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Abstract—In previous work the authors developed a model for the analysis of orbiting tethered spacecraft
in an atmosphere. This model was used to demonstrate the feasibility of the aerobraking tether concept
for a mission to Mars. The present work studies the possibility of using such vehicles in the exploration
of the other atmosphere-bearing planets and satellites in the solar system. This includes Venus, Jupiter.
Saturn, Uranus, Neptune and Titan. After establishing ground rules, a study is performed in which the
propellant mass for a typical rocket propulsion system is compared to the tether mass required for the
aerobraking system. In every case, the tether mass turns out to be less than the propellant mass. The results

have significant implications for the design of a new class of exotic spacecraft for the exploration of the

solar system.

1. INTRODUCTION

Some of the more innovative work in the field of
astronautics in the past few years has involved two
new concepts which remain for the most part at a
very theoretical stage. First, aerocapture has emerged
as an interesting alternative to chemical propulsion in
the exploration of the solar system, and currently is
included in many of the proposals for manned mis-
sions to Mars. Second, tethers in space have gener-
ated tremendous interest, especially after the
development of new composite fibers which make the
construction of very long tethers feasible. The possi-
bility that a tether could be used for aerobraking was
first mentioned in the literature by Carroll[1]. The
first analysis of a tether in an atmosphere was pre-
sented by Lorenzini er a/.[2] and was limited to
circular orbit around Mars. Puig-Suari and
Longuski[3-5] analyzed the tether aerobraking sys-
tem shown in Fig. 1. The system consists of an orbiter
and an aerobraking probe connected by a thin tether.
In the proposed maneuver, the probe flies through the
atmosphere slowing the system down (from hyper-
bolic speed) to capture velocity. During fly-through,
the orbiter remains significantly higher than the
probe, above the sensible atmosphere.

In [3-5] the tether is assumed to be a rigid rod
moving in the plane of the orbit. The exact equations
of motion for this model were developed in[3]. These
equations include distributed acrodynamic and grav-
itational effects on the tether, and allow for an

tPaper 1AF-92-1 presented at the 43rd Astronautical
Congress, Washington, D.C., US.A., 28 August-
5 September 1992.

arbitrary initial orbit. Numerical analysis' of these
equations for aerobraking at Mars showed that the
aerobraking tether concept was physically feasible.
Later work([5] focused on the development of sim-
plified models to facilitate the search for initial con-
ditions required to obtain aerocapture. The analysis
determined that many different types of maneuvers,
ranging from a vertical dumbbell to a horizontal drag
chute, could produce aerocapture.

This paper analyzes the feasibility of aerobraking
tethers for the exploration of the solar system, and
compares the results with chemical propulsion sys-
tems. Simplified models are developed to determine
the fly-through maneuver which minimizes the tether
mass. The tether system is also designed to minimize
the normal forces present in the rigid rod model,
which would help to reduce bending in the (more
realistic and complex) flexible tether. When these
constraints are applied to the design a wunigue
configuration is obtained. The resulting tether systems
compare very favorably with the traditional chemical
rockets.

Orbiter

Fig. 1. Aerobraking tether.
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2. COMPARATIVE STUDY SPECIFICATIONS

The spacecraft chosen for the comparative study
consists of an orbiter and a probe with a mass of
1000 kg each. This choice was arbitrarily made but
reflects typical values for spacecraft used in the
exploration of the solar system. It is assumed that the
spacecraft reaches each planet via a Hohmann trans-
fer, and at arrival a maneuver is performed to achieve
capture into a near parabolic orbit (e < 1).

In the tethered system graphite is used because of
its high strength and thermal resistance. Hercules
AS4 graphite, which is currently available and has a
tensile strength of 3.6 GN/m? and a density of
1800 kg/m’, is chosen as representative of the type of
material that could be used in the tether. This system
will use the aerobraking tether maneuver to achieve
capture. The orbiter is to be kept as high above the
atmosphere as possible during the maneuver to avoid
the need for aerodynamic shielding. The fact that the
drag forces act mostly on the lower portion of the
tether results in a large torque that tends to rotate the
system and could easily plunge the orbiter into the
atmosphere. Previous research[5] found that this
could be prevented by giving the system an opposite
spin rate before impact. After the impact the spin rate
can be eliminated as was shown in[5], but since
tension due to centripetal forces is produced by spin,
some analysis is required to determine the best spin-
in/spin-out combination (Fig. 2) to minimize tether
mass. The model in [3] provides the forces acting on
the tether at the two end points. These forces will be
used to determine the strength requirements on the
tether. Both tensile and normal forces are computed
since the model assumes the tether to be a rigid rod.
The presence of normal forces on the tether is not
desirable because if a flexible tether was used it would
bend to accommodate those forces. Therefore, the
normal forces should be minimized in order to mini-
mize the bending of a more realistic flexible tether.
For the purpose of this analysis, the drag coefficients
for the probe, tether and orbiter are assumed to be
(f2,3) Cp, =1 and Cp, = Cp, =2.

The tether system will be compared to a chemical
rocket system which uses propeliant to capture the
orbiter around the planet. The probe, is assumed to
use aerobraking to achieve capture in the same
manner as the Galileo probe currently enroute to
Jupiter. In order to reflect current technology a
specific impulse of 300 s is chosen.

Fig. 2. Aerobraking maneuver,
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The comparison will be based on the masses of the
tether and the propellant. The relative masses of the
equipment involved in each case, such as tanks and
nozzles in the propulsive system. and reel and deploy-
ment equipment in the tethered system, are assumed
to be similar and therefore will be ignored. Some
questions may arise about the validity of this com-
parison. For example, the tether spin rate increases
the velocity of the probe which raises its heat shield-
ing requirements when compared with the probe in
the propulsive case. On the other hand, the near
parabolic capture orbit favors the propulsive system -
since to get into a more realistic orbit extra fuel would
be required, where the tethered system could achieve
(at no cost) a lower eccentricity orbit in a second
aerobraking pass. The tether mass versus propellant
mass study is chosen as a simple way to evaluate the
performance of the tethered system. The favorable'
results presented in this analysis will be followed up
with a more detailed examination.

3. TETHER DESIGN CONSIDERATIONS
3.1. Equations of motion

The equations of motion for a tethered system in
an atmosphere are derived in[3]. The complete
equations of motion for such a system are extremely
complex, even with the following simplifying assump-
tions. First, since the spacecraft are small compared
with the dimensions of the complete system, the
orbiter and the probe are analyzed as particles. Next,
the motion of the system is constrained to the plane
of the orbit. Disturbances in the out-of-plane direc-
tion are small, which makes this a reasonable as-
sumption. In addition, the orbit is assumed to be
equatorial and the atmosphere is assumed to rotate
with the planet. Also, the tether is modeled as a rigid
rod. This assumption is often made in the literature
and has been shown to be reasonable in most
cases[2]. The analysis includes the aerodynamic
effects of an atmosphere on the system, assuming an
exponential atmospheric density model of the form:

pi=p, e~ it Raltl M

where p; represents the density at a radius R, from the
center of a planet with radius R, p, is the reference
density at a reference altitude H, and H is the scale
height. The drag forces acting on the system are
assumed to be of the form:

F=-~1pCpSVV )

where Cp is the drag coefficient, S represents the
frontal area of the body and V is the velocity with
respect to the atmosphere. When the drag effects on
the tether are analyzed, the drag forces must be
integrated over its length since the wind velocity and
the atmospheric density change continuously along
the tether. The exact form of this integral is derived
in [3}, and has no closed form solution. Approximate
expressions for the integral are found to reduce the
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resulting integro-differential equations to non-linear
differential equations with time-varying coefficients.
Integration of the drag forces is not required for the
orbiter and the probe, since they are analyzed as
particles. The gravitational forces on the system are
obtained using an inverse square model. The gravity
force analysis on the tether also requires integration
over its length, but in this case a closed form ex-
pression can be obtained for the integral coefficients.
The equations of motion for this system are devel-
oped using a newtonian approach and.are too lengthy
to be shown here (most of[3] is devoted to the
derivation of these equations). The simulations of the
tether maneuvers shown in this paper are obtained by
numerically integrating the equations of motion pre-
sented in [3].

The analysis in [5] indicates that the aerodynamic
effects acting on the tether resemble impulses, hence,
for preliminary design purposes, the fly-through ma-
neuver can be approximated as an impact problem.
In the spinning tether case, the centripetal forces due
to spin may (depending on the maneuver) produce
most of the tension forces. This observation can also
be used to simplify the design analysis. Finally, given
an exponential atmosphere, most of the aerodynamic
effects take place near the probe. All these facts can
be used to derive very simple models which are
applied to the aerobraking tether feasibility study in
this paper. Thus certain “rules of thumb” emerge
which guide the tether design for aerobraking at
various planets.

3.2. Spin rate analysis

The question arises: what values of spin-in, 2,
and spin-out, Q,,,, minimize tether mass (see Fig. 2)?
To answer this question, first, assume that ail the
tension on the tether is due to spin, that is, ignore
gravitational effects. Then, approximate the maneu-
ver as an impact acting on the probe while the tether
is in a local vertical orientation as shown in Fig. 3.
Finally, neglect the mass of the tether since it is small
compared to that of the orbiter and the probe. The

—

Fig. 3. Tether orientation during fly-through.
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value of the impulse P can be computed using the fact
that it must slow the system down to capture velocity
and that the magnitude of the required AV is known.
Hence, P can be written as:

P =(m,+m,)AV ©))

where m, and m, are the masses of the orbiter and the
probe, respectively. The angular impulse 4 due to P
is:

A = Pl,=(m,+ m)AVI, = [AQ @

where AQ is the change in angular velocity (spin) and
I is the moment of inertia of the system given as:

I=m,2+m,i} (5)

/, and [, are the distances from the orbiter and the
probe to the center of mass of the system and are
given by:

[=—T0 Mo 4 (6)

o = 1p=
‘mo+mp m°+mp

where [ is the total length of the tether. Note that
these expressions do not include the mass of the
tether which is ignored in this part of the analysis.
After some algebra we obtain an expression for AQ
as a function of AV: |

AQ =Tt £y ™
myl
The tension on the tether produced by the spin rate
is:

T="0T0_ o ®)
my,+m,

Note that this is an expression for the tension at the
ends of the tether, but, since the tether is assumed to
be massless, the tension is constant along the tether.
The maneuver should be designed to minimize the
tension on the tether, that is, minimize the maximum
value of the tensions due to @, and ,,. The
difference between @, and Q,,, is given by eqn (7).
Clearly minimum tension is achieved when

Q= ~Qy ®
In [5] a maneuver design with Q, = AQ, and ,, =0
was analyzed. This option has some advantages (i.e.
no spin after the fly-through) but the maximum
tension is increased by a factor of four [compared to
condition (9)]. When the spin rates are matched, by
using eqns (7) and (8), the tension on the tether can
be expressed explicitly as a function of AV:
_my(m,+m,)

T=—"—_P_ Ap?

10
4m,l (10)

The tether diameter is now determined as a function
of the strength of the material chosen, since it should
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be designed to withstand the tension given in eqn
(10). The expression relating tether diameter, d, to AV
is:

- my(m, + m,)

d 2
nmyo,l

AV? (11)
where ¢, is the uitimate strength per unit area of the
tether material. The total mass of the tether, m,, is:

= ptmo(mo + mp)

AV?
i d6,m,

(12)
where p, is the density of the tether material. Note
that the length of the tether is not contained in the
tether mass expression. That is, the mass of the tether
is determined only by the value of AV, the masses of
the orbiter and the probe, and the properties of the
tether material, 6, and p,. Thus, from eqn (12), we see
that, for a given material, the mass of the tether is not
affected by its length. The reason for this is that, for
a given AV, as the tether length is increased the
tension (due to centripetal acceleration) decreases
proportionally with / ~!, whereas the mass increases
with /, so the two effects cancel.

3.3. Normal force analysis

The tether model used for the simulations in this
paper, which is derived in {3], assumes the tether to be
a rigid rod. The model also provides the tether forces
acting on the orbiter and the probe. These forces have
components in both the longitudinal and the normal
directions due to the rigid tether model. A more
realistic model for the tether would include flexibility,
allowing bending if normal forces were present.
Bending is not desirable, since it would change the
tether length (orbiter altitude), drag characteristics,
and perhaps, some of the other basic modeling
assumptions. In order to reduce this problem, the
possibility of eliminating, or minimizing (by design),
the normal forces is studied.

3.3.1. Center of percussion/center of pressure
matching. First, the normal forces at the orbiter end
are studied. Some simplifying assumptions are made
to facilitate this analysis. The tethered system is
assumed to remain in a vertical orientation during the
fly-through maneuver, which is the optimum orien-
tation to keep the orbiter away from the sensible
atmosphere. Also, the orbiter radius and velocity are
assumed to be constants throughout the maneuver,
which are approximated by the orbital conditions
around periapsis where the fly-through occurs. At
this point, if the drag effects are considered approxi-
mately impulsive, it is clear that the normal forces
disappear if they act at the center of percussion about
the orbiter. Therefore, the normal forces at the
orbiter end are minimized when the center of pressure
(where the resultant of all the drag forces acts) and
the center of percussion are located at the same point
on the tether. The position of the center of percussion

lps C.Pressurelpc
Aps Apc

Fig. 4. Locations of center of pressure and center of
percussion.
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C. Percussion

about the orbiter with respect to the center of mass
of the system, /., is (Fig. 4):

b =TI{(ml,) 13)

where / is the moment of inertia of the system about
the center of mass and m is the total mass. If the
tether is assumed massless, then the center of percus-
sion of the system about the orbiter is located at the
probe. When the mass of the tether, m,, is included,
the center of percussion moves towards the center of
mass. The distance it moves from the probe, A 18
given by:

b=l =L =1, —I/(ml,) (14)
where the 7 and m are:
I=ml}+mll+(1/3)m(3+13)/1
m=m,+m,+m, (15)

Note that when the mass of the tether is included in
the analysis, the expressions for I, and /, become:

=Z‘.’_i]5ﬂ1 l =m1 (16)
° m

The position of the center of pressure is found by
combining the drag effects acting on the probe and
the tether. The effects on the orbiter are negligible
since it is located at a much higher altitude than the
probe. The drag forces on the probe and the tether
can be found using expressions derived in [3] and the
approximations mentioned above:

Fpp=—3p,Cpy S, (R — 1,62
x @+ Rpy~ R+ ) H
Fr = “%P:Cmde(”'ﬂ"'—k)m

x HO*[R%, + 2Ry, +7;] (18)

l

P

an

with
y= —e ol 4 ghlH
¥2= =+ H)e o — (I, — H) eb®
Vo= =3+ 2H(,+ H))e o

+(2=2H(,— H))e"™ (19)
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where Cp, and Cp, are the drag coefficients of the
probe and the tether respectively, S, represents the
frontal area of the probe, and R and § are the orbital
radius and angular rate of the center of mass. The
" tether drag force is distributed along the length and
the tether center of pressure must be found to obtain
the center of pressure of the total system (tether plus
probe). The position of the center of pressure of the
tether (Fig. 4) with respect to the center of mass of
the system, /, is given by the ratio of the drag force
(18) and drag moment on the tether derived in[3]
which, with the assumptions made previously, is:

MD( = _% P: Cmde(H,+ R,,..— RyH
x HO{R%,+ 2Ry, +y,] (20)
where
va= —[I3+3HII+ 6H¥l, + H)je 0"
~U}-3H1+ 6H (I, — H)) eb¥
Then the expression for /,, becomes:
_ R+ 2Ry +v,
" RY +2Ry, +7,

The position of the tether center of pressure with
respect to the probe, 4, is given by:

@n

'ltps = lp - Itvs (22)
Note that, in the limit, as the tether length goes to

infinity the value of ., goes to H, the scale height of
the atmosphere. That is:

lim Ag=H

I o

23)

Finally, the position of the center of pressure of the
complete system with respect to the probe, Ao, 18

Aps = Fpndogs [(Fo, + Fp) eD)

In order to minimize the normal forces at the orbiter
end of the tether, the values of A and 4 should be
equal, that is the center of pressure and the center of
percussion should match. We call this requirement
center matching.

3.3.2. Aeromatching. At the probe end of the tether
the normal force analysis is much simpler. Normal
forces at the tether end are present when the tether
and the probe have different aerodynamic force-to-
mass ratios. This means that the decelerations that
the atmosphere produces on them are different and,
since they must move together, normal forces appear

209

in the rigid rod model. The atmospheric density and
wind velocity at the end of the tether are the same for
both, the probe and the tether. Therefore, from the
aerodynamic force expression, the condition that
eliminates the normal forces can be found by equat-
ing the ballistic coefficients:

BUCpd) =m,/(Cp, S,)

where B is the tether linear density, which depends on
the tether mass and its dimensions. We call this
condition aeromatching.

(25)

4. INTERPLANETARY MISSIONS

The missions to the various planets are determined
by assuming a Hohmann transfer from a 200 km
Earth parking orbit. The return mission from Mars
to Earth consists of the second “leg” of the transfer
ellipse from the Earth to Mars mission. The mission
to Titan assumes tether braking at Titan in order to
achieve capture at Saturn. All the planets are as-
sumed to have co-planar, circular orbits about the
Sun with the semi-major axes used as the orbital
radii. The AV needed to go from the incoming
hyperbolic trajectory to a parabolic trajectory is
found by using a patched-conic solution, and is given
by the expression

AV = /2—”+V§,— /2—”
r, r

where u is the planet’s gravitational constant and r,
is the periapsis radius.

The propellant mass needed to brake the orbiter
into a capture orbit (e <1) is given by the rocket
equation:

(26)

Am = m (2wt — 1) 27N

where g is the acceleration due to gravity at the
Earth’s surface and Am is the propellant mass.

Table 1 gives the values of AV and -Am for
Hohmann transfers to each planet, assuming an I, of
300s and a 1000 kg orbiter.

4.1. Calculating scale heights

Since the atmospheric drag model used in the
tethered aerobraking simulations is exponential in
nature, we are assuming that the atmospheric density

Table |. Hohmann transfers

Body x (km’/s?) R(km) V. (km/s) r,(km)t AV (km/s) Am (kg)
Venus 3.25x 10° 6.05 x 10° 2.7 6190 0.35 126
Earth 3.99 x 10° 6.38 x 10° 297 6430 0.39 142
Mars 4.28 x 10* 3.40 x 10° 2.65 3490 0.67 256
Jupiter 1.27 x 10 7.14 x 10* 5.64 71,900 0.27 9%
Saturn 3.79 x 107 6.00 x 10* 5.44 60,800 0.41 149
Uranus 5.80 x 10° 2.54 x 10* 4.66 26,900 0.50 185
Neptune 6.85 x 10° 2.43x 10* 4.05 25,500 0.34 122
Titan 9.0 x 10° 2.58 x 10 4.01 3080 1.31 559

tDenotes numbers taken from the numerical simulations.
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Table 2. Atmospheric parameters
Lapse rate Ref. 7 Ref. p Ref. T 2
Planet/moon Composition  dT/dr (K/km) (km) (kg/m®) X) (m/s%) Source
Venus 96.5% CO, N/At 6150-6180 1.0x 1074 N/A N/A Ul
3.5% N, 1.0x10°° N
Earth 79% N, -49 54-91 N/A 165223 9.81 3]
20% O, :
1% Ar
Mars 95.7% CO, N/A 90-110 6.03 x 10°7- N/A N/A i8]
2.7% N, 1.6 x 10~7
1.6% Ar ,
Jupiter 89% H, ~-2-0 71,542~ N/A 100-133 23.12 %], (10}
11% He 71,592
Saturn 94% H, 0-0.8 60,308- N/A 90-100 8.96 {10}, 11}, 13)
6% He 60,408
Uranus 85% H, N/A 26,145 4.7 x 1072 59 N/A [12}, (131
15% He
Neptune 85% H, N/A 24,750 58x 107! 48 N/A 12),(13}
15% He
Titan 90% N, 0.09 2725-2825 N/A 190-200 1.36 13}
10% CH,

tInformation not used (not applicable) in calculating scale heights.

can be written as an exponential function, of the form
plp,=e~t-rVH (28)

where H is the scale height. If the value of the scale
height is known, and if the atmosphere can be
assumed to be locally exponential, then the density
can be found at any altitude if given a reference
density and altitude, p, and r,.

Two methods were used to calculate values for H
over a range of altitudes at each planet. The first and
most direct method requires a density versus altitude
plot (or list of data points), and from it the values for
H can be found directly by solving eqn (28).

When such information is not-available, however,
it is necessary to turn to the formal definition of H
in order to calculate it, and a full derivation can be
found in[6]. Three simple assumptions are made: (1)
the atmosphere has exponential behavior, (2) the
gases can be approximated as ideal and (3) the rate
of change of pressure equals the weight of the atmos-
phere as the altitude varies. By combining the follow-
ing two equations,

p =pRT/m 29
dp = —pgdr (30)
and rearranging, we arrive at the following- ex-
pression:
dp gm 1dT
L= 24— |dr 31
P [RT + Tdr @1

If the bracketed term in egn (31) is defined as 1/H,
then integration will yield eqn (28). In this expression,
m is the molecular mass of the atmospheric gases, and
g is the local acceleration due to gravity. The term
dT/dr is often referred to as the temperature lapse
rate, and it gives the change in atmospheric tempera-
ture with respect to altitude. This allows H to be
calculated when density information is unavailable,
as long as pressure and temperature profiles are
known.

4.2. Selected atmospheric properties

It is necessary to find the scale heights at each
planet for altitudes corresponding to the fly-through
maneuver. A great deal of information is available for
Venus, Mars and Earth; so the application of the
atmospheric model is relatively straightforward.
However, the information on the outer planets and
Titan is sparse, and in some cases existing data had
to be extrapolated.

At Venus and Mars, the scale heights are calculated
from density profiles, using eqn (28). Earth infor-
mation is taken directly from Vinh[6]. At Jupiter,
Saturn and Titan temperature profiles and lapse data
are the primary source of information, and the scale
heights are calculated using egn (31).

Hunt[12] provides scale height information at
Uranus without reference to altitude, so it is necess-
ary to use pressure and temperature data in order to
locate the reference density and altitude. Due to the
similarities between the planets Uranus and Neptune,
Neptune’s atmosphere is assumed to have properties
similar to Uranus since very little Neptune data is
available. Table 2 summarizes the atmospheric par-
ameters of the planets and Titan.

The values in Table 3 are considered to be repre-
sentative of the atmospheric properties of the planets
and are used in the numerical simulations. Although
there are uncertainties in the scale height and density
information, it should be stressed that the design
methodology presented in this paper applies to any
atmosphere sufficiently dense.

Table 3. Selected atmospheric properties

Body H (km) r, (km) p, (kg/m®)
Venus 6 6150 1.0x 1074
Earth 5 6458 7.7 x 1076
Mars 8 3507 55x 1078
Jupiter 20 71,592 1.85 x 103
Saturn 30 60,350 28 x 1072
Uranus 40 26,145 4.69 x 10~!
Neptune 40 24,750 5.76 x 10!
Titan 45 2738 1.7x 1073
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5. NUMERICAL RESULTS
S.1. Aerocapture ar Mars

In this section, a preliminary design of an aero-
braking tether for Mars is discussed. A mass of
1000 kg is used for both the orbiter and the probe.
The atmosphere of Mars is assumed exponential and
its properties are given in Table 3. The aerobraking
maneuver involves the deceleration of the tether
system from an arrival hyperbolic orbit, determined
by the Hohmann trajectory from Earth, to a near
parabolic orbit (¢ < 1) around the planet. This ma-
neuver must reduce the velocity by approx. 0.67 km/s
(Table 1). Given these preliminary assumptions and
the models derived in previous sections, a tether
design can be obtained. First, using eqn (12), the mass
of the required tether can be calculated given values
for the orbiter and probe masses, the AV and the
tether material properties, where we have chosen
0,=3.6 GN/m? and p, = 1800 kg/m>. In this case a
mass of 112kg is obtained. This compares very
favorably with the propellant mass required to cap-
ture the orbiter, 256 kg (Table 1). Note that the mass
equation requires the matching of the spin rate before
and after impact, and that the maneuver must be
designed accordingly. Next, center matching and
aeromatching requirements are introduced in order
to eliminate the normal forces on the tether. The
aeromatching requirement feqn (25)] gives the probe
area as a function of the tether length and diameter,
which are the only variables remaining in the design
(recall that we have assumed that Cp =2 and
Cpp, = 1). Note that the orbiter area is not an import-
ant factor in the design, since the orbiter travels at a
higher altitude than the probe and is subjected to
much smaller aerodynamic effects. The value used
here is Sm’. The tether diameter and length can be
related using tether mass and density, and the center
matching requirement provides the lfast condition to
arrive at a unique design. If the center of pressure and
center of percussion are plotted versus tether length

04
Ceater of Percussion
03
Distance | —

from Cenmter of Pressure

0.2 - .
Probe
(km)

0.1

0 1 U T 1
10 12 14 16 18 20
Tether Length (km)

Fig. 5. Tether length based on aeromatching and center
matching curves.

3700
3600 —
Radius
(km) '
R,
3500
R,
3400 T T
600 800 1000 1200
Time (s)

Fig. 6. Orbiter and probe trajectories.

using eqns (14) and (24), the intersection of the two
lines represents the tether length that satisfies the
aeromatching and center matching requirements
(Fig. 5). For the Mars case a length of 14.5km is
obtained. It was found that the tether length is
insensitive to variations in AV. After the length is
found, the tether diameter and probe area are easily
computed using eqns (11) and (25). The values ob-
tained are 2.34 mm and 605 m?, respectively. Note
that a unique tether design exists which satisfies all
the requirements mentioned above. )

The equations derived in [3] are used to simulate
the aerobraking maneuver using the tether design
described above. The analysis in[3} and{5} provides a
method to determine the initial conditions outside the
atmosphere required to obtain the desired conditions
during atmospheric fly-through. The initial con-
ditions found for the Mars maneuver are:

R =5104.91 km
a = 31.83 radians
a&=—3.7115 x 10~%1/s

1200

600 800 1o'oo
Time (3)

Fig. 7. Orientation angle, o, and d.
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Fig. 8. Tension and normal forces on the orbiter.

where R is the radius from the center of the planet to
the center of mass of the tether system and « is the
tether orientation angle with respect to the local
vertical. The characteristics of the maneuver given by
these initial conditions are shown in Figs 6—10. Figure
6 shows the radius of the orbiter and the probe with
respect to the center of the planet. Note that the
radius of Mars is 3398 km. During atmospheric fly-
through the minimum altitudes of the orbiter and the
probe are 92.5 and 80.7 km, respectively. The differ-
ence between these values is nearly the length of the
tether. Next, the orientation of the tether, «, and its
spin rate, &, are shown in Fig. 7. The graph clearly
shows that during fly-through the tether remains at a
. near vertical orientation (« =0). The values of the
normal and tension forces at both ends of the tether
are plotted in Figs 8 and 9. The graphs clearly show
that forces due to spin are equal before and after
impact. Also, the normal forces are close to zero,
which was one of the goals of the design. Note that
the tether designed for this maneuver has an ultimate
strength of 15,500 N which is higher than the maxi-
mum value of tension observed in the simulation.
[The actual tension due to spin is, in this case,

15000

12500
Teasion
10000
7500
® 5000 -

2500

Normal

-2500 T T
600 800 1000 1200
Time (s)

Fig. 9. Tension and normal forces on the probe.
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Fig. 10. Eccentricities of tether, orbiter and probe.

overestimated by eqn (10).] Figure 10 shows the
eccentricities of the center of mass, and individually
of the orbiter and the probe. When the eccentricity of
the center of mass is less than unity, then the tether
system is guaranteed to be captured. The eccentric-
ities of the orbiter and probe are plotted individually
to show when both vehicles would be captured if the
tether were severed.

5.2. Aerocapture results for solar system exploration

The same process is used to design tethered systems
for aerobraking at the other atmosphere-bearing
planets and satellites in the solar system. The results
of the designs and simulations are summarized in
Table 4. The tether masses obtained compare very
favorably to the propellant masses in all cases. This
fact can be predicted by using eqns (27) and (12),
which provide propellant mass and an approximation
to tether mass, respectively, as functions of AV. In
Fig. 11 the two expressions are used to plot mass
versus AV. Note that the tether mass remains smaller
than the propellant mass for all AVs below 1.8 kmy/s.
The largest percentage savings are found at Jupiter,
but Mars provides the largest absolute savings. The
tether length in each case is found to be only a
function of the scale height and it is approx. 1.8 H for
all the planets. The diameters of the tethers range
from 0.5 to 2.3 mm which are reasonable values. The
probe areas, on the other hand, are very large,
ranging from 605 to 2670 m%. These values result
from the aeromatching requirement and could be
reduced with a denser tether material. The tether
forces calculated in the design process are very close
to those found in the simulation for all cases except
for Mars, where the actual forces are significantly
smaller, and Neptune, where the actual forces are
somewhat larger. The normal forces at both the
probe and the orbiter were very small, in accordance
with the design specifications for each planet. The
difference in minimum altitude between the orbiter
and the probe for all cases is nearly the length of the
tether. Recalling that the tether length is approx.
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Table 4. Acrocapture results for solar system exploration

Values Venus Earth Mars Jupiter Saturn Uranus Neptune Titan
AV (km/s) 0.35 0.39 0.67 0.27 0.41 0.50 0.34 131
Propellant mass (kg) 126 142 256 9% 149 185 122 559
Tether mass (kg) 3t 38 112 18 42 63 29 426

Savings (%) 75% 3% 56% 81% 2% 66% 76% 24%

Savings (kg) 95 104 144 78 107 122 93 133
Length (km) 10.8 9.0 14.5 36.1 544 72.7 72.7 84.2
Diameter (mm) 1.42 1.73 2.34 0.60 0.74 0.78 0.53 1.89
Probe area (m?) 999 818 605 2370 1910 1810 2670 747
Design tension (N) 5670 8450 15.500 1010 1550 1720 795 10,100
Actual tension (N) 5430 7850 12,700 1050 1630 1860 899 9443

% of design 96% 93% 82% 104% 105% 108% 113% 93%
Orbiter p,.,. (kg/m?) 502x107% 539x 10-% 2.18x 107 481 x 10~ 1.73x 10~° 3.29 x 10-° 1.31x10™° 5.21%10-7
Probe p,,, (kg/m®) 3.04x1077 327x 107 142x 107% 292 x10-° 1.05x 10-® 204x10"% 8.14x10° 228x10-¢
Orbiter 4., (km) 146 103 93 495 848 1496 1246 522
Probe 4_,, (km) 135 94 81 459 794 1423 1173 456

1.8 H it is clear why the maximum atmospheric
density at the probe is approx. 6 times (e'* times)
larger than that at the orbiter in all cases.

Note that Table 4 presents unique designs based on
the requirements given by the rules of thumb devel-
oped earlier. Many other designs are possible by
eliminating any one of the unique tether design
specifications. For example, if greater altitude separ-
ation between orbiter and probe is required, this can
be achieved by increasing the tether length, but
normal forces (and bending) are likely to appear,
since center matching is no longer maintained. It is
interesting to note that in such a case the tether mass
remains the same since it is only dependent on AV,
as discussed above. The designs in Table 4 provide
a useful guideline for all other aerobraking designs,
and a way to compare the performance of tether
aerocapture systems at the various planets. ‘

6. FUTURE WORK

The ideas presented in this paper suggest several
areas for further study. We merely list a few key ones
here with some comments.

1000

Tether

Y } ] 1
0. 05 1 15 2
AV Gan/s)

Fig. 11. Tether mass versus propellant mass.

(1) Flexible tether model

In the above analysis, the tether is modeled as a
rigid rod, but designed to minimize normal forces.
The next logical step is to introduce a flexible tether
model to test the virtue of the aforementioned de-
signs. Preliminary results[14] indicate that the flexible
behavior is not deleterious to the rigid rod analysis
and that the conclusions of the above designs are
not appreciably altered. Future analysis with the
flexible model will allow a study of how variations in
the design will affect normal forces, bending and
aerodynamic forces.

(2) Tether guidance and control

An analysis of sensitivity to errors in initial con-
ditions and uncertainties in the atmospheric model
will be used to assess the guidance and control issues.
Control and guidance of the tether system may
include varying the length of the tether in order to
control tether orientation and altitude during the
atmospheric fly-through. The tether may be severed
at a critical time in order to deliver the probe into the
atmosphere and the orbiter into a desired orbit. The
required accuracy in the timing of the probe release
must be analyzed in order to determine what sensors
may be necessary to make the system feasible.

(3) Generation of spin rate

In order for the aerobraking tether discussed above
to work, a significant spin rate must be imparted to
the system. This spin rate represents a large amount
of kinetic energy which must be generated somehow.
One possibility is to use solar radiation torque to spin
up the tether over a long period of time, perhaps
during the interplanetary trajectory to the planet.
This might be accomplished by an appropriate design
of the orbiter and probe exteriors. Another possibility
is to use a much longer tether (than the above design)
of length /* with a much smaller initial spin rate. By
reeling in the tether, conservation of angular momen-
tum provides the desired high spin rate. In this case,
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if the tether were tapered to keep the mass to a
minimum, then the extra mass required, Am,, is

Am, = 3m 1 —(I/I*)] (32)

We note that in the limit, as /* — o0, the tether mass
increases by only 50% over the original design mass.

(4) Mars return mission

A detailed design of a mission to Mars and back
to Earth would further illuminate the advantages and
disadvantages of the tether aerobraking system. The
scale heights of the two planets are not too dissimilar
and perhaps the tether could be reeled in for aerocap-
ture on the return to Earth. In such a mission, the

_tether mass requirements would be greatest at Mars.
Other mechanical advantages of the tether would be
considered, such as the possibility of using the tether
as a sling to propel the vehicle into the outbound and
inbound interplanetary trajectories. Naturally this
would involve some throw-away mass, such as a
spent booster stage. Another consideration in favor
of the tether system is that, for a piloted mission, the
very long spinning tether would provide a relatively
uniform artificial gravity field.

(5) Gravity assist with tethers

A tether could be used on a Voyager-type Grand
Tour to deliver spacecraft into orbit about several
planets. The lower end of the tether would have a
velocity reduction of AV while the upper end would
have a velocity increase of AV. Thus if the AV is large
enough, the lower vehicle could be dropped into a
capture orbit without the need of an atmosphere,
while the upper vehicle would continue on a hyper-
bolic trajectory, with an added boost of AV, to the
next planet. If the atmosphere of the flyby body is
used to either aerobrake the probe or to change the
spin rate of the tether, then the system would be
referred to as an aerogravity-assist tether. Further
analysis will determine if such tethers may increase
the number of grand tour opportunities.

7. CONCLUSIONS

The numerical results in this paper indicate that
aerobraking tethers may provide significant mass

10.

11.

12.
13.

14.
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reductions over rocket propulsion systems when used

" in the exploration of the solar system. Future analysis
must consider tether flexibility, spin generation and
guidance and control issues.
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