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Abstract. An exact analysis of the coverage obtained by spacecraft using cross-track scanning and
nadir-centered conical imaging, under imposed viewing obliqueness and resolution requirements,
is presented. In addition to exact expressions for the area acquired and the area acquisition rate,
envelope theory is introduced to obtain the boundary of the imaged area. These expressions are
relatively compact, allowing rapid machine computation. The effects of the sun phase angle, and of
imaging system limitations are also examined. The Galileo mission encounter with Callisto is used as
a numerical example, from which certain general conclusions are drawn regarding optimal imaging
trajectories. :
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1. Introduction

One of the major goals in the exploration of the solar system is to map and image
the surfaces of the planets and their satellites. In spite of this fact, there is a dearth of
exact analytic methods for assessing the mapping coverage obtained by spacecraft
during flybys or in closed orbits. This paper analyzes the coverage problem for
two common imaging techniques (see Pease, 1991; Slater, 1980) and two different
types of mapping requirements. In all cases the mapped body is modelled as a
sphere, and the spacecraft is assumed to be on a conic trajectory, with the equator
of the sphere taken as the orbital plane.

The first technique considered is meridional cross-track scanning, where the
optics continually scan a thin column of area perpendicular to the spacecraft ground-
track. Cross-track scanning is usually accomplished by a pushbroom, whiskbroom
or raster scan method. The second technique is nadir-centered conical scanning,
in which the area acquired is a spherical cap centered on the nadir. This type of
imaging can be effected either by a simple camera and lens which would provide a
viewing cone with vertex at the spacecraft, or by panning the instrument instanta-
neous field of view appropriately. For the purposes of this analysis, these scanning
methods are idealized as providing instantaneous area acquisition, which in prac-
tice means that the optics can operate sufficiently quickly so that the instrument
footprint is not distorted by the spacecraft motion. The footprint geometries are
shown in Figure 1.
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Fig. . Conical and cross-track scanning geometries.

Viewing obliqueness and resolution will be examined individually as mapping
requirements. As described by Longuski and Myers (1984), the Galileo mission
eliminated highly oblique images from consideration, since they were of no scien-
- tific value. However, if the resolution is sufficiently good (for example, due to high

resolution optics, or due to proximity), even oblique images can be considered.
Thus, each of the mapping requirements will impose a latitude limit, or A-curve,
beyond which the requirements will no longer be met; i.e., the images will be too
oblique, or, for the resolution limited case, the resolution will be too poor. It will
be assumed that the optical system is capable of imaging at least up to the latitude
limit.

In Longuski and Myers (1984), where only obliqueness constrained viewing
is considered, an integral is presented for the area seen by cross-track imaging
(that is, the area under the obliqueness limited A-curve), which is then accurately
approximated by considering only the first eight terms of the integrand’s series
expansion. The following section of the present paper shall provide a general
infinite series representation of this integral. A similar integral for resolution limited
viewing is provided in terms of a quadrature based on the resolution limited -
curve computed in the fourth section of the paper. The third section will develop
a theory of envelopes generalized from Boltyanskii (1964), which is then applied
“in the fourth section to determine parametrically the boundary (or “envelope”) of
area imaged by conical viewing under both types of mapping requirements. The
fifth section will provide a compact, explicit expression for the rate at which new
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Fig. 2. The emission angle constraint.

area is acquired in conical scanning, which can be numerically integrated to obtain
the total area imaged. Both the envelope and area rate analyses are general and can
be applied to conical scanning with any sort of mapping requirement. The sixth
section deals with sun illumination requirements for viewing and with camera
losses. A numerical example based on the Galileo project is then considered in the
last section.

2. Cross-Track Emission Angle Limited Imaging

The emission angle, E, at a point on the planet is defined as the angle between
the line of sight to the spacecraft and the local vertical, as shown in Figure 2. To
prevent extremely oblique viewing, the maximum value of the emission angle is
constrained, for example to. E = 60° (the limit accepted by the Galileo mission,
Longuski and Myers, 1984), which then determines the latitude limit,

ro sin(E — \) = R, sin E

sin F/ 1
T ) )
Since the width of the scanned column can be considered infinitesimal compared to
its height, the imaged area can be obtained by direct integration under the \A-curve.
Using the spherical geometry of Figure 3 and assuming that viewing is symmetrical
about the equator, the area imaged, expressed as a fraction of the total planet area,
is given by the integral

1 77
A=§7—;6/0/cos¢d¢deo

A = FE—sin~!} (
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Fig. 3. Spherical geometry of the observable area.
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Substituting for A from Equation (1),

b5
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Two integrals result from Equation (3),
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where the conic equation 7 = p/(1 + e cos ) has been used in the first integral
with

Io=0;—6;. ©)

The remainder of this section presents an evaluation of the second integral in
series form. Although several changes of integration variable were considered, it
was found easiest to use . Since [(sin E)/r]?> < 1, the square root term can be
written in a binomial expansion which has the general form, for lz| < 1,

Nje—

k=0c0
(I-z)2=1-Y bi(k)z*,
k=1

where

el

if k=1

b(k)={  (@k=3) @
(k) {22k—2k!(k—2)! if k=2,3,4,... .

Equation (5) thus takes on the series form

of k=oc0 .
I=[ 66— bt L, - ®
9; k=1
where
Of

I, = sin?* E / =2 4g,
0.

1

b¢
. 2k
= (sm E) / (1+ e cos 00)2’° dé, .
p

8;

I}, is now evaluated by expanding the integrand into a sum of 2k + 1 terms and
integrating each individually.

by

: 2k 2k

Ik = <Sll’l E) / Z <2k> e™ cos™ 90 d00
0; n=0 n

p

sin B\ 2k
-(57) %

by

<2k> e / cos™ 0y dfy
n

9;

n=0
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where the standard definition of the binomial coefficient has been used,

2k _ (2k)!
n) n!(2k-n)’

As it is unwieldy having the distinction between n odd and n even, n is allowed
to run from 1 to k in the outer sum, and is therefore replaced by 2n — 1 in the odd
case and 2n in the even case. In addition, the relationship p = r,(1 + e) is used,
resulting in ' :

sin F 2
Ik:(r ) (szkn) 1+)2k0

p

k n-l n—1 Or
+nz=:l sz_% [sin 6o (;’_ﬁ)—ﬁ {c1(k,n,s) cos® Gy + € ca(k, n, 5) cos® ! 90}} 0‘) 3
&)
where
_(2k\ (2n)! (2k)!
ba(k,m) = ( ) 22(p1)2  22n(nl)2(2k — 2n)! (19
| [ 2k \ 2272 3((n — 1)1)2(2s)! |
c1(k,n,5) = <2n— 1) (2n - 1)1(s!)? (an
_ (2 (2n)!(s1)? (2k)1(s1)
ca(k,n,s) = (2n> 2n=23(25 + 1)I(nl)2 ~ 227-25(2k — 2n)1(25 + 1)(n!)2
(12)

Thus, the integral I of Equation (5) has been represented as an infinite sum of
integrals, i, as shown in Equation (8). In Equation (9), the I; have in turn been
evaluated as a finite double sum. These series, together with the trivially evaluated
integral J of Equation (4), and the definitions of the four coefficients in Equations
(7) and (10)—-{(12), allow us to evaluate the area in Equation (3):
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Fig. 4. Generation of the envelope and geometry of the differential area segment.

»A:i(I—JcosE) sin E .
27

The rate of convergence of the series is determined primarily by the quantity
[(sin E)/rp]*, which multiplies the double sum of Equation (9) and decreases
rapidly with £ (as long as the trajectory is not subsurface), thereby off-setting the
increase with £ in the number of terms in the sum. Various numerical evaluations
of the series expression for A have been made, all showing convergence. The value
of k where the contribution of I} to the series form of I, in Equation (8), dropped
below 1076 was found to range between 20 and 4, for T, =10/9to 10,e = 1 to
10, and E = 60°. Computation of the area by direct numerical integration for a
number of sample cases demonstrates agreement within the tolerance limits of the
integration with the area computed using the series above.

3. Envelope Theory

In cross-track imaging, successive footprints do not overlap, allowing them to be
added up directly by integration to give the total imaged area. However, in the case
of conical imaging the overlap area is non-zero and this necessitates some other
method of determining the imaged area and its envelope. This section presents a
general method by which envelopes can be computed.
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Conical scanning provides a good vehicle for explaining the envelope concept.
The boundary of the footprint is a small circle on the sphere. As the spacecraft
moves, the size and location of the circle both change (see Figure 4) and may be
considered as parameters. If these parameters vary smoothly, and in such a way as
to avoid engulfing of one circle by another, then it will be possible to find a curve,
the envelope curve, which is tangent to all of the small circles. Clearly this tangent
curve provides a boundary for all area that has been passed over by the circles.
It is not without merit, then, that the tangent curve be named the envelope, while
the small circle, whose size and location vary, is called the generating curve. As
for the determination of this envelope, one need only note that the closer together
two circles are, the closer is their intersection point to the points of tangency of
the envelope with each of the two circles. In the limit, these three points coalesce
into one. Thus the task of finding the envelope is reduced to finding the set of all
intersection points of infinitesimally close circles.

To generalize, let us move into R™, where the generating curve will, in general,
be a surface, as will be the envelope. Let the generating surface depend on m
parameters, which, for convenience, shall be considered as the components of a
parameter vector, «. Let the generating surface equation be

f(x,a) =0, where xe R"*, a € R™. (13)

Since we wish the envelope to be a surface and not a volume, there mustbe m — 1
constraint equations on the parameters. This effectively means that the generating
surface varies with only one parameter, although this parameter is not necessarily
expressible explicitly in terms of the known components of the parameter vector.
Were this not the case, the movement of the generating surface would not be
sufficiently constrained and the set of intersection points would occupy a volume.
This is easily exemplified by slightly altering the scanning circles, above, and
considering them to lie on a two-dimensional plane instead of on a sphere. If the
size and location of the circles could vary independently, then the circles (and the
intersection points of infinitesimally close pairs) would cover the whole plane.
Thus, the envelope, which is the set of these intersection points, is the whole plane.
In R™ this plane would be a volume. Therefore we apply the following constraint
equations ‘

gi(a) =0, 1=12,....m—1. (14)

These equations describe surfaces in the parametric space, R™. Turning now
to the generating surface, the envelope is given by the intersection points of the
surface f(x, a) = 0 and the neighboring surface f(x, @ +da) = 0, where da is an
infinitesimal change in the parameter vector. With this perspective, the generating
surface can be considered a surface in the parametric space, dependent on x. The
infinitesimal vector, da, must be tangential to this surface, since the points « and
a .+ da both lie on it. In other words, da must be orthogonal to the gradient of
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f with respect to c, denoted V,f. The same must be true for the constraining
surfaces g;(a) = 0. With the definition
5} 5}
A A |
Jda Ot

the orthogonality conditions can be expressed as

Vaf(x,a)-da=0.

Vagi(a) ' da=0, i=1,2,...,m—1.

Since da # O (it is infinitesimal, but not zero), the matrix whose rows are taken
as the above gradients must be singular..In other words, there is a determinant
equation

of . 9f
8a1 (90tm
90 . 99

Jday aam =0. ) _ (15)

Ogm-1  Ogm-1
day 0,

Equations (13)-(15) are m + 1 equations in m + 1 unknowns: the parameters
a; and the vector x. The envelope is then the solution set in x of these equations.
The o; cannot always be entirely eliminated, in which case the envelope must
remain implicitly defined. In the next section, the envelope will be determined for
the general nadir-centered conical scanning case, in which the size of the imaged
circle has an arbitrary functional dependence on the location of the circle.

4. General Nadir-Centered Conical Envelope and Resolution Limited
Imaging

Let the size of the imaged circle be given by the half-angle, denoted ¢, subtended
at the center of the sphere by two diametrically opposed points on the circle. The
location of the circle will be given by the longitude of its center point. Assuming
nadir-centered viewing, this longitude is equal to the true anomaly, 6y, of the
spacecraft. The latitude of the nadir point is of course zero, by our definition of the
equatorial plane. To apply the envelope theory, it is necessary to find one constraint
equation relating ¢g and 6.

Fortunately, for both the emission angle limited and the resolution limited
viewing cases, ¢g can be found as an explicit function of 6. In effect, this makes
the surface equation dependent on only one parameter, thereby eliminating the need-
for any constraint equation. It is convenient, however, to retain ¢g as an auxiliary
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parameter. In the E-limited viewing case, the circle size is given by \ in Equation
(1), which, in conjunction with the conic equation, yields

1+ecosfy . E]

(1 e) (16)

¢o(6o) = E — sin™! [

4.1. RESOLUTION LIMITED IMAGING

Before applying the envelope theory, let us also determine the resolution limited
 circle size. In Figure 5, let D be the required linear mapping resolution. That is,
the physical separation of any two barely distinguishable points on the map must
be at most equal to D. This permits the definition of the required angular mapping
resolution as v = D/R,. The angular resolution of the optical system, denoted &,
shall be taken to be the angular separation at the viewing apparatus of two barely
distinguishable points. Given ~ and §, we must now determine how the imaged
circle size depends on r. Clearly the resolution obtained deteriorates as one moves
away from the nadir. Moreover, at any non-nadir point, the resolution is poorest
when moving directly away from the nadir on a great circle through the nadir point.
Thus, in Figure 5 we look at the resolution along a meridian, and determine the
latitude where the resolution becomes worse than +. In the case where the two
barely distinguishable points lie in the same hemisphere, we have the condition
0 < v+ 6 < m/2; otherwise we have 0 < v+ § < 7.
With reference to Figure 5, one finds

5 = tan-! ( sin ¢g ) _ tan-! [ Sil’l(¢o - ) ] .

T — COS ¢y T —cos(Po — ¥)
'After some trigonometric manipulation, the following unexpectedly compact result
is obtained for the size of the imaged circle:
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oo(r) = % + cos

or ¢o(fo) =

_y{r? tan 6+ (sin v +¢ tan §
1[ (sin 7 + cos vy )J amn

2r(sin  + cos ¥ tan §)

J + cos™

) { 1 [rp(l+e) tan 6
2

2(sin 3 +cos £ tan §) | 1+ e cos b

+(1+e cos o) (sin v + cos v tan 6)]} : (18)

Tp(1 +¢€)

Clearly, Equation (17) cannot apply for all values of r. For r larger than some final
distance, r s, the quantity whose inverse cosine is taken becomes greater than unity,
making the equation invalid, meaning that no area can be imaged at the required
resolution beyond this distance. After some algebra and trigonometry, and a certain
amount of luck, one obtains the following result for r; by setting ¢ = 7 /2

_ 5 1 1 .Y
T§ = COS §+ <m+sin 5) sin 3 (19)
This is just one of two solutions for 7¢. The second solution is of no concern,
however, since it is less than unity. For completeness, this solution is given as
Ts, = cos(y/2) + (1/tan § — 1/sin §) sin(v/2).

Correspondingly, there is a lower limit for which Equation (17) is valid.
Although this rarely would occur in practice (unless the resolution requirement
is very poor) it is examined for purposes of thoroughness. Given + and §, the dis-
tance 7 can always be made sufficiently small, but still greater than unity (i.e. we
remain outside the planet surface), such that the resolution achieved at the horizon,
“Yhor, Where the line of sight is tangential to the planet, is better than the required
resolution +y. To find the distance, 7;, where these two resolutions are equal, we first
find the general relationship between ~hor, 6, and 7. One way to do this involves
first noting that the latitude of the horizon is simply given as

) .
$o = cos™! - 20
Substituting this value for ¢ in Equation (17) and simplifying, one obtains
r___\/(l—cos'yhor—i-sinvho, tan 6)2_}_1. 21
tan 6

The distance r; is then simply found by substituting ~ for yhor in Equation (21).
Thus, for r < r¢, imaging at, or better than, the required resolution is possible all
the way out to the horizon. It should be noted, however, that r; is exceedingly close
to unity for all but the poorest of resolution requirements, unless the optics have
superb angular resolution. The actual resolution obtained at the horizon is given
by
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Thor = cos ™' [(1 — v/r2 — 1 tan 6) cos 6] - § .

This resolution at the horizon is defined so long as the planet occupies an angular

field of view larger than 6, i.e. up to r = \/[(1 + cos 6)/sin 8]2 + 1, where
Yhor + 0 = .

In summary, the pertinent equations that define the size of the imaged circle as a
function of distance (and hence, true anomaly) are presented below, for the various
ranges of r.

1 <r <r; = resolution requirement exceeded (Equation (20)).
e <r<T1;=> resolution requirement met (Equation (17)).
rf < T < 0O=> no area imaged at required resolution.

We shall be concerned only with the middle range of r in this paper. Note that
Equation (18) provides the resolution limited A-curve, which can be used with
Equation (2) to obtain by quadrature the cross-track area imaged in the resolution
limited case.

 4.2. THE ENVELOPE

The circle size has now been established as a function of true anomaly for both
the E-limited and the resolution limited viewing cases, enabling attention to be
focussed on the envelope. The remaining necessary component for applying the
envelope theory is the determination of the surface equation, which in this case is
the equation of the small circle centered at 6y. From the geometry of Figure 6, the
surface equation is seen to be

cos ¢ cos(f — 6p) = cos[po(6y)] - (22)

Differentiating with respect to the parameter 6, to obtain the determinant equa-
tion,

cos ¢ sin(@ — fp) = — ¢y (o) sin[go(6o)] - (23)

These last two equations are then solved to give parametric expressions, in terms of
the true anomaly, for § and ¢, the longitude and latitude coordinates, respectively,
of the envelope. The two equations yield the solutions

0* = 6o — tan~! (g}, tan ¢y) (24)

¢* = cos™! (cos oo \/ 1+ ¢ tan? ¢o) , (25)

where the asterisk denotes envelope values for longitude and latitude. The functions
#0(0o) have already been established for both the E-limited and the resolution
limited case. Their derivatives are computed as follows. For the E-limited case,
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in 8
1 (60) = e sin 6y . |
$o(o) (1 + ¢) cos(E — 0) sin £ (26)
and for the resolution limited case
bo(60) =
e sin 6y cos y(tan 7y + tan §) _mp(l+e)tané
2 sin(¢o — 3) cos F(tan F + tan &) (1 + €) (1 + e cos 6p)?
(27)

With the proviso that engulfing does not occur (no circle is contained entirely
within previous or subsequent circles), Equations (24) and (25) establish the enve-
lope for both types of mapping requirements with conical nadir-centered imaging.
The envelope is useful in that it demarcates the area mapped. However, to actually
calculate the area it is necessary to integrate under the envelope, which results in an
intractable problem. Instead, spherical geometry is used to obtain a much simpler,
albeit also analytically intractable, expression for the rate at which the conical scan.
acquires new area. This expression may then be easily integrated numerically to
obtain the total area imaged.

S. Area Acquisition Rate for Conical Scanning

This section is devoted to the determination of the derivative of the area imaged
with respect to the spacecraft true anomaly. The problem of engulfing is also
examined. As seen in Figure 4, in the absence of engulfing, a small change, df,,
in the true anomaly of the nadir point yields a crescent-shaped patch of area, dA,
that has not been previously imaged, either in whole or in part (see Figure 9 and
the associated analysis of the recounting problem).

The first step in determining the crescent-shaped area is the introduction of the
appropriate great circles, namely the equator, the meridian through P and @, the
great circle through NV and P, and the great circle through N’ and P. This allows
the differential area to be expressed as

dA = 2[Sector N'PU — Sector NPT + ANPN'], (28)

where ANPN’ is a spherical triangle since its sides are all great circles. Once
again, all areas shall be expressed as fractions of the total surface area of the
sphere. The area of a spherical triangle is determined by its spherical excess,
X = (]\7 +N' + P - 7), in other words the amount by which the sum of the
angles at the vertices exceeds m. The (non-dimensional) area is then given by
ANPN' = X/(4r). The area of the sectors, meanwhile, is determined by the
angles B and «. For convenience we define ¢; = ¢¢(6y) = LNP and ¢ =
$0(6o + dp) = £N'P, where ZN P denotes the angle subtended by the great
arc N P. By applying formulas from the mensuration of spheres to ANPN’, one
obtains
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Fig. 6. Geometry for the conical imaging surface equation.

COS ¢1 — cos ¢y cos dfy

cos(m — a) = Sin é, sin 0 a € (0,7) 29)
cos ¢y — cos ¢p cos dfy :
cos f = sin ¢; sin dfg pe©m) (30)
X s 1 1 1
tan 7= \/tan 3 tan 5(3 — ¢1) tan 5(3 — ¢7) tan 5(8 ~dby) , 3D
where
1
§ = ‘2‘(9’51 + ¢ +dbp) .
Then, from Equation (28),
dA = % [2(1 — cos ¢2) — B(1 — cos ¢;) + X] . (32)

Next, the Taylor expansion of ¢, = ¢ (8 + dfy) is taken about 8. The result
is inserted into Equations (29)—(31), and then the series expansions of &, 8 and X
about 0y are computed:

_ o #
o = cos™!(~¢f) + 5 |cotdo /1 - ¢F + —1—_0¢_62J df + O(d63)

B =cos™I(—¢h) — % cotgg /1 — ¢ — _ % dfy + O(d63)
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_ 1 —cos ¢g — 2
X = Sin do /1= ¢ dio + O(dé§) .

These results are inserted into Equation (32) to obtain

4 sin o [ d cos1(—g1) + /12 ¢62J d8p + O(d63) . (33)

In obtammg the O(dfy) terms (terms of order dfy) for o and 3, it was necessary
to take the Taylor expansion of ¢, up to the O(d63) term, as witnessed by the
presence of a ¢; term. However, this term conveniently drops out of the O(dfy)
expression of dA. In the limit dfy — 0, Equation (33) yields

dA singo [, —1f_ _ /2}
d90 5 [¢0 cos™ (—¢g) +1/1 — ¢F| . (34)

This derivative represents the rate with respect to true anomaly at which new area
is imaged. The functions ¢o(6o) and ¢;(8o) have already been computed for both
the E-limited and the resolution limited cases in Equations (16), (18), (26) and
(27). Considering the complicated expressions involved, Equation (34) does not
appear to be analytically integrable in closed form. Thus, in order to find the fotal
area imaged, one must integrate Equation (34) numerically, remembering to take
into account the fact that the imaged circle at the integration starting point is not
included in the integral, while the circle at the end-point is included.

" 5.1. ENGULFING

It is clear that if the imaged circles are enlarging (or diminishing) rapidly enough,
then a condition may arise where the circle imaged from the current spacecraft
position contains (or is contained by) the circle obtained from the spacecraft’s

infinitesimally close prior position. The term engulfing shall be used to describe
this condition, both for the enlarging and for the diminishing cases. This may also
be depicted graphically. In Figure 4, we have, to first order, that N'U = ¢, =
¢1 + ¢dbo. Thus, TU = N'U — NT + dfy = ¢(,dfy + dbp. When TU becomes
negative, the circle at N’ is entirely engulfed in the circle at N. This means that
$o < —1. Similarly the circle at N’ will engulf the circle at N if ¢p > +1. In brief,
we have the engulfing condition:

|¢0(60)] > 1. (35)

As expected, the area derivative of Equation (34) is undefined when engulfing
occurs. Is the engulfing condition ever met? For E-limited viewing, the answer can
be proved to be in the negative (at least for non-subsurface trajectories). However,
it is found numerically that engulfing does occur in resolution limited imaging.
As the spacecraft approaches the planet, initially no area is visible at the required
resolution. Then a tiny circle is imaged, from distance r = r 7- The circle grows
very rapidly, engulfing the previously imaged circles (¢ > 1). Then engulfing
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Fig. 7. Igloo plot: Imaged circles, envelope, and A-curve for resolution limited imaging.

typically ceases until the post encounter phase, where the reverse occurs ~ the
circle contracts so rapidly that it is engulfed in previous circles (¢ < —1), until it
finally vanishes at r = r¢. This sequence of imaged circles is conveniently depicted
by an igloo plot (Figure 7), which shows the Northern hemisphere portion of the
post-encounter imaged circles, along with the A-curve and the envelope. There is,
~of course, North-South and East-West symmetry in the imaged area so that the
total area is four times that depicted in Figure 7 (between §y = 0° and 6y ~ 151°).
A similar tunnel plot, which never displays engulfing, is shown for the E-limited
viewing case, Figure 8. Both plots conveniently depict the fact that the envelope,
where it exists, is tangent to the imaged circles.

~ As there is no engulfing in the E-limited case, the area can be directly obtained
by integrating Equation (34). The question arises as to the computation of the
area when engulfing occurs. Using the resolution limited case as an example, the
area is computed by integrating Equation (34) from the largest engulfing circle to
periapsis, and then adding on the area of the engulfing circle. The total area (for the
entire flyby) is then double this quantity minus the imaged circle at periapsis, since
the integral includes half of the periapsis circle. The difficulty lies in determining
the value, fgeng Of 0y at which the engulfing condition, Equation (35), is met. An
analytical solution has not been found for this quantity, necessitating a numerical
solution. Two options are available for this, namely Equations (35) and (25).
The latitude ¢ of the envelope, given by the latter equation, is undefined when
engulfing occurs, meaning that cos ¢ > 1. Due to gentler gradients, it is easier to
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Fig. 8. Tunnel plot: Imaged circles, envelope, and \-curve for emission angle limited imaging.

solve cos ¢ = 1, than it is to solve Equation (35). A good initial guess for Gpeng
has been found to be the easily computed value of 6 when r is just less than 7.
Once Bgeng has been found, Poeng Can be easily found from Equation (18), and the
area of the engulfing circle computed.

5.2. VERIFICATION OF NO RECOUNTING

It has been assumed up to now that the crescent-shaped differential area segment
was composed only of area previously unimaged. To see what conditions give
rise to recounting, a hypothetical sequence of circles is shown in Figure 9, where
the tips of the last crescent overlap with the second from the last crescent. Upon
closer inspection, it is seen that the overlap shown will not occur if the value of
B(6o + dbp) is less than the value of a(6). This is a sufficient condition, but
not a necessary one, as overlap is also prevented by sufficiently increasing the
size of only the leftmost circle, even though the stated condition is still met. Let
dn = a(fo) — B(6o + df), and define a recount parameter, p = dn/dfp. Then,
p > Ois a sufficient condition for no recounting. Taylor expansions similar to those
performed earlier in this section yield

y= (1 - ¢3) cos ¢o — ¢ sin¢0.
J1— 2 sin ¢o

Although not shown here, the same condition holds for the ¢, > 0 case. As
expected, this is not amenable to analytical integration. Numerically, all of the many
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Fig. 9. A recounting scenario.

examined cases of both E-limited and resolution limited viewing were found to
give p > O for all true anomalies. This is not an unexpected result, however, since
the instance of recounting shown in Figure 9 is highly contrived, in that ¢ is not
changing smoothly with 6. Thus, it is the belief of the authors that recounting will
not pose a concern for these types of mapping. Moreover, numerical results using
the area derivative equation agreed entirely with the results from direct integration
under the envelope.

6. Imposition of a Terminator Condition and Camera Losses

Up to this point, no regard has been given as to whether the imaged area is illu-
minated by sunlight or not. Since most mapping instruments operate in the visible
spectrum, this issue is an important one. A methodology is given below for com-
puting the illuminated imaged area when the terminator lies along a meridian
(otherwise the task is considerably more difficult). We first note that a meridion-
al terminator condition in the cross-track case is trivially dealt with, since the
terminator is parallel to the footprint. '
As shown in Figure 10, 8; denotes the longitude of a terminator, which crosses
the envelope at point P. Opting to use the area derivative equation, we must first
compute the true anomaly, 6y, of the imaged circle which contributes the point P
to the envelope. This must be done numerically from Equation (24). A good initial
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guess for fo, in the sense that the solution will most often converge, is found to be
a value just below fgeng (to avoid the region where engulfing occurs), even though
this may be far removed from the actual solution. Then the circle size is computed

from Equation (18). Next Equation (34) is integrated from this circle to periapsis.
Assuming westerly illumination, we compute

Half-segment PQS = Sector PNS — APN Q ,

where the areas on the right can be easily computed from spherical geometry
formulas, in a similar way to that shown in the derivation of Equation (34).

Camera losses will arise when the optics cannot adequately compensate for
the spacecraft motion, a problem likely to occur near periapsis. A conservative
estimate of the area imaged is found by discarding any scraps of area collected
during camera loss time. The longitude at which camera losses commence can be
treated exactly as a terminator, and the appropriate areas computed as above.

In the cross-track imaging case, the exact longitude at which camera losses
commence is easily computed. Let the column width € be defined as the difference
in longitude between the easternmost and westernmost equatorial points of the scan
column. Let 7. be the time taken to scan one column. If contiguity of successive
columns is required (i.e., one column adjoining the next), then the time available
for imaging one column is the time it takes for the nadir point of the spacecraft
to move through a longitude equal to the column width. The spacecraft angular
velocity is given by the conservation of angular momentum equation

. H

9() = 7‘_2 .
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Letting w denote the angular rotation rate of the imaged body, and assuming the
axis of rotation to be perpendicular to the orbital plane, then the time available
is ' '

2

& er

- |9o—w| - |H — wr?|’

ta

Contiguous imaging is possible when
tg 2 Te .

The true anomaly at which contiguity ceases is obtained when equality holds in the
above equation.

7. The Galileo Mission: A Numerical Example

By way of numerical example, the illuminated area mapped with conical imaging
during one of Galileo’s upcoming encounters with Callisto is computed as a func-
tion of flyby distance (r,) for 1 km and 80 m resolution, and for various sun phase
angles. In this example, the resolution limited theory is applied (and the Galileo
project emission angle constraint of E < 60° is ignored). The sun phase angle is
defined as the longitude of the sun-pointing vector at closest approach, and it is
assumed that the terminator is meridional and does not change position during the
encounter. (Since Callisto rotates once every 17 days, this is a reasonable assump-
tion for an encounter lasting only a few hours.) The following parameters were
assumed for the encounter '

R, = 2445 km
Voo = 8 kms™!
s = 7172 km3s—2

6 = 0.02 mrad

The trajectory in the vicinity of Callisto is approximated by a hyperbola. The
asymptotic velocity, voo, of 8 kms ™! is approximately the velocity Galileo will have
in most of its encounters with Callisto. Through the conic and energy equations,
the eccentricity is then givenby e = 1+ rpRsvgo /s, where p is the gravitational
constant of Callisto. According to Wolf and Byrnes (1993), the periapsis radius of
the closest encounter is planned to be 1.17 (2865 km).

The imaged area is shown as a function of periapsis radius for various sun phase
angles in Figures 11 and 12. As an aid in understanding the shapes of these graphs,
Figures 13 and 14 show the corresponding envelopes obtained for selected values
of periapsis radius. Certain features are apparent.
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Fig. 12. Galileo coverage of Callisto with sun phase effects, 80 m resolution.

1. The envelopes shown in Figures 13 and 14 change from an igloo shape to a
quarter-oval shape with increasing 7. '

2. Because of symmetry, the areas imaged at complementary sun phase angles
will always add up to the total (light and dark) area that could be imaged.

3. For sun phase angles less than about 90°, the area first increases then decreases
with 7,; while above about 90° the area decreases monotonically with r,. This
is because at appropriately small 7, (where the envelope at periapsis is close
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to the equator), a small increment in 7, sufficiently increases the area imaged
at periapsis to overcome the area lost at the end of the envelope. Above a
phase angle of about 90° this effect is negated because the area near periapsis
is in darkness, and hence not imaged. The exact cut-off value of the phase
angle depends on the imaging parameters chosen, but is expected to always
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lie somewhat above 90°.
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4. For 80 m resolution (Figure 12) the optimum 7, first increases and then
decreases as the phase angle increases from zero. At phase zero, the optimum
Tp is about 1.17; while at 30° the optimum is about 1.28. This is because the
area gained at periapsis by the r, = 1.28 envelope offsets the area it loses
at the envelope ends, especially since the pre-periapsis end is in darkness
and hence not imaged anyway (the terminator is at —60° longitude). When
the phase angle increases too much, however, the area lost (as 7, increases)
at the illuminated envelope end is no longer offset by the area gained near
periapsis. In contrast, for 1 km resolution (Figure 11) the optimum 7, decreases
monotonically with increasing phase angle. Around phase zero, the envelope
ends are both in darkness, and at periapsis the envelope is at a higher latitude,
thus disallowing the effects described above for the 80 m resolution case.

5. Inthe 1 km resolution case, the area curve for phase zero (Figure 11) shows a
sudden change in slope just after 7, = 10 because the corresponding envelope
(see Figure 13) meets the equator at +90° longitude, exactly coinciding with
the terminator. Similarly, a kink is seen in the 30° and 150° phase curves just
after r, = 4. However, since only one end of the envelope coincides with the

. terminator, the kink is not as sharp.

6. At 1 km resolution the optimum r, (at zero phase angle) is around 3.3
(8069 km). For the 80 m resolution case, the optimum Tp (at zero phase
angle) is around 1.17 (2861 km).

It is reemphasized here that items (1), (2), and (3) above are applicable to
resolution limited conical viewing in general, and not just to the illustrative case
described here. Other mission scenarios can be analyzed and understood in a similar
manner as above, providing mission designers a powerful tool in optimizing the
mission’s science return.

8. Conclusions

This paper provides an exact analysis of the coverage obtained under two imaging
techniques — meridional cross-track scanning, and nadir-centered conical imaging
— with two types of mapping requirements, namely viewing obliqueness (defined
in terms of the emission angle) and resolution, applied to each. Not only does
the analysis examine the actual magnitude of the imaged area, but also introduces
envelope theory to obtain the boundary of the area imaged.

The magnitude of the imaged area is found exactly for the emission angle
limited, cross-track scanning case. For the two conical imaging cases, an exact
expression is found for the area acquisition rate with respect to the spacecraft
true anomaly. This expression may be easily integrated numerically to obtain the
total area. The cross-track, resolution limited area is also provided in terms of an
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integral that can be easily computed by quadrature. These should be invaluable
aids to mission designers.

Several points relevant to the mission designer are illuminated by a numerical
example. In the resolution limited, conical i imaging case it is first noted that a closer
flyby does not guarantee more area. Second, the optimum periapsis distance tends
to decrease with stiffer resolution requirements (for a given optical system). Third,
the optimum periapsis radius changes with sun phase angles less than slightly
above 90°, while above this angle, the optimum is always unity (an impractical
zero altitude periapsis). This paper also presents a simple and exact means for the
designer to visualize the envelope of the imaged area.

Future work may include an analysis of the effects of the imaging parameters on
the area, area-rate, and envelope equations, which could lead to the development of
optimal solutions. It may also be feasible to develop approximations to the area-rate
equation, possibly allowing an analytic integration to obtain the area. Additional
work is also needed for an analytic understanding of the area graph characteristics.
Lastly, and perhaps most importantly, the methods developed here could be applied
to other imaging techniques, such a non-nadir centered conical imaging, in the hope
of obtaining compact, easily computable expressions for the coverage obtained.
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