec""m

= Ke—ECa;/H (53)

where K is a convenient coefficient. Substituting Egs. (44), (47),
(48), and (53) into Eq. (46), we obtain the approximation

dF; = —1Cpdio K (D + D2£)[(B) — Ba£)&

+ (Bs + Ba§)éyle /% dg (54)
Integrating Eq. (54) and rearranging, we have

' 1
F; = / dF; = _zcbdiaK([DlBllo + (D28, — D\ By)1,
o

— ByD; L)y + [Dy Bslp + (D3B3 + Dy By) Iy + By D2 15)é5}
(55)
where

1 .
I = f greTsCa! de (56)
]

which are known integrals.
Substituting Egs. (54) and (20) into the generahzed force expres-
sions, we obtain the convenient forms

4
3Ry
Qrpi = i —
? ) R,
1 .
= —ECDdNSK[DlBlIO + (D2By — Dy By) Iy ~ B2 D2 1} (S5T)
Y]
3Ry,
Qoi = i —
A 36
1 — .
= —-Z-CDd,-ch[ - ;tnSan[D,B,lo + (D,B; — DBy I

— By Dy L} - S [ Dy B\ 1y + (D2 By — D By), — B; D, 1]

i-1
+<Rp + Zm») (DyBsly+ (D, Bs + DiBo)

n=1

+ B4Dy 1] + Cot;[ Dy By + (D Bs + DBy + By Dy 13}

) (58)
Ry 1
Qaji"" A dFi._a_lx;-:__CDdiaKlj
X {Cdj[DxB;Io + (DzB; + D]B4)I| + B4D212] bl de
x{D1Bily+ (DB, — D\By)], — B,D, L]} forj <i
u (59
oR;; 1
Qajt = dFi . _E = ——CDd,O'K

do;
0 §
x {Co;[Dy B3Iy + (D2Bs + DyBs) 1, + By Dy 1] — Se;

x [D\Byly + (D2By — D\By)l, — By D2 131y forj=1

(60)
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Finally, the generalized force for the damper, which appears only
in the x, equation, is

Qc = —cx; (61)

where c is the damping coefficient.

At this point, the equations of motion for the system are derived
by using Lagrange’s equations. The detailed derivation (which is
too lengthy to be included here) is provided in Ref. 12.

Convenient Form for Equations of Motion

The form of the differential equations obtained by using Eqgs. (7)
is not convenient for numerical integration. This is because all the
second-order terms R,, 8, and & appear in all the equations of
motion.

Inthis section we discuss the derivation of the equations of motion
for a system with an arbitrary number of rods N, keeping in mind
that the desired form of the final differential equations should be

(4
[a1{ : =8 (62)
Gn
which can be rewritten as
4
=[A]"'{B} (63)
Gn

which is ideally suited for numerical integration.

Since all the terms containing second-order derivatives of the
generalized coordinates 4 can only arise from the (d/dr)(3T/3q)
terms of Egs. (7), let us define

d [oT . -
dt(Bq,) 2/+ 1j ( )

, where

_ N+3 _ d [T -
L= Zaji(q, )4, I = a(éq—) -Ty (65)
J

i=]

Thus, the (N +3) x (N +3) matrix A, of Egs. (62) and (63) has as
its elements the a;; of Eq. (65). A problem arises in extracting these
elements for an arbitrary number of rods because &, is often nested
within a double summation with dependent indices. This difficulty
is rectified by switching the order of summation according to the
relationship

N i-1 N N
Yomy b= (b,- > mn>&.~ (66)

i=1 n=1 i=1 n=i+1

In this manner, the 75 terms can be written explicitly for N rods, as
shown in Eq. (65). Again, for a detailed derivation, see Ref. 12.

The {B} vector of Eq. (63) can be found by manipulation of
Lagrange’s equations:

B=—-———.+Qj—7-'1j ©7)

Here, A~' can be determined either analytically or numerically to
produce the final form of the equations of motion, as seenin Eq. (63).

Tether Forces

The tether forces at the attachment points to the orbiter and
the probe can be easily computed using Newton’s second law and
solving

T=mg—F,—F (68)

where T is the tether force and F is the aerodynamic force acting on
the particle, which for the orbiter and the probe are givenin Egs. (32)

and (33), respectively. Here, F, is the gravitational force, which can
be obtained by

Fy = —um(R/R*) (69)

Finally a represents the inertial accelerations of the probe and the
orbiter, which are given by

a, = (R, — R,6%)¢, + 2R,6 + R,6), (70)

n=1

hi
a, = {ﬁp ~ Rp8 = Y L[Cotaln +6) + (én +6)Sers ]
+ %, Cay — 2%, Say(ay + )

—x[Canlay +6)* + (én + 6)San] ]el

n=1

h's .
+[2Rpé + Rpf + Y [~ San(in +6)? + (G +6)Carr]
+ %, Say — 2%, Cay(an + 8)

—x;[~San (@ +6)* + (@ +6)Can] }52 an

Numerical Results
In this section the tether aerocapture maneuver at Mars developed
inRef. 10is simulated using a system of five hinged rods. The elastic
properties of the tether (in particular, the stretching) are included in
the analysis by setting the spring constant to!* .

k=EAJl (72)

where A, and E, are the cross-sectional area and tensile modulus
of the tether, respectively. (This spring constant is responsible for
the so-called tether bounce phenomenon.) For the material in the
Mars aerocapture tether (Hercules AS4), E, = 240 GN/m?, which
results in an equivalent spring with k¥ = 71.2 N/m. Damping effects
are ignored at this stage. The initial conditions obtained from the
rigid-rod analysis'® are used in the multirod simulation, with the
tether assumed to be initially straight and the spring in equilibrium.
The results obtained from the single-rod simulation are presented
again for comparison purposes (Figs. 3-5). .

350
300 —
. 250 —
o 200
150 -
(deg) 100
50 —
0 -
-50 T T T
700 800 900 1000
Time (s)
Fig.3 Orientation angle (rigid rod).
3600 1.6
e 1.5
3550 — 1.4
R 13
3500 — Ro > Eec.
3450 R, -1.1
—1
3400 0.9

T T J
700 800 900 1000
Time (s)

Fig. 4 Positions and eccentricity (rigid rod).
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15000 -
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Force 9000
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Fig. 5 Tether forces on probe (rigid rod).
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Fig. 6 Orientation angles (flexible).

Fig.7 Tether shape at 875 s.
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Fig.8 Tether forces on probe (flexible).

Figures 3 and 6 show the orientation of the tethered system with
respect to the local vertical. Before atmospheric impact, the five-
rod system behaves as the single-rod model. During fy-through,
between 825 and 925 s, bending occurs in the flexible model (see
Fig. 6) and the plots for the five angles separate, indicating bending
in the tether. The shape of the fiexible tether at maximum bending
(around 875 s) is shown in Fig. 7. Once bending has occurred in the
flexible model, oscillations in the tether remain due to the lack of
damping in the space environment. Note that if the bending effects
are ignored, the spinning behavior of the two models is practically
identical after impact.

The orbiter and probe distances from the center of the planet are
plotted along with the eccentricity of the system in Fig. 4 for the
rigid-rod model. Note that the radius of Mars is 3398 km, which is
the minimum value shown in the plots. The corresponding behavior
of the flexible system is nearly identical to that of Fig. 4. In both
cases the orbiter remains approximately one tether length (12.4 km)
higher than the probe during the maneuver. The eccentricities are
also very similar for both cases.

Figures 5 and 8 show the tether forces on the probe. (The forces
on the orbiter are very similar.) Behavior from initial conditions to
capture conditions (¢ & 925 s) is virtually the same, so aerocapture

9000
7500 ~
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Force 4500 —
3000
™ 1503 m Normal
-1500 — \_

-3000

T T T
700 800 900 1000
Time (s)

Fig.9 Tether forces on probe (rigid rod).
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Fig. 10 Orientation angles.

Fig. 11 Tether shape at 885's.
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Fig. 12 Tether forces on probe (flexible).

is reltably modeled by the rigid rod. Note that in each plot there are
two forces shown, namely the tension and normal force on the probe.
The tension is largely due to spin rate and begins at approximately
10,000 N. At closest approach the tension drops to nearly zero (as
does the spin rate) and then increases as the tether spins up during
the exit phase. The normal force is nearly zero at all times due to
the matching conditions (2) and (3) (otherwise, normal forces are
possible with rigid-rod segments).

After aerocapture, we note that the hinged model presents larger
tension forces. This is due to the appearance of bending during at-
mospheric impact. The large forces occur when the tether straight-
ens due to spin-induced centrifugal forces. The oscillations in the
tension forces coincide with the oscillations in the bending of the
tether. Note that the oscillations also induce small normal forces
in the tether. These could be reduced by increasing the number of
rods in the simulation. The maximum value of the tension in the
flexible tether is large enough to break the tether designed in Ref.
10 (see Table 1). However, the tension in the tether can be reduced
with the introduction of damping in the model. Using a damping
coefficient of 377 N-s/m, which approximates a critically damped
system, the tension forces are reduced significantly and remain be-
low 15,000 N during the maneuver (see Ref. 12). The oscillations of
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the tether are damped out in this case, and the tension variations are
reduced to a small value. The other characteristics of the maneuver
are indistinguishable from those in the undamped case.

The results above indicate that the behavior of the flexible tether
is very similar to that of the rigid rod when the matching conditions
are met. This validates the rigid-rod model as a very useful tool in
the preliminary design process. We conclude that the aerobraking
tether remains feasible when flexibility is included in the analysis.

The flexible model provides a tool to determine the validity of
the assumptions made' about the necessity to apply the matching
conditions (2) and (3) in order to eliminate the normal forces. The
center matching and aeromatching conditions can be easily unbal-
anced in the system above by changing the probe area to 100 m?.
Note that this dramatic change in area is picked to exaggerate the
unbalancing. Naturally, in a real system, typical uncertainties (e.g.,
probe area uncertainty) will not result in significant unbalancing.
The results of a Mars aerocapture maneuver into a near-parabolic
orbit for this system are shown in Figs. 9-12. The rigid-rod results
are similar to those in the previous section. The fly-through alti-
tude is slightly lower and the tension forces are smaller, due to a
* lower spin rate (the smaller probe reduces the aerodynamic torque
and thus the required spin rate to achieve a vertical fly-through ori-
entation). Note that the spin matching condition was maintained
as usual, to keep the tension force to 2 minimum.'® However, one
major difference exists: There are large normal forces on the rigid
tether at periapsis (Fig. 9). At the same time, the tension forces are
nearly zero due to the lack of spin. This indicates that large bending
should occur in a flexible tether since the resultant force acting on
the tether has a direction nearly perpendicular to it. The simulation
of the same maneuver with a five-rod flexible model confirms this
suspicion. The flexible system behaves like the rigid one until it
reaches the atmosphere, where very large bending occurs, as can be
seen in the angle plot (Fig. 10) and in the shape plot (Fig. 11). The
bending radically changes the character of the maneuver in several
ways. The effective length of the tether is reduced and the probe
fly-through altitude is increased, which reduces drag forces. As a
result the target eccentricity is never achieved and the system is not
captured. In addition, extremely large forces appear in the tether
(Fig. 12). As in the previous case the forces are caused by the tether
straightening due to centrifugal forces, but the bending in this case
is much more severe, resulting in an unacceptable maneuver.

This analysis validates the conjecture that the minimization of the
normal forces in the rigid-rod model'? is fundamental to the devel-
opment of an acceptable (vertical dumbbell fly-through) maneuver.
Additional numerical examples are provided in Ref. 12.

Conclusions
The equations of motion of an arbitrary number of linked rigid
rods are very useful in analyzing the flexible behavior of a tether
during aerocapture. Applications of these equations in numerical

simulations allow critical questions to be answered about the mag-
nitudes of the normal and tension forces in the tether and the shape of
the tether during atmospheric fly-through. The results indicate that
the tether aerocapture system remains feasible when a flexible tether
is included in the analysis. The rigid-rod model is validated as an
excellent tool for preliminary design.
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