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Abstract. The problem of errant rocket bumns in low Earth orbit is of growing interest, especially
in the area of safety analysis of nuclear powered spacecraft. The development of stochastic Hill’s
equations provides a rigorous mathematical tool for the study of such errant rocket maneuvers. These
equations are analyzed within the context of a theory of linear dynamical systems driven by arandom
white noise. It is established that the trajectories of an errant rocket are realizations of a Gauss-
Markov process, whose mean vector is given by the solution of a deterministic rocket problem. The
time-dependent covariance matrix of the process is derived in an explicit form.
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1. Introduction

The uncertainty inherent in performance of any means of propulsion is the key
consideration that leads to the present study. One typical situation in spacecraft
dynamics where such uncertainty is of great importance is the execution of a
rendezvous between two vehicles in orbit. The propulsion performance - or the
firing of the engines involved in this maneuver - is considered to be a white noise
vector random process. The maneuver is modeled by Hill’s equations (Kaplan,
1976)

& —2ny - 3n%z = f,

¥ +2nz = f, (1.1)

i4+nlz=f,
where z, y, z are the coordinates of a rendezvous vehicle in a reference frame
fixed at the target vehicle. The target vehicle is rotating in a circular orbit at an
angular velocity, n. The z axis is along the radial direction from the Earth and yis

along the target orbital path. The third axis, z, is normal to the orbit. Both z and
z components of relative motion are assumed to be small, but y may be arbitrarily
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large. :
In accordance with our foregoing discussion, the thrust, or equivalently the
acceleration a (t), is a random process, and hence we must deal with a stochastic

nonlinear differential equation. The question we ask is this: how different are
solutions of the system (1.1) when the temporal randomness of thrust is taken into
account from the solutions when a (t) is a deterministic process? The theoretical

method we use is based on the fact expressed succinctly by Amold (1974): the
stochastic differential equations and diffusion processes represent essentially the
same classes of processes.

2. General Formulation for Long Burns on Circular Orbits

For the case of maneuvers in which the deterministic thrust is inertially fixed, Hill’s
equations become (Longuski and McRonald, 1988)

& —2ny — 3nz = a  cos nt + ay sin nt
¥+ 2n& = a; cos nt — ay sin nt 2.1
(+n%z=a,

where the rendezvous vehicle of mass M, is firing thrusters resulting in three forces,
Ma., May, Ma.. Each of these accelerations is taken as a sum of a mean part a;
constant in time and a zero-mean temporal fluctuation o) (i = z,y, 2)

a; = d; + al . 2.2)

Henceforth, we assume all three fluctuations af, a,, a to be components of a

three-dimensional vector random process of Gaussian white noise type. Thus*
E{ai(t)} =0
E{ai(t)aj(t + 1)} = D;;6(7)

2.3)

where E {-} is the expectation operator, D;; is an element of a (symmetric) 3 x 3
correlation matrix D, and 6(7) is the Dirac delta function.

We define six state variables as follows
Xi=z, Xo=2, Xa=y, Xuy=y, Xs=2, X¢=%. (2.4)

System (2.1) is now written as a vector linear stochastic differential equation

* In this paper the symbols . and . denote tensors of first (vectors) and second rank,

respectively.
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d
= X=A4AX+ a(t)+ o (t) 3'(t) 2.5)
in which
0, 1 ,0,0, 0 ,0]
3nt, 0 ,0,2n, 0 ,0
s 0, 0 ,0,1, 0 ,0
2=l o . -2m.0.0. 0 .0 (2.6)
o, 0 ,0,0, 0 ,1
_O,O,O,O,-nZ,OJ
I 0
Qr COS ni
(t) = 0 2.7)
ol = ay sin nt ('_)
0
R
and
[0 , 0 ,0]
cosnt , sinnt , 0
0 , 0O ,0
g(t)— —sinnt , cosnt , 0 (2.8)
0 , 0 ,0
0 , O Y

Evidently, X (¢) is a Markov random process driven by a vector random process

with components specified in (2.3)

a5(t)
a/(t)= | ay() | . 29)
a;(t) |

The process X (t) takes values z and y in the state space X = IRS.

The solution to (2.5) can only be described probabilistically, and this will be
done here using the diffusion equations. To that end we introduce a transition
probability function

P(z, z,L,E) = P{X(t) € E| X(s) = 2} 210)
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where E is any setin the g-algebra F of the state space X, while P is a probability
measure on (X, 7). We now assume that the transition density p = p(s, Z:ty)

is derivable from P(s, z. t F) and satisfies all the usual restrictions, so that its

behavioris governed by the backward and forward (or Fokker—Planck) Kolmogorov
diffusion equations (m = 6)

ap— m m m dzp
3= ;az(s)—-— Z A,]xj d:z:l ——2- Z; i 9z:03, 2.11)

= &
Z Ana (ygp) Z By:0y; (BuP)- 2.12)
i,j:l (A A

t,7=1"

8p__

The vector a (t) and the matrix A are identical with those given in (2.7) and (2.6),
respectively — they describe the local drift and the process X (¢). The matrix B

which is found from (superscript T indicates a transpose)

B(t)= g (t)D a(¢) (2.13)

describes the mean square deviation of X (t) from the original positioh z during

a short time interval from ¢ to ¢ + A¢. This matrix is found to have the following
form

0, 0 ,0, 0 ,0, 0
10, Bx ,0, By ,0, By
O ? O b] O 9 O s 0 ) 0 .
g—- O’B42a0’B44)0,B46 (2.14)
0, 0 ,0, O ,0, O
|0, Be2 , 0, Bga , 0, Bes |
in which
By = Dy cos? nt + 2Dy, sin nt cos nt + Dy sin® nt
Buy = Dy sin? nt — 2D5 sin nt cos nt + Dy, cos? nt -
Bgs = D3
Bsy = By4 = —Dy; sin nt cos nt + Diz(cos® nt — sin? nt) + (2.14)

+ Dy cos nt sin nt
Bg; = By = Dj3 cos nt + Dps sin nt

Bgsa = Bas = — D3 sin nt + D3 cos nt
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Both Kolmogorov diffusion equations are subject to

Pt zty) =6z ~ Hé(xz—yz 2.15)

which plays the role of a final condition of (2.1 l) for all times s < ¢, and the role
of an initial condition for (2.12) for all times ¢ > s.
Let Xo = X ({o) indicate the initial condition for all sample trajectories of

the process X (t), t € [to, oo]. It follows from the theory of stochastic differential
equations that the solution of (2.5), for X having a Gaussian or Dirac delta

density, is a Gauss-Markov process. Thus, the transition density p(s, z,t, ¥y )isa

six-dimensional normal density

p(s, ﬁ’t’ ';Z) = IV(TLI.t(S, z), K.(s, z)) 2.16)

~
~o

where m,(s, x ) is a conditional expectation vector
th(s7 z) =/ }ip(s, £9t7 ,:g,)d,y, (217)
X
and K (s, x)is a6 x 6 covariance matrix
Ky(s, z) =/(g = m(s, T))(y —mels, 2))"p(s, 2,8, y)dy . (218)

Solutions to (2.17) and (2.18) are to be found, in principle, with help of the
fundamental matrix @ (t $), or propagator, of the homogeneous matrix equation

|
A

I
=
A
wH
S
M

2.19)

where [ is a unit vector. However, in view of the linearity of the system (2.5) we
 have

% mi(s, z) = Ami(s,z)+ a(t), mo(0, z)=zo 2.20)

whichis the same as the linearized Hill’s equations in a deterministic case (Longuski
and McRonald, 1988; Longuski, 1987, 1992), i.e. when random noises are absent.
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Thus, the solution to this latter differential equation system may directly be adopted
here; for completeness of presentation and a reference it is given in Appendix 1.

The covariance matrix is to be calculated formally from (see (9.2.12) in Amold
(1974) ’

L{t(s,x) =

, .
= B(t,s) / &~(u,8) o (u) D o T(u) (8T (u,8)) " du 8T(t,s). (221
Now, since é is not a function of ¢

A (t—s)
b(t,s)=e” . (2.22)

Moreover, since ,I,é ¢(s, z ) does not, according to (2.21), depend on the vector
a (t), we can use another result from Amold (1974) pertaining to the covariance
matrix in the autonomous case - A(t) = A4, a(t) = a, B(t) = B - although
our case is not autonomous " - -

¢

A(t—u) AT(t—u)
e

Koie(s,z) = e du . (2.23)

Q&

0

This depends only on ¢t and = since the transition function is time-homogeneous.
Thus, we find |

Kote(s,z) =
Bpe?t—%) , Byse(1+2m)(t=v) ,  Bae*t—%) ,Bzzeu"z")(t'_") ;. Bagedt=v) ,07]
Bpe(ltin)(t=u) , Bue*n(t=v) , By e2n(t—x) , Bas ,B45e(2"+1)(t"‘) ,0
Bype2(t—) , Bage1+2n)(t=v) , Bue(1t2n)(t=v) , Bge(l=2n)(t=v) ,  Bagett—) ,0
Bojefl—2n)(t-u) , B , Bpell=2n)(t—u) , Byze(l=2n)(t=v) , Bigell—2n)(t-u) ,0
Bgpe2(t—) , Bse1+2n)(t—x) , Begel112n)(t—v) , Bpe(172n)(t=v) , Bese? =) ,0
| 0 , 0 , 0 , 0 y 0 ,0

(2.24)

.The components of K(s, ) are calculated more explicitly in the special case

when fluctuations in thrust are independent random processes — Dy, = Dz =
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D23 = 0 - and when Dy; = Dy,; they are listed in Appendix II.

3. Conclusions

The principal conclusions of our study are as follows:
(i) the transition density function, and hence the probability density of the state X

governed by linearized Hill’s equations is, under a Gaussian or deterministic
initial condition, a normal distribution for both long and short bums;

(i) the mean of this normal distribution is in either case the same as the solution -
of the corresponding deterministic noise-free problem;

(iii) the covariance matrix is the same in both cases; it is derived in an explicit
form.

Also, we note that these conclusions remain valid when the random noise
is treated as a Markov vector process rather than the simple white noise vector
process, see e.g. Soong (1973). Such a choice of a model would have, of course,
to be justified by a study of a given propulsion system. The pertinent formulas
describing the stochastic evolution could easily be obtained by generalizing the
analysis of this paper. ‘

Finally, we note that the study presented here provides a basis for analysis of a
nonlinear case under random forcing, that is presently under our consideration.

Appendix I

In the following we list the components of mean position and velocity of the rocket
(vide (2.4)); m;; and ;0 denote the ith components of my (s, z) and z¢, respectively.

2 2
mlt(S,;’E) = (—3x10 - - T40 + ﬁ ax) cos nt +
1 3 ayy .
+ (;mzo+§ 1—13) sin nt —
_3 ﬂtcosnt+§ %-tsinnt+
2 n 2 n
2 - Oz
+ — (240 + 2nx10) — 2 = (L1)
n n
ms(s, ) = (s, 7) | 1.2

2 3 .
m3t($,£) = 2(3:1:10 + -;l 40 — ;L—i (_lx) sin nt —
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— (% z0 + 5—(129—) (1 —cos nt) +
n n

a a
+3Ztsinnt+3—=¢tcos nt +
n n

— 3(272.’1110 + x40 — ?E) t+ 30 (1.3
n
mye(s.x) = mae(s. 1) (1.4)
— (gq - & 6o o gz
mst(s,g) = (zs nz) cos nt + - sin nt + ~ (1.5)
mei(s, T) = mhse(s, ) . (1.6)
Appendix II

In the following we list the components of Ksie(s, z) caléulated for the special
case Dyy = Dy and D1y = D13 = D3 =0
-I{ll ’ 0 ’ 0 ’R—147 0 ’

0 ,K»,Ky, 0,0,
O,I{32’O70707

SO oo

Bortlo2) =1k 0. 0 Kas 0 (IL1)
' 0,0,0, 0 ,Ks,0
_0,0,070?0’0_
in which
K= 22 (& - 1)
2
Dui | ane
=i n 1
Ky In ( )
_ Dll —4nt
Ky = i (e 1) |
D (.19
- 33 2t
— I3 2 _ g
Kss 5 ( )
D —-2n
Kis = Ko = s (070 - 1)
Dy,
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