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Abstract—In this paper, we analyze the concept of a tether sling for lunar and planetary missions. By
continuous application of torque (generated by a solar-powered electric motor), the spacecraft, attached
to the end of the tether, achieves the required injection velocity. Since no propulsive maneuver is required,
the tether supplies a virtually inexhaustible capacity to catapult deep space probes. It is shown that the
engineering difficulties associated with this problem are surmountable and often have simple and elegant
solutions. The tether must be tapered according to a simple formula, which allows the tether to support
its own mass as well as the probe’s. Although chemical propulsion provides a much better mass ratio for
high energy transfer, the great advantage of the tether is its simplicity and reusability.

1. INTRODUCTION

Perhaps the earliest mention of using tethers for
momentum transfer between orbiting spacecraft is
presented by Colombo[l]. The concept of using a
tether as a sling to catapult rocks off the surface of
the moon was first mentioned by Carroil [2] who dealt
with a uniform tether having a characteristic velocity
of about 0.7-1.0 km/s, above which the tether breaks.
Tillotson [3] realized that to increase the effective
speed of a tether sling, the tether must be tapered.

Many other researchers have contributed to the
ideas of momentum transfer and orbit pumping with
tethers which capitalize on propulsive techniques that
do not involve expendable propellant. These authors,
too numerous to list here, are well referenced by
Penzo and Ammann[4] and Beletsky and Levin[5].

In this paper, we derive an exact expression for the
taper of a tether sling and we analyze the power
requirements for the spin-up maneuver. Next, we
consider design configurations which address the
spinning and transverse torque problems associated
with an orbiting tether sling facility. Finally, we
demonstrate, by numerical examples, the potential
efficacy of tether sling facilities stationed in Earth
orbit, on the lunar surface and on the satellites of
Mars.

2. ANALYSIS
2.1. Uniform tether

For a spinning tether sling the maximum tension
occurs at the hub. If the tether has uniform

fPaper IAA-L-0701P presented at the I4A International -

Conference on Low-Cost Planetary Missions, Laurel, MD,
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diameter (Fig. 1), the tension at the hub is:

Fepal 1)
where p is the density of the tether, v is the speed of
the tether end point and A is the cross-sectional-area
of the tether. Note that eqn (1) ignores tension due
to the payload at the end of the tether. The maximum
force that a tether can withstand is;

F=o04 Q)
where ¢ is the ultimate strength of the tether material.

Combining eqns (1) and (2), the maximum speed that
can be obtained at the end of a uniform tether before

it breaks is:
o= 2. 3)
p

We call this value the characteristic velocity, and it
represents the maximum speed that can be obtained
by a spacecraft propelled by a uniform tether sling.
Values of v, for graphite tethers can be as high as
2.5 km/s. However, to obtain this theoretical maxi-
mumm, the ratio between the mass of the tether and the
mass of the spacecraft must be infinite, since the
tether is omly strong enough to support its own
weight. Clearly, even if the value of v, were high
enough for interplanetary travel, the large tether mass

would be unacceptable.
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Fig. 1. Uniform tether.
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Fig. 2. Tapered tether.

2.2. Tapered tether

In the uniform tether system the strength of the
tether is matched to the tension forces at the hub. The
tension forces at other points along the tether are
smaller, and the diameter of the tether could be
reduced (Fig. 2). This would reduce the mass of the
tether and, consequently, the tension at the hub. To
find the taper equation, first we compute the tension
force at a distance x from the hub for a tether of
length / to be:.

IUZ vZ

where m, is the mass of the payload and dm,
represents the mass of a differential tether element
located at a distance y along the tether, which can be
written as:

dm, = pd, dy ®)

where 4, is the area of the tether at point y.

In order to minimize the mass, the strength (area)
of the tether at any point x should be matched to the
tension force at that point (F,). Thus, from eqns (2)
and (4), the tether area at point x becomes:

Fx UZ p !
Differentiating eqn (6) with respect to x yields:
d4, _v |
— ,‘z’ (—x4,). @

Integrating eqn (7) we obtain:

vip (P x?
A= 4, exp[% (5—5)] ®

where A, is the area at the end of the tether, which
is given by the strength required to withstand the

0

2 i T
Vo051 18 2

Fig. 3. Tether mass ratios.
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Fig. 4. Mass ratio comparisons.

force from the payload:

A=m ©9)

P U—I :
Combining eqns (8) and (9), the area of the tapered
tether at a point x along the length becomes:

A= "; exp[" P (1 —’1‘—2>] (10)
The total mass of the tether is:
= LI pA, dx. (11)
Substituting eqn (10) into eqn (11) yields:
m=m, Bg— exp(‘%z) J: exp( _2’;02 ch_zz) dx
: ’ (12)

A change of variables in the integral reduces eqn (12)
to:

= 2 pvz v/oi2e R
m,=m,v / = exp(E&-)J; exp(—t%)dt

(13)
which can be expressed in terms of the error function

(erf) [6):

e [ ol )5 0

Finally, the mass ratio of the tapered tether system
can be written as:

P

3
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2

(15)

7w * exp(v *Verf(v *).
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Fig. 5. Performance index vs. break-even speed.
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where ¢* is the non-dimensional velocity:

er=i |2 =2 (16)
v

This allows the relation between the mass ratio and
any combination of tether material and payload
speed to be represented by a single graph (Fig.
3). Equation (15) clearly indicates that the tapered
tether sling has no speed limitation. The mass ratio
increases with non-dimensional velocity, which, for a
given tether material, is proportional to payload
speed.

The mass requirements of a tether sling can easily
be compared with those of a traditional propulsive
system. From the rocket equation, the ratio of
propellant mass to payload mass can be written
as:

m
—EP = exp(nv*) — 1

a7
P

with n = v /(I,,g), where I is the specific impulse of
the propellant and g is the standard gravitational
acceleration on the Earth’s surface. Using this
equation, the propellant mass ratio for various values
of n can be combined with the tether sling results in
a single graph (Fig. 4). From the plot it is clear that
the tether sling is superior to traditional rocket
systems when low speeds are required, while rocket
systems have better performance at higher speeds.
The point where the two systems have equal mass
ratio changes with n. The performance index is
plotted versus this “break-even speed” in Fig. 5. It
should be noted that the results in Figs 4 and 5 do not
include the fact that the tether sling has multilaunch
capabilities which dramatically reduce the mass ratio
(when many payloads are launched).

2.3. Energy requirements
In order to determine the energy required to spin
up a tapered tether sling we must first determine its
moment of inertia about the hub, I :

!

I= J. x2pA. dx. (18)

0
Equation (18) can be solved in terms of error
functions using integration by parts and the same

Fig. 6. Solar cell sizing.
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Fig. 7. Orbiting tether facility.

change of variables used to solve eqn (12):

J

1= mpﬂ[ — 1+ exp(v *Z)erf(u*)]. (19)

If the inertia of the payload is mcluded the total
inertia of the system is:

I=m, 12 ‘/_ 5 exp(v *Herf(v*). (20)

Thus, the rotational kinetic energy required for the
velocity, v, at the end body is

E = -\{1—; m, exp(v*Aerf(v*)v *v?.

The energy supplied by a solar array with aréa, A,
and power per area output, P/A4, is

@D

P
E e = 1 At = Pt
Equating expressions (21) and (22) yields the govern-
ing non-dimensional energy equation for the tether
sling

22)

E Pt Ve et

E. vim, 1 4 23

where E_and ¢, are the characteristic energy and time,
respectively. Note that the /s cancel, which leaves us
free to choose the tether length to meet any acceler-
ation constraint. The form of eqn (23) is convenient
for plotting the relationship among the design vari-
ables (P/4 of the solar cell, area of the solar array,
time necessary to spin-up, tether material, mass of the
payload and v). Using Fig. 6, the required energy that
is 10 be generated by the solar array per kilogram of
payload can be determined for a given tether material
and spacecraft velocity.
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Fig. 8. Transverse torque balancing.
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Fig. 9. Spin torque balancing.

Interestingly, from eqn (15), it is apparent that the
non-dimensional energy (23) is directly proportional
to the tether mass ratio:

E P

(24)

3. DESIGN CONFIGURATIONS

The initial idea for a tether sling facility in Earth
orbit involves the use of an upper stage as the hub for
a single tether sling (Fig. 7). This configuration is very
easily implemented but it presents two serious prob-
lems. First, if the connection between the tether and
the hub is not located at the center of mass of the
system, the resultant transverse torque causes the spin
axis to wobble. Second, the spin-up torque acts on the
hub as well as the tether, and, given the large
dimensions (and inertia) of the tether, produces ex-
tremely high spin rates on the hub. The transverse
torque can be eliminated by adding a second tether
opposite the first one (Fig. 8). Note that this doubles
the total mass of the facility, but the tether and energy
requirements per unit mass of payload remain con-
stant since the two-tether facility can simultaneously
launch two spacecraft. However, in this configuration
the hub spin-up problem remains. To balance the spin
torque, a counter-rotating tether pair can be added on
the opposite side of the hub (Fig. 9). Again, despite
the increase in the mass of the sling facility, the
mass ratio and energy requirements remain constant.

The problems mentioned above disappear when a
very massive hub (with a large moment of inertia) is
employed. This is not a_practical solution if the hub
must be launched into orbit; however, moons, planets
and asteroids provide natural hubs with extremely
high (extended) masses (Fig. 10).

For a host celestial body having an appreciable
gravitational field, some additional engineering de-
sign issues may arise. The total force on the tether
may be larger than that calculated above, requiring a
more massive tether. Also, the tether will sag under
the force of gravity, creating a clearance problem
with the ground. On small moons and on asteroids,
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Fig. 10. Moon/asteroid facility.

these effects will probably be minimal. However, on
a large body, such as the Earth’s moon, the effect of
the gravity field should (in the final analysis) be
considered in the modeling of the tether sling in order
to obtain a more realistic design.

4. REPRESENTATIVE TETHER SLING FACILITIES

The following examples are included to illustrate
some possible tether sling applications. The charac-
teristics are calculated for a single-sling tether with a
stationary hub, but, in general, the design parameters
are equivalent if the number of tethers is equal to the
number of spacecraft, and are easily scaled if only one -
spacecraft is ejected from a multiple tether facility.
Note that while the designs are mission specific, a
given system is capable of infinitely many launch
scenarios, as long as'the required velocity is less than
the design value.

The first example is designed for a Hohmann
transfer from LEO (low Earth orbit, R = 6878 km) to
Mars (v = 3.55km/s). The tether is assumed to be
made of Kevlar with material properties

o = 2.80 GN/m? 25
p = 1450 kg/m>. (26)

The characteristic velocity of this material is
1.97 km/s, which results in a non-dimensional vel-
ocity of v* = 1.81. Using this value, the mass ratio of
propellant to payload is found from eqn (17) for an
assumed /; of 300s:

Zep _ 534

my,

The mass ratio for the tether sling can be calculated
from eqn (15) to be

@7

m,
— =828
my
This mass ratio corresponds to a non-dimensional
energy of

(28)

£=lﬁ=_})’_=2o_7.

29
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Table 1. Tether sling examples

Transfer v (kmis) e* Morop My m,im, Aim, (m'/kg) l (km)
LEO to Mars 3.55 1.81 (1.4)t 2.34 82.8 (18.3) 1.52 (0.540) 257

LEO to GEO 237 1.21 (0.950) 1.24 8.35 (3.41) 0.153 (0.101) 114

Moon to Mars 3.28 1.67 (1.32) 205 47.1 (12.3) 0.862 (0.364) 220

Moon to LEO 2.52 1.28 (1.0D) 1.35 10.9 (4.21) 0.201 (0.124) 130
Phobos to Earth 1.88 0.957 (0.754) 0.894 3.49 (1.68) 0.151 (0.116) 72.1
Deimos to Earth 1.91 0.972 (0.766) 0914 3.68 (1.76) 0.159 (0.121) 74.5

tParentheses denote a graphite tether.

Assuming the power per area of a typical silicon solar
cell (in LEO) to be 61 W/m*[7] we find from eqn (22)
At

1.31 x 10° m%s/kg. (30)
my

Thus, if 10 days are allowed to spin the system up, a
solar array area of approximately 1.52 m* is required
for each kilogram of payload that is propelled. The
final design parameter, the length of the tether, is
determined from the maximum acceleration, a,,,,, by
==

e 31
So, for a maximum acceleration of Sgs, the resulting
length of the tether is 257 km.

If, on the other hand, a transfer from LEO to
GEO is desired (v = 2.37 kmy/s), the non-dimensional
velocity is 1.21, yielding a mass ratio of 8.35 and a
non-dimensional energy of 2.09. This results in

At

=132 x 10° m?*s/kg. 32)
mP

So a solar array area of approximately 0.153 m? is

needed per kilogram of payload for a 10 day spin-up.

The tether length resulting in a Sg acceleration is

114 km.

These two examples are summarized in Table 1
along with sling facility designs for other selected
transfers. Note that the solar cell power per area
output at the Phobos and Deimos facilities is
26 W/m? due to the increased distance from the sun.
Also note that all of the cases discussed so far assume
a Kevlar tether, a 10 day spin-up time and a 5g
maximum acceleration. However, variations on
these parameters are easily calculated from the non-
dimensional energy and eqn (32).

Let us now examine variations on the first example,
the LEO to Mars transfer. First, consider a tether
made with Hercules IM7 graphite which has an
ultimate strength ¢ =4.82GN/m® and density
p =1.55g/m> This has a characteristic velocity of
2.49 km/s and a mass ratio of 18.3. The required solar
array area becomes 0.540 m%/kg (for a 10 day spin-
up). The energy requirements are calculated for all
the transfers using a graphite tether and are listed in
parentheses in Table 1. Next, changing the spin-up
time to 1 day results in a solar array area of
15.2 m%/kg. Finally, a maximum acceleration of 10gs
results in a tether length of 129 km.

We note that a modest improvement in the tether
characteristic velocity results in a great improvement
in mass ratio. The surprisingly small mass ratios at
Phobos and Deimos suggest an important transpor-
tation alternative for the colonization of Mars.

5. CONCLUSION

Using the taper relation developed here, the tether
sling can be designed to launch payloads at any
speed. This makes space tethers an attractive alterna-
tive to chemical rockets for any type of mission, from
low energy orbit transfers to very fast interplanetary
trajectories. The orbiting tether facility is extremely
efficient in missions where many spacecraft launches
are involved. Such missions are being proposed to
eliminate the possibility of single-point failures.
Tether facilities on moons and asteroids could form
a launch network for the exploration of the solar
system. In particular, tether slings on the Moon and
Phobos (or Deimos) could provide a conveyor belt
for Mars colonization.

The great advantages of the solar-powered tether
sling over chemical rockets are simplicitly and
reusability. The performance of the sling is dramati-
cally improved by modest improvements in the
strength of density ratio to tether materials. In recent
years we have witnessed tremendous advances in the
strength of materials, and if this trend continues the
tether sling will become an extremely competitive
option in space transportation.
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