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Probabilities of Escape, Re-Entry, and Orbit Decay Due
to Misdirected Injection Maneuvers

James M. Longuski®
Purdue University, West Lafayette, Indiana 47907

‘Whenever a space vehicle is injected from low Earth orbit to high orbit or to escape, there is a small probability
of misdirection. Once misdirection is assumed, then up to three major families of trajectories may resuit: escape,
re-entry, or orbit decay. Analytic modeis of these trajectories provide contours on the injection sphere. Analytic
integration of the areas between the contours gives the relative probability of each family occurring. The
approximate analytic models are much faster in providing solutions than the numerical methods currently in use
and bave comparable accuracy. The new method provides a useful tool in the safety analysis of both single and
multistage injection maneuvers. Recent applications have included analysis of the Galileo and the Ulysses

injections into interplanetary trajectories.

Introduction

ECENTLY there has been much concern about safety

issues related to the launchings of nuclear powered space-
craft. Traditionally, a considerable amount of analysis is per-
formed for each individual launch. An important aspect of the
safety analysis involves the injection maneuver from low Earth
orbit, which puts the vehicle into a high-energy elliptic orbit or
an interplanetary trajectory. The injection maneuver is typi-
cally very large and may involve a single stage, as in the cases
of the early plans of injecting the Galileo and Ulysses space-
craft with the wide-body Centaur upper stage,!? or it may
involve multiple stages with time delays between staging, as in
the case of the actual Galileo launch in 1989 with the inertial
upper stage (IUS).*

Clearly, misdirection of the injection maneuver could result
in re-entry of the vehicle. However, the probability of a very
large error in the injection attitude of the vehicle is considered
to be extremely small (less than 1 in 108, for example). For the
purpose of this analysis, it is assumed that this highly unlikely
event has occurred and that the pointing attitude during the
misdirected maneuver is held inertially fixed (by the attitude
control system) but is a random variable, evenly distributed
over the sphere of possible directions. Other assumptions may
be equally valid, such as allowing that the maneuver may not
be controlled in attitude and may not be completed. The anal-
ysis that follows could be used to support these and other
possible assumptions, but for the sake of consistency with
previous analyses,!™ the assumption of a complete, inertially
fixed but misdirected burn will be adhered to.

Three major families of trajectories may result from a misdi-
rected injection maneuver: escape, re-entry or orbit decay.
Re-entry families are further divided into powered entries, in
which the vehicle is still thrusting, and delayed entries, in
which burnout has already occurred. Orbit decay families, of
course, also result in eventual re-entry. The purpose of study-

- ing these various families is to support the breakup analysis of
the vehicle,!2 which is very different for each type of entry.
Powered entries are potentially the most catastrophic because
of the possibility that the remaining propelilant may explode.
Orbit decay trajectories result in the lowest entry speeds and
are considered less dangerous.
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So far, only numerical methods have been used to identify
the trajectory families. The method is tedious, involving simu-
lation of hundreds of trajectories. In this paper, analytic meth-
ods are presented in which the explicit contours dividing the
various trajectory families are found. Analytic integration be-
tween the contours provide the relative probabilities of escape,
orbit decay, powered entries, and delayed entries. The organi-
zation is as follows. First, an impulsive injection analysis is
developed that provides geometric contours on the injection
sphere. Second, a finite-burn analysis is presented, which is
based on the analytic solution of Hill’s equations of relative
motion. Third, the geometric and analytic solutions are used in
a numerical application (Ulysses injection) and compared with
the standard numerical approach. Finally, conclusions are
drawn about the accuracy and speed of the new method.

Impulsive Injection Analysis

Velocity Sphere

Figure 1 illustrates the velocity sphere of all possible injec-
tion orientations from circular orbit. The radius of the sphere
is equal to a constant V. For a specific injection the orienta-
tion of ¥, is defined by a cone angle 4 and a clock angle B.

The clock angle B is measured from the local horizontal
plane by way of a right-hand rule rotation about the circular
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ALL POSSIBLE
INJECTION
VELOCITIES

EARTH

Fig.1 Velocity sphere.
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velocity vector ¥, and is equal to 90 deg in Fig. 1. The vecto-
rial addition of V. and ¥; give the total velocity vector V7.

Escape Cone

We will now consider the escape trajectories resulting from
spherically distributed injection errors.

Since

Vcsc =2% Vc (I)
and from the law of cosines
V2= V2 + V} +2V.V; cosde. @

we obtain from Egs. (1) and (2)

Aesc = cos™! (V2 = VAV, V)] 3

where A is the cone angle of escape, which ranges from 0 to
180 deg. The fractional area S, encompassed by the escape
cone, is given by

Sesc = (1 —c05A)/2 @

Clearly, all trajectories with cone angles less than or equal to
A have the necessary energy for escape. However, not all of
these cases result in actual escape because those having nega-
tive flight path angles may re-enter before or during the pass
through periapsis. For low Earth orbit, nearly half of the
trajectories with escape energy will re-enter.

Thus, a more complex problem arises, namely the identifica-
tion of the contour separating the re-entry and escape trajecto-
ries (among the escape energy cases) and the integration of the
area bounded by the upper half escape cone and the contour in
question. ]

For simplicity it is assumed that any trajectory with a periap-
sis equal to or below the atmosphere boundary (assumed here
to be at an altitude of 400,000 ft) will result in re-entry. Thus,
we are interested in the families of trajectories having constant
periapsis, which will be referred to as isoperiapsis contours.

Isoperiapsis Contours :

The isoperiapsis contour is used to divide the escape cone
into two regions: trajectories that escape and trajectories that
re-enter due to a periapsis lower than or at the atmosphere
boundary.

Consider the family of trajectories with r, =const. The en-
ergy and angular momentum equations are

H=r.Vrcosyr=r,V, 16))
E=(V}/2) = (u/re)=(V}/2) = (u/ry) ©®

where r, and V), are the periapsis radius and periapsis velocity,
respectively. Since we are interested in isoperiapsis contours,
r, is assumed to be constant in Egs. (5) and (6), but H and E
are not assumed to be constant for the various families of
trajectories under consideration, since V7 is a varying function
of the cone angle 4:

Vr=(V?+2V,.V,cosd + V})* )

The flight path angle yris a function of both cone angle 4 and
-the clock angle B:

yr =sin~![(V;/Vr)sind sinB] ®

(In Fig. 1, yris the angle between ¥.and ¥, when B =90 deg.)

Thus for isoperiapsis contours, the only two constants in
Egs. (5) and (6) are r, and u/r, as the cone and clock angles 4
and B are permitted to vary for different injections.

Eliminating ¥, from Eqs. (5) and (6), we obtain
(VED)[1=(re/ry)? cosyr] = wire) = (wiry) (9

We will now write Vr=Vr(4) and y7 =vyr(4 ,B). The result
from Egs. (7), (8), and (9) is

a cosA + b =sin4 sin2B (10)

where

a=2V./V)[1~(r, /ey

b=[1+(Ve/Viy|[1=(r,/re)?)

~ @u/ V) (rplre)(ryt = N

Let us put Eq. (10), which is the equation of the isoperiapsis
contour, in xyz coordinates of Fig. 1 where the x axis points
along the circular position vector 7., the y axis points along the
circular velocity vector ¥,, and the z axis points into the page.

Then the transformation equations for the unit sphere be-
come

x =sinA4 sinB (11)
y= ;osA 12)
Z =sinA cosB (13)

so that Eq. (10) can be put in the form
ay + b =x? (14)

where 4 and b are constants.

Thus the equation of the isoperiapsis contours is the equa-
tion of a parabola in the xy plane. Figure 2 illustrates the
geometric interpretation of the isoperiapsis contours; the inter-
section of the sphere of injection velocities with a parabolic
cylinder that extends along the plus and minus z directions.

Areas (Probabilities) on the Velocity Sphere

If we assume that the injection velocity is evenly distributed
over the velocity sphere, then the areas between contours on

- the sphere correspond to probabilities. Figures 3 and 4 illus-

trate the various families of trajectories resulting from a misdi-
rected injection. )

The shaded area under the isoperiapsis contour and above
the escape contour corresponds to hyperbolic entries, which
are trajectories with escape velocity or greater but with periap-
sis lower than or equal to the atmosphere and with initial
flight-path angles that are negative. '

The calculation of the area of actual escape trajectories is
trivial: subtract the area of the hyperbolic entries from the area

x
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Fig.2 Parabolic cylinder for isoperiapsis contours.
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Fig. 3 Trajectory families (side view).
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Fig. 4 Trajectory families (front view).

of the escape cone. The area of the cases of orbit decay in-
volves another integration under the isoperiapsis contour and
bounded by the escape cone. These are the cases in which the
orbit is elliptic and the periapsis is above or at the atmosphere.
All remaining cases are elliptic with periapsis lower than the
atmosphere, so they involve prompt or delayed entries corre-
sponding to negative and positive initial flight-path angles,
respectively. Some of the prompt cases are powered entries,
which will be discussed in the next section.

The method of finding the areas is straightforward; for
example, the fractional area for the hyperbolic entries is?

1 Aesc B(a)
Suyp = —j j sinAdBdA as)

27 B(A o0
where B(A) is found from Eq. (10):

A(~90 deg)

B(A) =sin~"[(a cosA +b)"/sinA] (16)

and A(—90 deg) is the value of 4 for B= —90 deg on the
isoperiapsis contour [the inverse function of B(A)):

A(—90 deg) = cos~! ({—a +[a2-4(b-1) '/r}/z) an

However, the evaluation of these integrals may involve infinite
series of the elliptic integrals.3

Methods to approximate the integrals for the area of hyper-
bolic entries and the azea of orbit decay will be discussed in the
section on numerical applications.

Finite-Burn Analysis

The analysis of powered entries cannot be achieved with
impulsive maneuvers because an essential issue of the pow-
ered-entry problem is the time of entry, which provides
an estimate of remaining propellant on board the injection
vehicle.

To analyze powered entries, we will use Hill’s equations of
relative motion* (or Clohessy-Wiltshire equations). An impor-
tant application of these equations is the rendezvous problem
in which a spacecraft maneuvers toward a target vehicle in
circular orbit within a specified period of time. In the powered-
entry analysis, we use Hill’s equations to ‘‘rendezvous”® with
the atmosphere at a given time. To perform the analysis, Hill's
equations of motion are analytically integrated for a forcing
function consisting of a series of step functions, which repre-
sent multiple staging. The burn times and delay times between
stages are arbitrary as are the number of possible stages and
the thrust of each stage. Average accelerations for each stage
are found by dividing the total velocity change for each stage
by the burn duration.

The results are rather surprising. It is shown that the farmilies
of powered entries for a specified entry time fall on circles on
the acceleration sphere.>* Even though linear equations of
motion are used, these results. are in close agreement with
simulations.

Hill’s Equations of Relative Motion (Clohessy-Wiltshire Equations)

If we assume an inertially fixed, misdirected injection ma-
neuver, then Hill’s equations are3

X —-2ny ~3n3x =ay cosnt + aysinnt (18)
V +2nx =aycosnt — ay sinnt (19)
Z+niz=a, (20)

where n =V, /r., the x axis points along the circular position
vector 7., the y coordinate is aligned with the circular velocity
vector V., and the z axis points into the page of Fig. 1.

To model the multistaging, we assume that the accelerations
come in step functions as follows:

ay = kz-:xa"* [A(t = Te)—h(r - Tip)] Qy
ay= X ay,[h(t~Tu) = h(t ~ Tip)] 22)
az= kgl"z* [t ~Te)-h(t - Tip)] (23)

where h(2)=0, t <0; h(f)=1, 120 (step function), m = total
number of stages, ax, = average acceleration of the kth stage
along the X inertial coordinate, 7}; =time of ignition of the
kth stage, and T, =burnout (or final) time of the kth stage.

The average acceleration is found by the rocket equation®
for AV

a4 = AV /Ty~ Tii) = I g (M /i) (Tip — Tii) (29)

where [, =specific impulse of the kth stage, m; =initial
mass of the kth stage, and m,, = final mass of the kth stage.

Analytic Integration of Hill’s Equations

Combining Eqs. (20) and (23), the differential equation for
zis

t4niz= Lo [he-T-h(-T]  @9)

We will assume zero initial conditions:

z(0)=2(0)=0 (26)
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Care must be exercised when xntegratmg differential equa-
tions with step functions, which are in the class of generalized
functions. Kaplan’ discusses the theory of generalized func-
tions in his book on operational methods. The theory is ideally
suited to the solution of Egs. (18-23), as follows.

For Eq. (25), Kaplan defines the operator To[f] for zero
initial values:

I4
Tolfl= ;l:.j sinn(t —u)f(u) du 27
0
Putting
S(u) = h(u~a) (28)
into Eq. (27), we obtain
To[h(t-a)] = /{1 -cos[nt - )]} k(e -a)  29)
Since Eq. (25) is linear, the solution from Eq. (29) is
z= E az, = ({1 cos[n(t - T ]}h(t —Tw)

- {1 ~cos[n(¢ - Typ)] J (e ~ rk,)) (30)

To integrate Eq. (18), we must first perform a single i integra-

on of Eq. (19) to obtain y and then substitute the expression
r y into Eq. (18) to decouple Egs. (18) and (19). We obtain
ry

l m
r==2nx + - E ay, [(sinnt —-sinnT)h(t —Ty)
k=1
~(sinnt —sinnTy)h(t - Tyy)]
l m
+ - Yax, [(cosm —cosnT)h(t — Ty)
k=1

—(cosnt —cosnTiSh(t — Tyy)] 31

ituting Eq. (31) into Eq. (18) gives the forced harmonic
itor form

= kgl {ax,, [30(}1,' ‘hf)" Z(C,'h,- - thf)]

ay, [3s(hi~hp) = 2sih; - s,hy)] (32

ve have introduced the notation

hi=h(t=Ty), hy=h(t—Ty)
¢ =cosnt, s =sinnt
¢ = ;:osnTk,-, ¢y =cosnTy,
§; = sinnTy;, 5y =sinnT,,
the solution of
X +n2x=f(1) (33)

x(0) =x(0)=0

S(t) = h(t-a),
_h(t—a)cosnt, or

h(t—a)sinnt

Then the operator 7o, from Eq. (27) gives
To[h(-a)] = (1/n)[1~cosn(t ~a)|h(t-a)  (34)
To[h(t —a) cosnt] = (1/2n)[n(t - a) sinnt
~sinna sinn(t - a)| h(t - a) (3%
To[A(t ~a) sinnt] = (1/2n?)[sinnt — n(t - a) cosnt
=sinna cosn(t - )| k(1 - a) (36)

Thus, the multistage solution for x(?) is

I & 3 3
X = pei)) {"Xx[i(NiS—Sisi)hi—E(Nfs—s,S,)h,
—2C,(l°'c1)h1+2C/(l—Cj)hfj|
3 3
+ay, 'Z'(S—NiC-S,-C,-)h;—E(S—Nfc—sjcf)hf

—-2s5:(1 —'C,-)h,'+2.$j(1 —Cf)hf:l 37

where we have introduced additional notation

C; =cosn(t —T}), Cy=cosn(t —Ty)
S; =sinn(t - Ty;), Sy =sinn(t — Ty)
Ni=n(t-Ty), Ny=n(t—"Ty)

By substituting Eq. (37) into Eq. (31) and integrating, we
obtain y(z):

l m
y()= s E {axk [3(Nic —s +5)h; = 3Ny —s +s)hy

+35:(1=Ci)h; = 3571 = Chyp+3(c:N;h; — c;Nshy)
—4(ciSihi~ csSthp)+ (s —siyhi — (s ~s7)hy]

+ay, [2(:: =c)hi—2(c—cp)hs+3(Nis +¢c —c)h;
=3(Ngs +c—cphy—s:S;h; +5,Schy

+3(s;N;h; —s;Nyh ,)]} (%)

Isochrone Contours )

By setting the relative altitude equation, Eq. (37), equal to
the relative altitude of the atmosphere at a given time, we
obtain the equation of isochrone (fixed-time) contours:

X(tatm) = Xam - (39
Note that since the relative altitude of the atmosphere is below

the circular orbit, Eq. (39) gives a negative value. Equation
(37) can be put in the form

x(tam) = k;'laxkka (tam) + @y, Sy, (tam) (40)

Suppose that the initial stage direction is given
(ax,,ay,,az,) and that the directions of the succeeding stages
are determined by (some relationships to) the first-stage direc-
tion. Then Eq. (40) can be rewritten as -

X(tum) = ax, kgﬁxkfx,, (tam) + ay, kglaykfy,‘ (tam) (4D)
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where we have introduced the scaled accelerations
Ay, =ax,/ax, (42)
_ ay,=ay,/ay, (43)
and where @y, =&y = 1. We assume that the scaled variables in

Eqgs. (42) and (43) are known parameters.
If we define new functions

&x(tam) =k§laxkka(talm) (44)
gy(tam) = kgla}'kf}'k(tatm) (45)

then
X(tam) = dx, &x(tam) + Ay &y (tam) (46)

Since g x and gy are known functions of .., Eq. (46) is the
equation of a line as before in the single-state case.>* In our
application to the Galileo and Ulysses problems, we assume
the directions of all the stages will be the same.

Table 1 Ulysses injection at 110 n.mi.

Event Time, s © Weight, 1b Ip,s
Burn | 0-152 38,676-17,033 293.3
Coast | 152-212
Burn 2 212-315.4 14,593-8,519 301.2
Coast 2 315.4-375.4
Burn 3 375.4-460.4 5,914-1,415 292.1

SPHERE OF RADIUS, a

PLANE OF EQ:C, = n§c1 + lyCz

Fig.5 Acceleration sphere.
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Fig. 6 Fixed misdirected burn map for Ulysses (numerical soluiion)
for 110 n.mi. orbit.

Equation (46) not only applies to these problems but alsot
cases in which the succeeding stages are misaligned in differer
fixed directions. Thus the linear equation [Eq. (46)] is an im
portant general result.

Figure § illustrates this result. The isochrone contours ar
represented as planar cuts through the acceleration sphere o
circles on the sphere.

Velocity Components

The absolute velocity components in xyz coordinates are
given by

V,=x (Y]
V,=y+ Ve +nx (48)
V,=2 49)

A convenient expression for y is found in Eq. (31). The expres-
sions for X and % are found by differentiating Egs. (37) and (30)
(note that the delta functions that arise from differentiation
are of no consequence to physical systems’ and so will be
ignored):

s=- % 2 (s +Ne —s,Coh
_,,= ax,| 5 (s +Nic =s5.Ci)h;
3
=5 (s +Nye =5, Cp)hy = 2ciSih; = ¢/Sshy)
3 3
+ay | 5 (Nis +s:S)hi =5 (Ngs +5;5)ky

- 2(8;5,"1; —Sfohf)] (50)

5 1 &
= kgazk [Sih; —Sshy] 6D

Numerical Application

We will now compare the analytic models to the stan-
dard numerical approach for the specific case of the Ulysses
spacecraft injection from an orbit of 110 n.mi. As shown in
Table 1, the injection involves three stages with long coast
times (60 s) in between.

Figure 6 presents the numerical results that are found by
making approximately 250 trajectory simulations of mis-
directed injection maneuvers, where each trajectory simulation
corresponds to a particular pair of values for clock and cone
angles (B,A). After categorizing each trajectory type (escape,
powered entry, orbit decay, etc.), the burn map of clock angle
vs cone angle is drawn by connecting line segments that sepa-
rate the families of trajectories. A numerical integration of
areas between the line segment contours is then performed.!?
The entire process requires about two man-weeks of effort.

Figure 7 presents the results of the analytic methods devel-
oped previously. The amount of effort required is of the order
of a few minutes (the time required to run a short computer
program and plot the results). The enormous reduction in
effort is due primarily to the fact that all the analytic solutions
are closed form so that no numerical integration or trajectory
propagation of any kind is required.

Certain approximations are used in producing the analytic
burn map. For the escape trajectories, the area is approxi-
mated by

Sesc = f(1 - 05 Aesc)/2 (52)
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Fig. 7 Fixed misdirected burn map for Ulysses (analytic solution)
for 110 n.mi. orbit.
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Fig.8 Approximation for escape trajectories.

where
=Y + (a¢+sinx cosa)/*
a =sin~![A(~ 90 deg)/Aes]

and where A (—90 deg) is defined by Eq. (17). (See Fig. 8.)

Spherical triangles3* are used to approximate the area of
orbit decay, since for low Earth orbits, the isoperiapsis con-
tour can be approximated by great circles.

The area for the delayed entries is approximated by
(1 - H —D)/2 where H is the area of the escape cone and D is
the area of the delay. No value is obtained for the prompt
trajectories. Because of the slightly overestimated area for the
total powered entries, the total of powered, elliptic, and escape
is slightly greater than 100% for the analytic solutions.

Rotation of the impulsive burn contours (escape cone and
periapsis contour) in the burn map of Fig. 7 is approximated
by assuming a rotation angle of Y2nt, where the time ¢ is now
interpreted to be the total time from first ignition to final
burnout, including coast times in between.

In comparing Figs. 6 and 7, we see that the analytic models
capture the essential behavior of the burn plane. The average
discrepancy between the numerical and analytic approaches is
a few percent, with the greatest differences occurring for the

minimum time for powered entries. (Of course, this is where
we expect the greatest differences to show because there must
be some cases where the analytic solution would just barely
predict re-entry, while the numerical case would not.) In gen-
eral the analytic solution tends to overestimate the powered
entries.

Conclusions

An analytic model has been developed for the multistage
injection problem. It shows good agreement with numerically
generated plots and simplifies the analysis considerably. Both
methods have their disadvantages and sources of error. The
analytic method is limited by the linearized equations and
other simplifying assumptions necessary to make the problem
tractable. In the numerical approach, the accuracy is limited
by the number of points selected on the burn plane for simula-
tion, which is limited by the time (and patience) of the analyst.
Because of these considerations, it is highly likely that both
techniques have errors of the order of a few percent.

Perhaps the most profitable use of time is to use both meth-
ods in conjunction. The analytic burn plane can be produced
first and requires only a few minutes to compute and plot. The
results can be used to guide the selection of burn plane points
in the numerical solution. Since the isochrones and the escape
cone are approximated by small circles, a few one-dimensional
searches in the burn plane may suffice to identify their loca-
tions and size. A similar approach may be used for the isope-
riapsis contour. For small circles, numerical integration of the
area is unnecessary. The area is found by measuring the radius
of the circle and applying a simple formula.

In conclusion, the labor involved in the two-dimensional
search on the burn plane can be reduced considerably in the
numerical approach by using the analytic and geometric mod-
els developed here.
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