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Abstract—Approximate real analytic solutions are derived for the motion of a near-symmetric rigid body
subject to constant body-fixed moments about three axes. The solution for Euler's equations of motion
is expressed in terms of Fresnel integrals and is exact for symmetric bodies. An approximate solution for
the Eulerian angles is found in terms of Fresnel integrals and sine and cosine integrals. Although the
expressions for the Eulerian angles are complicated, the behavior of the angular momentum vector in
inertial space exhibits a simple spiral path. Numerical examples reveal that the solutions are very accurate

when applied to typical spinning spacecraft.

1. INTRODUCTION

In the past several years there has been much interest
in analytic solutions for the motion of spinning
spacecraft. In[1] an exact solution is obtained for the
free motion of a dual-spin spacecraft. Reference{2]
presents a closed-form solution for linearized
equations in which transverse torques appear, but the
spin rate is constant. An exact analytic solution for
Euler’s equations of motion for a symmetric rigid
body subject to constant body-fixed torques about
three axes is given in[3] and [4], however the “exact
solution”, presented for the orientation of the body
in inertial space, is incorrect in these references for
reasons explained inf5). Reference[6] provides very
useful observations for limiting cases for symmetric
bodies, but does not give explicit solutions for the
attitude motion. In[7] a perturbation solution for
attitude motion under body-fixed torques is derived,
based on the ratio of transverse to spin rotation rate
as the small parameter. The method is limited to
selected time intervals, so it has short term validity.

In this paper, explicit real solutions are derived for
the attitude motion of a self-excited rigid body. The
organization is as follows. First, an approximate
analytic solution of Euler’s equations of motion is
presented for a near-symmetric rigid body subject to
arbitrary constant body-fixed torques. This solution
reduces to Bédewadt’s exact solution[3] and [4] when
the body is symmetric. Second, the corresponding
analytic solution for the Eulerian angles is derived.
The main restrictions are that two of the Eulerian
angles are small and the parameter |@,|/w? must
remain small. Third, the applications of the analytic
solutions to such problems as the behavior[8] and
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control[9] of the angular momentum vector in inertial
space and the inertial velocity imparted to a rigid
body subject to body-fixed forces{10] are briefly
discussed. Finally, a numerical example demonstrates
the accuracy of the analytical solutions for a practical
problem (a spinning interplanetary spacecraft).

2. SOLUTION OF EULER'S EQUATIONS OF MOTION

Euler’s equations of motion for a rigid body with
principal axes at the center of mass are

M, =1Ld,+(,— )00, (1a)
M, = Lo, + (I, - L)oo, (1b)
M.= Lo, +(,— [)o.0,. (1c)

These are coupled, nonlinear differential equations
with no general analytical solution. Assume that an
analytical solution is available for w, as a known
function of time

w, =f(£). ¢
Then (1) is reduced to
X+ 4y =c (3a)
V=2 f(t)x=d (3b)
where
x=a0, y=a, A=U-L)I,
h=L—-1)1,, c=M/JL, d=M/]IL,.
The homogeneous equation in matrix form is
Ml M
or
X =AX. 5)
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The matrix A commutes with its integral. The system
is integrable and can be transformed into a linear
system with constant coefficients.

Using the time transformation[11]}

WY L'f(c)dc ©)

the system (3) becomes

VA aS (1)

dy Az d

= - [Zxm———— 7b
NI N0 (70)

So far no assumptions have been made about
the transverse torques M, and M,. Assuming they
are constants, then ¢ and d are constants and (7)
. simplifies to the harmonic oscillator equation with
forcing function F.

d3x d o
reAb i vy
The equation in y is unnecessary since
R L S
y=-Jnw nrm ®

Also, from (3) it is clear that (3a) permutes to (3b) by
x—y and y— —(4,/4,)x. Applying the same rule to
(3b) provides (3a) where it is noted that d becomes
=(42/A)e.

Up to this point no comment has been made as to
the nature of f(¢). For a constant torque about the z
body axis, M., the spin rate is nearly linear for a
near-symmetric rigid body (/,= 1,)

w,~at+b=f(1) (10)

where

=M./L,

For stable vehicles (such as rockets and spacecraft)
spinning about a principal axis of minimum or
maximum moment of inertia this assumption is very
reasonable since the Euler velocities o, and w, tend
to remain small so that the last term of (lc) can be
ignored.

Without loss of generality, assume that

b =Wy.

a>0.

an

For the case of negative torque, M,, the direction of

the z axis can be reversed to maintain (11). The sign

of the initial spin rate, b, is of course, arbitrary.
With (10), the independent variable, z, becomes

1 =/A4,(1/2 at* + bt) (12)
from (6). The forcing function (8) is
-d ca
F@x)= - - .
==~ h ih@sy )
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Putting

—b b2
s=1+4 illz—z;;: Allz<1/20t2+bt +2—a') (l4)
gives

= (at +b).

il i)
Sk

Care must be exercised in writing az + b in terms
of s because the quantity inside the parenthesis of (15)
may be negative. Let

\/—z:s' \/%
at+b=ll — =t Y [ —
NN A

u =1 for spin up (g and b same sign),
u = —1 for spin down (a and b opposite sign)
and only for 0 <t < —b/a, and
l =4 ).] j.z.
The forcing function can now be written as a function
of s and (8) becomes

dix
a-s-;+x=u

(16)

where

A B
= 17
(J}+Js‘3) an
Ay -c

\/—lz “ 2@

The solunon takes the form
x(s) = A, cos a(s — s,) + B, sina(s — so)

where

41 j Fe)sina(s —&)dE (18)
@ Jso
where
s°=,1b2/2a and a=1.

In evaluating the solution, the initial condition for x
is found from (3a) at t =0

x(t =0)=c — 2,/(0)y(0). (19
The final solution for x is
x(t)=x,co81 —\/?yo sint
2
+— §[\/£dcoss +c sms]
< 2ai 4y
+ J%C[c cos s — \/Ed sin s] (20)
where
- [ Stu-vo( 7)< 3]
4 n
e (7))
n n

-7

z T
C(z)=J.0 c:os(2 )dt S@i@)= L (5 )dt
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The Fresnel integrals C and S are discussed in[12].
For a symmetric rigid body (7, = 1), the solution (20)
reduces to Bodewadt’s exact solution(3, 4]. To obtain
the explicit solution for y, all terms in x are permuted
to y(xo—yy, ¢ —»d) and all terms in y are permuted to
— A XA (Yo = Ay XAy, d = — Aye[dy).

3. SOLUTION FOR THE EULERIAN ANGLES

A Type 1:3-1-2 Euler angle sequence is used for
the kinematic equations{13]. This means that the
Eulerian angles (¢,, ¢,, ¢.) are defined by successive
rotations by angles ¢., ¢,, and ¢, about the z, x’ and
y" coordinate axes. The resulting kinematic equations
are

43, =, C08 ¢, + w, sin ¢y_ (2la)
d;y =0, —(w,cos ¢, —w,sin$ )tan g, (21b)
d5, = (. cos ¢, — w, sin ¢, )sec ¢, Ql¢)

No exact general solution exists for these nonlinear
equations in the case of the self-excited rigid body.
However, for many applications, small angle ap-
proximations for ¢, and ¢, are appropriate, giving

b=, + ,0, (22a)
$, =0, - p,0, (22b)
b.= 0, — ¢,0, (22¢)

It will also be assumed that ¢, w, is small compared
to w, so that (22¢) becomes

b.=w,=ar +b. (23)

Integrating (23)
¢,=%at2+bt+¢,o=t/ﬂ.+¢_.o. (24)

Note that (22a) and (22b) are independent of ¢,. If
a more precise solution for ¢, is desired, it may be
possible to reinstate the ignored term - ¢,0, in (22c)
as a perturbation.

Using the independent variable, s, introduced in
(14) reduces the system (22a) and (22b) to

d2¢, u_ fo,s) @, (s)
T Ees \/—{z\/ ds[\/"]}‘ @)

As before, the equation for ¢, is unnecessary because,
from (22a)

¢, = (¢ — w)w,. (26)

The equation in ¢, can be obtained from (25) by
permuting terms in x—y and terms in y > —x.

The forcing function of the harmonic oscillator of
(25) is more complicated than that of (17), because
the terms o, (s) and w,(s) appear, which are com-
posed of Fresnel integrals. The solution takes the
form of (18) with & = 1/4. The initial conditions link
¢, and ¢, through (22a) and (22b). After integration
by parts and evaluation of the initial conditions, the
form of the solution for ¢.(¢) becomes
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&:(t) = ¢ cos(t/A) + @ sin(z/4)
\/__J‘ 2@ snn%(s - §)d¢
u wx(f) I
—_— -(s - 7
-i-\/Ea . \/E cosi(s &)dé¢ 1)

where ¢, and ¢, refer to initial conditions at ¢ = 0.

The evaluation of the integrals in (27) results in
certain terms which cannot be readily integrated and
so they are evaluated by asymptotic expansions. In
order to make the labor systematic, the problem is
divided into those integrals that are known and those
that are unknown. This is seen most clearly by
replacing the Fresnel integrals, which appear in w,
and w,, by the auxiliary f and g functions{12]

C(x) =3 +f(x)sin(}nx?) — g(x)cos(jnx?)  (28a)
S(x) =3 - f(x)cos(inx?) — g (x)sin(inx?).  (28b)

Then the expressions for w.(¢) and w ,(£) can be
written

O () =kyo) + ks + ko + ks, + ks f + kg
(29a)
wy(é) = kylcl + kyzsl + ky3C2 <+ ky‘SZ -+ ky5f+ kyﬁg
(29b)
where
Ay
ky=wg, ko=-— T Dy
Ay :

2
k. =u\f;[ 2G-S +ed —co)]
i
kx4=u\/§|:c(%-S0)— ,l: ‘—Co)]

A 1
k= — k= —u [~
” u\/'[\/;zd]’ * u\ﬁc
A
ky=w,, k,= }.—;w‘o

ky3=uﬁ_ 24 so)+d(%—co)]

-5+ [£4-6)]
L 1

[ [, 7:
ks=u ;- l—lc:l,k,ﬁ——u\/;d
¢, =c0s(§ — 5p), 5 =sin(¢ —s,)

c;=cosé, s, =siné

el ) 55
o [} A )

S = lbz/Za.
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The k,s can be deduced from the ks, but are
included here for the reader’s convenience.

From (27), the following integrals are identified for
further evaluation

W,o(s) = L ‘”\‘/(? gos% (s—&)de  (30a)

‘,)
2

Inspection of (29) and (30) reveals that the following
integrals must be found

Wy:(s)= Sn (S _C)dé

Jcc(s’ kl L k2’ ka, k4)

- j costki¢ +k)eostkse T k) 4 (310

Ve

JCS(S, kl’kZ’ k:’n k4)

_ J‘ s cos(k,é +ky)sin(k; & + k,)

d¢ (31b
N )
Jn(s’khkz’kS’IQ)
_ J' sm(k16+kz)sm(k3§+k4) & Glo
3
": \/_>COS (S—'é)
Fc(s)— (323)
p,f(\/?é>sin%(s—é)
F(s)= dé  (32b)
s ] \/E
2 1
.,g(\/;;)wsi(s-—f)
G.(s)= d 32
() J. N { (2

( \/—— )sm (s-¢&)
G,(s)= J- dé&.  (32d)

The integrals W,, and W,, of (30) can be written in
terms of the Js, Fs and G's of (31) and (32).

ch = k,,l./“.(s, 1, - So, - 1/}-, S/l)

+ koo J. (s, — 1/4,8/A, 1, — 55)
+ k3 J..(5,1,0,—1/4,5/4)
+kood (s, = 1/2,5/4,1,0)

+ ks F.(s) + kG (s) (33a)

(30b).

Wy3=kyl"c:(s9 l, —So, - l//:, S/}-)
+ ko Jy (5, 1, =59, — /A, 5/1)

+ ky!"u(s’ 11 01 - l/)-, S/j.)

+ kg (s, 1,0, =1/, 5/4)
+ ks F (5) + ks G,(5). (33b)
Define the integrals L. and L;:
L.(s, h,,kz)—-z-.[ E‘ls%i—hﬂdc © (34a)
s
L(s, by, by)= ! J‘: sin(h,¢ + h2) dé.  (34b)
2)s \/E
Then, by well-known trigonometric identities
Jo (s ky, kyy ky k)= Lo(s, ky + k3, ky + ky)
+ L.(s,ky—ky, k;— k) (35a)
Jo (s, ks kyy Ky kg) = Lo(s, ky + k3, Ky + ko)
+ L(s, k3 —ky, ky—k;) (35b)
Jo(s, ki, ky, ks k)= —L.(s, ky+ ks, ky + ks)
+ L.(s, ky—k;, k,— k). (35¢)

The integrals L. and L, can be expressed solely in
terms of the Fresnel integrals C, and S,

L= /2“' {cos B[C,(1hy|5) — C2(1hy150)]

— sgn by sin by [Sy ([ }s) ~ Si(Imlso)} (362)

L= 2|h {COShz sgn 1y[S;(1]s) — Sz(I %))

+sin B [C(1Als) — Cy (1Al 5)1}  (36b)

where
c (x)—\/._ J‘ cost |
Sz(x)—T s‘\“/’
and

c,(% xZ) =Cx)
s,(% x2> = 5(x).

Thus, the integrals J,., J,,, and J,, are known inte-
grals, since they are explicit functions of the Fresnel
integrals.

Next, the unknown integrals F., F,, G, and G, are
evaluated by asymptotic expansions since they cannot
be expressed explicitly in terms of known functions.
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The asymptotic expansions of the f and g functions
aref12]

= 1:3-...(¢4m —1)

nzf(z)~ 1 + m; (-1 ) (372)
= 13- @m+1)

nzg(z) ~ Eo (-1 T (37b)

Only two terms of the expansions will be used

3
fOr——— (38a)
15
22— e R (38b)

Substitution of (38) into (32) yields the approxi-
mations for F,, F,, G., and G,:

F.(s)= —l— cosscos +smssm 3
= am 1‘11 PRl W]

—'3—COS£COSﬁS+lsln Di
o7 R R VY Rl R UUS

(39a)
1 .S s S . (S s
F,(s)~ﬁ{smlcos,(l ).) cos 7 sm,(,I,I)

—i sinicos % 2 cosssm oS
7704 R R V) N1

(39b)
ol {mswsl(& i)
2.2z A A’
+sinssin B3 b
200\ @y

% +ms51 s
coslcos4 1 A S n, ,1 1

(39¢)

1 .S S S
G,(s)= 7 {sm 1 cosz(z s I)
cos sin S $ 15 sinf- cos, o3
P WA ANY5 ) hant il W)

—cosis'n S
P WAF

where the following definitions have been used

(39d)

*icost

08, (X0, (40a)

X sm t
sin,, (xg, X, ) = '[

The terms cos,,(x,, Xx;) and sin,(x,, x;) can be re-
duced to cos,(x,,x;) and sin,(xy, x;) by repeated
application of the formulas:

(40b)
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€08, (Xp, X;) = x}~™cos x; — X}~ ™ cOS X,]
1
+1—:-—”—xsm,,,_,(xo,x,) (41a)
sin, (xg, x,) = x}="msin x; — x§ " sin x,]

€OS,,_(Xp, X;). (41b)

I—m
The functions cos;(xy, x;) and sin;(x,, x,) are
expressible in terms of the sine and cosine integrals
S; and C,[12]

€08, (xg, x;) = C,(x;) ~ C/(x,) (42a)
sin, (X9, X;) = S;(xy) — S;(x0) (42b)
where
C(z)=17 +1n(z)+J.'°°s‘ 1l
0
S(z) = J' LY
and

y = Euler’s constant(= 0.57721...).

Thus, the final approximate solution for the kin-
ematic eqns (21) when ¢,, ¢, and ¢, w, are small is

¢x(’) = ¢J¢0 cos A¢z + ¢,\0 sin A¢z

u
V' 2al

tatt+ bt + 90 =Ad. + ¢y -

+ [Wee(s) + Wy(s)] (432)

¢.()= (43b)

where

A 2
= 2a w3 (t )
and W,(s) and W,(s) are defined by relations
(30)-(42). The solution for ¢, is found by symmetry
with ¢, by permuting all terms in x to terms in y and
all terms in y to terms in —x. Because of the
asymptotic expansions used for the F and G integrals,
the solution is limited to cases in which the parameter
|d,|/w? is small compared to unity.

4. APPLICATIONS

4.1. Solution for the angular momentum vector

The solution for the components of the angular
momentum vector in inertial space (Hy, Hy, Hz) is
obtained from the analytical solutions for the Euler

velocities (w,,w,,®,) and the Euler angles
(¢x’ ¢y’ ¢z) as follows:
H X i I xWyx (44)
Hy|=Al Lo,
H 4 “\1, W,
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where, for a Type 1: 3-1-2 Euler angle sequence, the matrix A is

c¢:c¢y - s¢: s¢x s¢y - S¢:c¢x
A= | s¢.co,+co.sd.50, ch.ch,
- c¢xs¢y S¢x

where ¢ and s denote cosine and sine. This analytic
solution has lead to an understanding of the behavior
of the angular momentum vector during spinning-up
maneuvers{8].

By assuming that ¢, and ¢, are small in (44) and
replacing all Fresnel integrals and sine and cosine
integrals in the analytical solutions for the Euler
velocities and angles by first order asymptotic expan-
sions, eqn (44) becomes

M M, M,
Hy~—Zsin ¢, + —2cos ¢, — —’z—ai’ (45a)
w, @, @z
M, M, . M,
Hy~ — —cos ¢, +—sin ¢:+‘_zw€ (45b)
w, w, W
Hz ~ Iz o, (450)

where the initial conditions have been assumed

Hz(0)= Iz@:o, Wy = Wy= = d’yo =¢,=0.

This remarkably simple behavior in the form of a
spiral in inertial space is depicted in Fig. 1 for the case
of spinning up with M, =0.

In Fig. 1 the bias angle p, is a constant given by

VMi+ M

p)
Loz

for the general case (M, # 0, M, # 0). The angle 6 of
the spiral is given by the Euler angle, ¢,:

6=9,. @n

An alternate derivation of (45) directly from Euler’s
equation M = H is presented in[9].

The insight gained from (45) leads to a new method
of controlling the behavior of the angular momentum
vector which is also described in[9].  For cases in
which transverse body-fixed torques perturb the
angular momentum vector from its initial orientation
in inertial space, it is possible to perform the spin-up

tan Po= (46)

Z A

/
D

- >
A 7).

0 H
M

f 4

L3 Y
X "y

Fig. 1. Behavior of the angular momentum vector during
spinning up.

Co.5h, + s¢.s¢.co,
s¢: s¢_v - c¢z s¢xc¢y
co.co,

or thrusting maneuver in two segments with an
intervening coast period. The coast period allows
the orientation of body-fixed thrusters to change
while the angular momentum vector remains fixed
in inertial space. The second segment of the
maneuver forces the angular momentum vector
to encircle the original orientation position in
space, instead of the offset orientation of angle p, in
Fig. 1.

4.2. Solution for the change of velocity

When body-fixed forces (f,, f,,f.) are present, the
rigid body accelerates according to

ay (fxIm
ay | = Al £,/m 48)
Aaz m
8 8 spiNuP FROM 3,15 T0 10.0 RPM
g 8 Mo hoa - v
gﬁ.ﬂ/\ L
AR
i
8l 8
€ SPINUP FROM 3.15 10 10.0 RPM
: W
by /\ A
ARVATTTIN
TV
: l
g.

T i §

Fig. 2. (a) Exact and analytic solutions for w,(¢). (b) Exact
solution minus analytic solution.
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where ay, ay, a; are acceleration components in iner-
tial space and matrix A is given in (44). When ¢, and
¢, are small, (48) becomes

ar=Lx cos 6, -1

L o g, % 4, cos0,
+o.5nd) (@92)

L o (&ysin g,
~4,c084,) (9b)

by L

+

ay ={ni sin ¢, + cos b, +

L, b

¢ += (49¢)
When f, and f, are constant and f, = 0, the solution

for the change of velocity in inertial space is approxi-
mated by[10]

AVyx (£, /m)C — (f,/m)8 (50a)
AVyx (f./m)S +(f,/m)C (50b)
AV, =0 (50¢)

where

- [t b 0t

paCe) EEEECH)
(2] (e 2N
}[S(fi-('*f%))-S(ﬁ%)]}

~on{pe- SN EL(E(2)
(RN
[ ()< E)

and where the initial conditions have been assumed

Wy = Wy = ¢zo ¢yo-0

Using first order terms from the asymptotic expan-
sions for the Fresnel integrals, reduces the transverse
velocities to

Ay

Aszé (sm $. sin ¢,o>
m\ o, Wy
_f (cos ¢,+cos ¢,o) (51a)
m\ o, Wy
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AV, % — f (cos ¢,+cos ¢,o>
m\ o, Wy
+ 5 (sin ¢, sin ¢:o). (51b)
m\ o, Wy

For the case in which f, # 0, secular terms appear
in all three velocity components. It becomes import-
ant to retain the £, terms in all of eqns (49) because
¢. and ¢, contain terms in cos ¢, and sin ¢, which
lead to constants on the right-hand side. The secular
solution for the velocity components is

—f M,

AVy=
X = I.wﬂt (52a)
AV, y—f‘ 1t (52b)
mLw?
AVZ=ét. (52¢)

Thus, the secular behavior of the velocity vector
follows the bias angle of the angular momentum vec-
tor, due to the constant terms in (45a) and (45b). This.
is the reason that the control scheme for the angular
momentum vector bias[9] also corrects the velocity
pointing errors arising from the secular terms (52).

5. NUMERICAL EXAMPLE

The spin-up maneuver of the Galileo, an interplan-
etary spacecraft bound for Jupiter, is used as a
numerical example. The following numbers are
representative for the mass properties and body-fixed
moments;

I.= 2985 kg-m?, I, = 2729 kg-m?
I= 4183 kg-m? (53a)
= —1.253 N-m, M, = —1.494 N-m,
M,=135N-m. (53b)

Normally a spacecraft is equipped with thruster
couples in order to provide torque along the spin axis.
In the case of the Galileo spacecraft only one thruster
is available for spin-up about the z axis, and so,
depending on the position of the center-of-mass
(which varies along the z axis according to propellant
loading), there may be transverse moments, M, and
M,. This particular example has been an inspiration
to the author to analyze the attitude motion of a
self-excited rigid body.

To represent the spin-up maneuver, the following
initial conditions are assumed

0,(0) =0, ®,(0) =0, ®,(0) = 3.15rpm (54a)
¢:(0)=9,(0)=¢,(0)=0 (54b)

and the final spin rate is
@,(t) =10 rpm. (55)

The analytic solutions for the attitude motion are
compared to ‘“exact” solutions which are found
by very precise numerical integrations of Euler’s
equations of motion (1) and the kinematic eqns (21).

Figure 2 compares the exact solution for @, (¢) with
the analytic solution (20). The Fresnel integrals were
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g g SPINUP FROM 3.15 70 10.0 RPM
W (a)
3] 8
| |
?_'- =
=
~N < /
(=0 o
el ¢ 7
o] o !/
8| 8
o~ [-)
' 0.00 0.50 o0 . . .
P 2 sl 50 2.00 2.50
§, SPINUP FROM 3.15 TO 10.0 RPM
(b)
2
L
2
-{;-.-'
o
%]\
=3 \/’\
. v -
\’J\/"\,J\N
g .
0.0 0.50 2.00 2.50

1.00 1.50
T s

Fig. 3. (a) Exact and analytic solutions for . (). (b) Exact
solution minus analytic solution.

computed from (28) and the two-term asymptotic
expansions (38). In Fig. 2(a) both exact and analytic
solutions are displayed, but the solutions are indistin-
guishable from one another.

In Fig. 2(b), the difference between exact and
analytic solutions is presented (exact minus analytic).
From the plot it is clear that the analytic solution for
o, deviates from the exact solution by only about

- 0.1%. Bbdewadt’s solution[3, 4], which only applies
to symmetric rigid bodies, gives an error of a few
percent for this example[5]. Figure 3 demonstrates
that the assumption that o, is a linear function of
time (10) is reasonable, since the error indicates a
discrepancy of only about 0.01% from the exact
solution.

Although the Galileo spacecraft does not perform
a spin-up manuever starting from an initial spin rate
of zero, the analytic solutions (10) and (20) still apply
and have been tested for this hypothetical case. Of
course the asymptotic relations for the Fresnel inte-
grals are no longer valid. Instead, rational approxi-
mations for the f and g functions may be used
from[12], when the argument is zero or near zero.
The results are nearly as accurate as those of Fig. 2.
In this case it was noted, however, that most of the
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error was due to errors in computing the Fresnel
integrals.

In Fig. 4, the exact solution for ¢, is compared to
the analytic solution (43a), for conditions (54) and
(55). Rational approximations for the sine and cosine
integrals (42) were used from[12] in the analytic
solution. The discrepancy between the exact and
analytic solutions is not apparent in Fig. 4(a), but
Fig. 4(b), which displays the difference (exact minus
analytic) reveals that the error is of the order 0.5%.
In Fig. S the analytic solution for ¢, (43b) is shown
to be within about 0.01% of the exact solution.

The accuracy of the analytic solutions for the
angular momentum vector (45) and the secular
solution for change of velocity (52) is discussed in{9].
The solution for the change of transverse velocity (51)
is discussed in{10].

6. CONCLUSIONS

Highly accurate analytic solutions for the attitude
motion of a self-excited rigid body have been pre-
sented. These solutions can be useful in two
ways. First, they provide a basis for computational
algorithms which allow parametric studies to be
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performed. Second, they provide insight into the
behavior of the attitude motion of a rigid body,
subject to moments about all three axes. An obvious
example is the understanding gained in the behavior

of the angular momentum vector and new ideas
about controlling it.
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