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Abstract—A new model for tethered satellites in low orbit, where atmospheric effects are significant, is
developed. The model allows the analysis of the dynamic behavior of tethered satellites in a general orbit.
The results obtained for a system in circular orbit compare favorably to previous work. The behavior of
tethered systems performing aeroassisted orbital maneuvers is also simulated. In particular, the cases of
elliptic orbit transfer and hyperbolic aerocapture are presented. The results in the elliptic case indicate
that orbital maneuvers can be performed with small tension forces in the tether. In the hyperbolic case
the behavior is not so benign, because the forces are quite large. but the utilization of tethers for

aerocapture appears to be physically feasible.

1. INTRODUCTION

In recent years, with the development of new ma-
terials, the concept of long tethers in space has
become feasible. Many applications for these systems
have been proposed 1,2}, including the deployment
of tethered spacecraft in the upper atmosphere of a
planet.

The analysis of a tethered satellite is very complex,
more so if the effects of an atmosphere are to be taken
into consideration. For this reason the early research
on the subject utilizes simplifying assumptions to
facilitate the understanding of the basic behavior of
the systern. The most common assumption is to
decouple the orbital motion from the rotational
motion of the spacecraft [3-5]. This assumption
works very well for short tethers in circular orbit, but
for long tethers the changes in attitude have a greater
effect on the orbital motion. Also, if the tether is not
in a circular orbit the attitude of the system is affected
by the changes in position and angular velocity
during the orbit. For this reason a circular orbit is
also assumed in most cases [3-5]. Another common
assumption is to model the tether as a rigid rod [3-5].
This assumption is reasonable in most cases, even
when small aerodynamic forces are present [3], but if
there are large aerodynamic forces, or if the tether
undergoes large rotations this assumption must be
questioned. The tether is also often assumed to be
massless {4,5], which works well with short tethers,
but as the tether length is increased, its mass has an
increasing effect on the behavior of the system. One
last assumption which is very often found in the
literature is to constrain the motion of the system to
the orbital plane [3,4]. For most applications this is a
good approximation since the disturbances on the
system in the out-of-plane direction are very small,
and have little effect on the in-plane motion.

When the aerodynamic forces are included in the
model, the analysis gets much more complicated.
Although several applications of tethered systems in
low orbit have been proposed [1-3], not much re-
search has been done in this area.

In this paper a model for a long tethered satellite
in low orbit is presented. The model takes into
consideration some of the behavior that was left
unexplored in earlier work. In particular, the coup-
ling between the orbital motion and the attitude
motion are taken into account. In addition, the
distributed effects of drag and mass along the tether
are carefully modeled. The only remaining assump-
tions of the literature that have been retained are rigid
rod and planar motion. This improved model makes
possible the study of some of the applications pro-
posed for tethered satellites which have not yet been
fully analyzed, such as aerobraking tethers.

The paper is organized in the following manner.
First the new model is developed, starting from the
more general assumptions just mentioned. Then the
equations of motion are derived using Newton's law
for the translational motion and Euler’s law for the
rotational motion. Next numerical results are pre-
sented and compared with some of the previous work
on the subject [3] for the special case of circular orbit.
New results for hyperbolic aerocapture and elliptic
orbit aeroassist are also presented.

2. EQUATIONS OF MOTION

2.1. Modeling assumptions

The tethered system modeled in this paper, shown
in Fig. 1, consists of two spacecraft, an orbiter of
mass m, and a probe of mass m,, connected by a thin
tether of length .
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Fig. 1. Tethered system.

The system is moving in a general orbit around a
rotating planet which may have a significant atmos-
phere. The behavior of this system is very complex.
In order to simplify the analysis some assumptions
are made. First, since spacecraft are usually small
compared with the tethered system, the orbiter and
the probe are assumed to be particles. Next the
motion of the tether is constrained to the plane of the
orbit. This works well in most cases since the out-of-
plane disturbances are small. In addition the orbit is
assumed to be equatorial and the atmosphere is
assumed to rotate with the planet. Finally the tether
is modeled as a rigid rod. This assumption is often
made in the literature and it has proven to be
reasonable in most cases [3].

These assumptions simplify the analysis signifi-
cantly, but the fundamental behavior of the system is
maintained. The model is general enough to allow the
analysis of arbitrary initial orbits and includes the
coupling between the orbital and rotational motions.
The aerodynamic effect of an atmosphere is also
included in order to study the behavior of tethered
systems in low orbit.

The development of the equations of motion is
divided into two parts. First the translational
equations of motion for the center of mass of the
system are developed using Newton’s Law:

F=mag,. ¢y

Then the rotational equation of motion of the system
about its center of mass is developed using Euler’s
Law:
dH=
M=—-. 2

T ¢}
The equations‘are expressed in a frame which rotates
with the orbit and is represented by the vectors &, and
&, in Fig. 1.

2.2. Translational equations of motion

The acceleration of the center of mass with respect
to the center of the planet, which is assumed to be
inertially fixed, is:

a_, = (K — RO, + (RO + 2R6)R, 3

where R represents the distance from the center of
mass to the center of the planet and 8 is the angle
along the orbital path.

If the linear density of the tether is defined as »,
then the total mass of the system is given by:

m=m,+m,+nl. @

2.2.1. Gravitational forces. The gravitational forces
are found assuming an inverse square model. For the
two particles the forces are:

F,, = —um,[(R +1,cos a), + 1, sin a&/R} (5)
Fp= —pum,[(R — [,cos 2 )@, — I, sin a&,]/R} (6)

where u is the gravitational parameter for the planet,
2 represents the angular rotation of the tether with
respect to the vertical direction, and /, and /; are the
lengths along the tether from the center of mass to the
orbiter and the probe respectively. R, and R, are the
respective distances from the center of the planet and
can be written as:

R,=./R*+[%2+2Rl,cos a )
R,=./R*+1*—2Rl,cos a. (®)

Since the tether is not massless, the gravity force must
be integrated along its length. This integration can be
easily performed and the expression for the force
acting on the tether is:

we-5{32)

1 (R+[,cosa R-—I[cosa
—— - 20- 9)
sina R, R,

2.2.2. Drag forces. The atmospheric density of the
planet, p;, at radius R;, is modeled as an exponential

function:
Pi= P exp[(Hr - Ri + Rpl)/H]

(10)

where p, is the reference density at the reference
altitude H,, H is the scale height, and R, is the radius
of the planet. The atmosphere is assumed to rotate
with the planet. The drag force for a body moving
through an atmosphere can be written as:

= —1pCpSVV (11)

where Cp, is the drag coefficient, S is the frontal area

of the body and V is its velocity with respect to the

atmosphere. Using this equation, expressions for the
drag forces acting on the two masses are:

l-“Do = _%po CDoSo Vovo
Foo= —30,Cp S, ¥,V

(12)
(13)
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where Cp, and Cp, are the drag coefficients for the
orbiter and the probe respectively, and S, and S,
represent their frontal areas. Note that the masses are
assumed to be spherical and the frontal area does not
change with the orientation. The variables p, and p,
represent the atmospheric density at the orbiter and
probe altitudes as given in eqn (10). V, and V,
represent the wind velocities:

V,=[R — (6 + % — Q)sin ¢,

+[RE -Q)+1,(0 +4—Q)osale, (14)
V,=[R + (6 + 4 ~ Q)sin «J¢,
+{R(6 -~ Q) — (6 +2 — Q)os 2J§, (13

where Q is the angular velocity of the atmosphere.
Note that the orbit is assumed to be equatorial, which
means that the velocity of the atmosphere has no
components perpendicular to the orbital plane. The
drag force acting on the tether is found by integrating
the aerodynamic effects at every point on the tether,
since the denmsity and the velocity vector change
significantly along the length of the tether. The force
acting on a differential tether element is given by:

dFDT = _%pr exp[(Hr - Rx + Rpl)/H]
x Cpr V,V.dS; (16)

where Cpy is the drag coefficient of the tether, as-
sumed constant along the length, V. represents the
velocity, with respect to the atmosphere, of a differen-
tial portion of the tether located at a distance x from
the center of mass, R, is its distance from the center
of the planet, and dS; is the differential tether area
perpendicular to the wind velocity. To simplify the
integration, the tether is divided into two sections
which are analyzed separately. These sections are
given by /, and /, which are the segments of the tether
above and below the center of mass, respectively (see
Fig. 1). Now V, and R, can easily be written as
functions of x and previously defined variables:

V,=[R —x(f +a —Qsin al¢,
+[RE -Q) +x(6 +d —Q)osale, (17)
R, =+/R*+ x*+2xR cosa (18)

for the upper section of the tether and:
Vo =[R +x(0 +d¢ —Q)sina]¢,
+{R(6 —Q) —x(6 + 2 —Q)cosale, (19)
R,=./R*+x*—2xR cosa 20)

for the lower section. In this case the differential
frontal area is not as simple as for the two masses,
since its value depends on the tether orientation and
the direction of the wind velocity vector at a given
point on the tether. To take this effect into consider-
ation the differential area can be written as:

IV, - b,|d
v,

x

dS; = dx @1)

where d represents the diameter of the tether, dx is a
differential length along the tether, and B, is a unit
vector perpendicular to the tether and aligned with &,
when x is zero (see Fig. 1). To ease the integration a
sign function, sgn( ), can be introduced, and assuming
that there is no change in the sign of V, - b, along the
tether, the differential area can be written as:

v,-b,

Vi

dS; =sgn(V,- b,) ddx 22)
where V, is the tether velocity at the end of the tether
section. The case where the sign of V_- b, does not
remain constant can be solved by first finding the
point in the tether where the sign change occurs, and
then breaking the integrals into two sections corre-
sponding to the two different signs. We call this point
the aerodynamic switching point, because it corre-
sponds to a position on the tether where the direction
of the normal wind velocity switches. Writing V,, V,
and b, in terms of previously defined variables, the
differential area expressions for each tether section
become:

dSy, = {sgn[~ R sina + R(§ — Q)cos «
+1,(0 +a - Q)]
x [-Rsina + R(# — Q)cos a

+x(8 + ¢ — Q)d/V,,} dx (23)
dSy, = {sgn{—R sina + R(d — Q)cos « '

— L +d — Q)]

x [—-R sina + R(# — Q)cos «

—x(6 +d — Q)d/V,,} dx 24)

Using these expressions in the equations for the
differential forces and integrating, the total drag force
acting on the tether is:

For = —1p.Cord expl(H, + R,)/H]
x [{[R(§ —Q)cos a — R sin «]
X RS, I, + 6,1,,) + (6 + 3 —Q)[R(1+sin’ a)
— R(f — Q)sin & cos a]
X (8o1py— 8p1p0) — (0 +d — Q)
x sin (8,13 + 6,15)}8, + {[R(6 — Q)
x cosa — R sin a]R(E — Q) (3,1, + 6,1;)
+(6 +a - Q)[R —Q)(1 +cos’x)
— Rsina cos a](8,1,, — 6,1,5)

(25)

+ (6 +d —Q)*cos a(5, 1,3+ 6,1,3)}8,]
where
5, =sgn(V,,-b,) (26)
8, =sgn(Vy - by) @7
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[
I,,=sgn(l¥ — [°)J x"~'exp(— R, /H) dx

3
+ '[ x"lexp(—R,/H)dx (28)

B

’.
L,=sgn(l* — 1) J " x"~ ' exp(— R, /H) dx

IP
+ J x"lexp(—R,/H)dx (29)
5 .
where R, and R, are given in eqns (18) and (20) and
where /3 (/}) represents the aerodynamic switching
point when it occurs on the orbiter (probe) side of the
tether. When the switching point does not occur on
the orbiter (probe) side, then I3 = 0 (I3 = 0). Equation
(25) is the exact drag force expression for the tether.
It can be combined with the expressions found pre-
viously to obtain the equations of motion for the
center of mass of the system, but the integrals must
be solved numerically. At this point an assumption
can be made to simplify the expressions, eqns (28)
and (29), and make them integrable. The problem
originates from the square root terms, eqns (18) and
(20). By using the approximations

R,=R+xcosa (30)
31

and making the additional assumption that the
switching point is outside of the tether (which is the
usual case) then the integrals reduce to the form:

R,=R—xcosa

L,= J‘ lox""‘exp[—(R +xcosa)/Hldx  (32)

I,= J.Ipx"" exp[—(R —xcosa)/H}dx. (33)

For n = 1 the integration is straightforward; for n > 1
the following recurrence formulas can be used:

I,,=(H/cosa)exp(—R/H)

x [—Ig'lexp(—lo cosa/H)+(n—1)

X Jlox”'zexp(—x cosa/H)dx] 34

o

I, = (H/cosa)exp(—R/H) [lg‘ exp(l, cos a/H)

e—(n—1) be"‘zexp(x cos a/H)dx:I. (35)

The assumption is equivalent to considering the
position vectors to be parallel, so that the angles g,
and B, are small (see Fig. 1). This approximation is
valid when the tether is short, or in the case of long
tethers when the orientation of the tether is close to
the vertical (i.e. « is small). Finally the equations of
motion for the center of mass of the system are
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obtained from eqns (1), (3)~(6), (9), (12), (13) and
5):

(my+ m,+nl)(R - R?)
=(Fg + Fo+ Fyr + Fpo + Fpy + Fir) -8, (36)
(m, + m, + nl)(R6 + 2R6)
=(Fyp+Fgp+Fr+Fp+Fp, +Fyr)- 8. (37)

2.3. Rotational equation of motion

Since the system is assumed to move in the plane
of the orbit it has only one rotational degree of
freedom, therefore only one equation of motion is
obtained from Euler’s law.

The angular momentum of the system about its
center of mass is:

H™ = [m, 2+ m, 2+ (n/3) (13 + D)@ + 0)R; (38)

again, written in the ¢ frame, which is moving with
the orbit (see Fig. 1). The time derivative of this
vector is:

dHCm

—— =[m,2+m,I?

dr
+ 3B+ DE + 6. (39)

Next the torques acting on the system about its
center of mass are found. For the two masses the
torques are obtained using the expressions for the
forces derived in the previous section. The moments,
produced by the gravity forces acting on the masses
are:

M,, = um, Rl sin /R, 40)
@én

The aerodynamic forces acting on the masses yield
the following moments on the system:

Mo, = —39,CouSul, V,[R(E — Q)cos a
~Rsina +1L,(6 +a —Q)R, (42)
M, = 1o, Co, S, L, V,[R(6 — Q)os
~Rsina — L0 +d — Q). (43)

M, = —um,Rl,sina /R3¢, .

The moments due to the tether are found by
integrating along its length. For the gravity torque
the integration is not difficult and gives the following
expression:

gT

_—pn|R+l,cosa R—Icosa
"~ sina R, R

]&.‘3. (44)
P

The expression for the drag moment is more complex
and it is analyzed following the same approach that
was used to obtain the drag forces in the previous
section. Given the differential force in eqn (16), the
differential moment for a differential tether element is
written as:

dM,, = xb, x dF, (45)
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for the upper section and:
dM,, = —xb, x dF, (46)

for the lower section. These expressions can be used
to obtain the following equation for the aerodynamic
tether torque:

Mpr = —1p.Cprd expl(H, + R,)/H]
x {[R( — Q)cos x — R sinx](6,1,,— 6,I,)
+20 +4 — QR — Q)cosa — R sin a]
X (8103 +8,1,3)
+(0 +a — Q0.1 — 5, 1,4)}8, @7

where, again, the integrals are given by eqns (28) and
(29). The parallel vector assumption, eqns (30) and
(31), permits the replacement of the integrals by the
approximations in eqns (32) and (33). Now from eqns
(39)+44) and (47) the rotational equation of motion
is given by: '

[, 12+ my 12+ (n/3) (13 + B)1(d@ +6)

=Mgo+Mgp+MgT+MD°+MD§+MDT. (48)

3. CONSTANTS OF THE MOTION

In low orbit, where the effects of an atmosphere are
significant, there are no conserved quantities for the
system. In the drag free case some constants of the
motion exist. The analysis of these constants provides
some understanding of the fundamental behavior of
the system. First the total energy is known to be
constant since the only force present, gravity, is
conservative. The kinetic energy for the system is:

T =1{(m, + m, + nl) (R* + R%?)
+m 2+ mylk+ (/33 + D& + 62} (49)

and the gravitational potential energy is:

V= _#{Tg+ﬁ+”[ln<&+lo+licosa)

R, R, R(1 +cosa)
R,+l,—Rcosa

The total energy of the system is:

E =T+ V =constant . (51)

The kinetic and potential energies can be also used
to write the Lagrangian:

L=T-V. (52)

Since the Lagrangian is not a function of 8, another
constant is obtained:

= constant. (53)

9
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Differentiating eqn (52), the constant is:
(my + m, + nl)R*
+[mo 3+ myi2 + (n/3)(I3 + 12)]
x (& + 6) = constant (59)

which is the angular momentum with respect to the
center of the planet.
4. TETHER TENSION

The tension in the tether can be easily calculated at
the points where it connects with the orbiter and the
probe by using Newton’s law [eqn (1)]. The accelera-
tions of the orbiter and the probe are:

a,={R — RO — I,[(6 +2)*cos « + (4 + H)sin «]}8,
+ {RO +2R6 + 1,[(d + H)cos &
— (0 +a)sinalje, (55)
a,={R — RO*+ [[(6 +d)cosa + (& + O)sin a]}¢,
+ {RY + 2RI — L[ + O)cos a
— (6 +&)sin a2, . (56)

The orbiter and the probe are acted upon by aero-
dynamic, gravitational and tether forces. Expressions
for the gravity and drag forces acting on both vehicles
are given in eqns (5), (6), (12) and (13). The tether
forces are the only unknowns, and can be written as:

To=moao_Fgo—FDo G7
for the orbiter, and:
T,=m,a,—Fp —Fp, (58)

for the probe. These equations are written in the &
vector frame. To analyze tether tension it is more
convenient to utilize the b frame, which is fixed in the
tether (see Fig. 1). The vector transformation is:

T =[(T- & )cos a + (T - &)sin a],
+[—(T-&)sina +(T - &,)cosalb,. (59)

Note that the b, component of the force, perpendicu-
lar to the tether, is nonzero in general because the
tether is assumed to be a rigid rod. This component
of the tether force provides an indication of the
accuracy of the rigid rod approximation. The b,
component, directed along the tether, can be positive
or negative since a rod can be loaded in compression
as well as in tension. The presence of compressive
forces is unacceptable for a tethered system, and care
must be taken to ensure that they are never encoun-
tered in the proposed applications.

5. EQUILIBRIUM POSITIONS

In this section we analyze equilibrium positions
where the angle a, which represents the tether orien-
tation, is constant. The behavior of « is given by the
rotational equation of motion [eqn- (48)]. The left-
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hand side of the equation shows a direct relation
between the changes in 6 and «. Recall that 8
represents the orbital angular position. This relation-
ship makes it impossible to have equilibrium con-
ditions in orbits where the changes in § are not equal
to zero, which means that equilibrium can only be
found in circular orbits. Note that the relation between
the behavior of the two angles also implies that the
orbital motion is directly affected by the satellite
motion; therefore, if the tether is not in equilibrium
a perfectly circular orbit can not be maintained.
For a circular orbit, § can be eliminated from the
equation. At this point, the equilibrium condition is
found by setting the right-hand side of eqn (48) equal
to zero. This gives the tether orientation where the
sum of the moments acting on the system is equal to
zero. If the aerodynamic effects are ignored, then two
equilibrium orientations are found. First, a stable one
is easily found for « equal to zero (in the limit). The
second one is unstable, and it is located at « equal to
7/2 when the masses of the orbiter and the probe are
equal. The unstable equilibrium position moves away
from the value of m/2 as the mass ratio of the two
vehicles changes, and numerical techniques must be
utilized to solve for the position since the equation
becomes transcendental. (Note that the change in
mass.ratio moves the position of the center of mass
away from the geometric center of the tether, and that
the angle « is measured with respect to the position
vector to the center of mass.) When the drag effects
are included two solutions are also possible if the
assumption of circular orbit is maintained. For small
aerodynamic effects the equilibrium positions are
close to those found in the drag free case. The
differences increase as the aerodynamic torques be-
come more significant. The stability of these orien-
tations is similar to that of the drag free cases, with
the attitude close to zero being stable and the one
close to /2 being unstable. For all mass ratios the
equation is transcendental when the drag torques are
included and both positions must be obtained utiliz-
ing numerical methods. Note that to maintain circu-
lar orbit, necessary for the equilibrium conditions,
thrust must be applied to the system to cancel the
drag forces. (Otherwise, the orbit would decay.)

6. NUMERICAL RESULTS

In this section the equations obtained previously
are utilized to numerically simulate various tethered
systems in orbit about Mars including the cases of
circular orbit, elliptic orbit and hyperbolic aerocap-
ture. In these examples the radius of Mars is assumed
to be 3398km and the gravitational constant is
4.28 x 10% km’/s?.

6.1. Circular orbit

An analysis of a tethered system for the exploration
of the planet Mars is found in [3] and has provided
a source of inspiration to the authors. The system
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Table 1. Tethered system parameters

Orbiter mass 1000 kg
Orbiter Cp, 2

Orbiter frontal area 10m?
Probe mass 500 kg
Probe Cp, i

Probe frontal area 1 m?
Tether linear density 0.3 kg/km

Tether Cyy 2
Tether diameter 0.5 mm

consists of an orbiter and a probe connected by a long
thin tether. The probe is low enough to make the
aerodynamic effects on the system significant. The
model in [3] is limited to the case of a spacecraft
maintained in circular orbit by continuous thrust. As
discussed earlier, an equilibrium position for this
system is possible. The new model presented above is
generally applicable to all types of orbits and so
includes this special case as a subset. It is interesting
to ¢ompare the results of [3] with the new model.
6.1.1. Thrusting case. The input values given in
Table 1 are taken from the analysis in [3]. These
values provide the physical characteristics of the
system. Several cases are studied utilizing different
tether lengths and orbit radii. Using these data the
equilibrium position can be found numerically, and
represents the tether orientation where the torques
acting on the system cancel. Note that the analysis
includes a thrust force acting on the orbiter that
cancels all forces except the radial component of
gravity. Once the equilibrium orientation is found,
values for all forces and moments present are also
available. The dynamic behavior of the system can
also be simulated and it is found that, as expected, the
system maintains the same orientation for all time.
The results obtained with the new model are shown
in Table 2, and are similar to those found in [3].
The differences are due to the fact that the model
in [3] included some additional simplifying assump-
tions such as constant velocity along the tether and
parallel position vectors. This last assumption elimin-

- ates gravity forces in the &, direction, which can be of

the order of 10 N in some cases, and also eliminates
drag forces in the & direction. Both of these forces
affect the value and direction of the thrust required
to maintain circular orbit. Overall, the two models
are in agreement about the behavior of the system.
Note that the new model is not restricted to the study
of systems in equilibrium. The dynamic behavior of
tethered spacecraft with no thrust available or in-
jtially placed at nonequilibrium positions can also be
analyzed, as shown in the next subsections.

Table 2. Equilibrium conditions in circular orbit

Tether Orbit
length radius (c.m.) Equilibrium
(km) (km) a (deg)
190 3634 0.665
200 3630 2.314
212 3627 7.377
243 3623 24.670
296 3621 40.005
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6.1.2. Non-thrusting case. The case of a spacecraft

- initially placed in a circular orbit at the equilibrium
position but with no thrust available is discussed
next. This case demonstrates the possibility of using
the new model to analyze systems with complicated
behavior, where there is a strong coupling between
the orbital motion and the tether orientation. This
coupling is due to the fact that the orbital motion is
continuously changed by the drag forces which are
determined by the altitude of the orbit and the
attitude of the tether. The input values are again taken
from the analysis in [3), in particular the case where
the tether length-is 212 km. For the initial orbit the
equilibrium angle is found to be 5.33°. Note that it is
different than before since no thrust forces (nor their
associated torques) are present in this case. The dy-
namic behavior of the system is shown in Fig. 2. The
results clearly show the changes in the tether orien-
tation and the orbit decay caused by the drag forces.
Of course it is not necessary to permit the tether
system to go through the entire orbit decay process.
The probe can be pulled out of the atmosphere by
reeling in the tether, eliminating the drag forces that
affect the orbit. Also the tether can be cut, sending the
probe into a landing trajectory while boosting the
orbiter into a higher orbit away from the atmosphere.

6.2. Elliptic orbit

An aerobraking tether can be used to reduce the
eccentricity of a spacecraft in an elliptical orbit. The
aeroassist maneuver is performed by dropping a
probe, connected to the spacecraft by a long tether,
into the upper atmosphere of the planet. In this
approach only the probe travels through the atmos-
phere, eliminating the aerodynamic requirements
(such as heat shielding and aerodynamic stream-
lining) on the orbiter. Large changes to the orbit are
possible with one pass through the atmosphere, but
the material strength requirements on the tether may
be extreme. The loads on the tether are largely
reduced if the maneuver is performed in several
passes. A simulation of one such pass is shown in
Fig. 3. The spacecraft studied is the one used in the
circular orbit case with a tether length of 260 km. The
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o
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de
Gm) 3590 - (@g)
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spacecraft is initially placed in an elliptic orbit with
eccentricity 0.5 and semimajor axis 7250 km (assum-
ing the tether is a point mass). The simulation starts
with the spacecraft placed away from the atmosphere
and with an attitude that places the probe in the
atmosphere at periapsis, where the braking maneuver
takes place. The results, given in Fig. 3, show the
effect of the aerodynamic drag on the orbit. During
the maneuver the minimum altitude reached by the
probe is 58 km, while the orbiter maintains an alti-
tude of over 300 km. The forces found in the tether
have a maximum value of approx. 1500 N. This value
exceeds the strength of the tether described in [3], but
is acceptable given the strength of currently available
materials. These results are very encouraging and
open the way to the development of a new type of
spacecraft to be used in planetary exploration. The
probe may be equipped with sensors for atmospheric
studies or may even be designed to land on the planet
after the maneuver is completed. This allows the
probe to provide scientific data at the same time that
the aerobraking eliminates a propulsive maneuver.

It should be noted, however, that the rigid rod
approximation presents some modeling problems
since the simulation indicates that a large normal
component of force acts on the tether. The maximum
angle between the tether and the force vector is close
to 80°. This result is inconsistent with the flexible
behavior characteristic of a thin tether. On the other
hand, the results of the flexible tether analysis in [3]
show that it is possible to have transverse force
components at the extremes of the tether while most
of it remains straight. The analysis must eventually be
extended to the case of a flexible tether, but these
preliminary results are very positive.

6.3. Hyperbolic orbit

The utilization of aerobraking tethers for aerocap-
ture presents some advantages over conventional
vehicles. The orbiter is maintained in a high orbital
path away from the atmosphere, which eliminates the
need for thermal protection in the orbiter. The drag
acting on the probe serves a double purpose. First it
slows the entire system to place it in orbit around the
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planet. Second, after severing the tether, the probe
can be delivered to the surface of the planet. The
significant advantage of this system is that no propul-
sive braking maneuver is required. In addition, a long
tether may avoid the sensitivity problems of conven-
tional aerocapture [6]. If the tether is cut, the well-
known tendency of the probe to drop into a lower
orbit while the orbiter rises to a higher orbit can be
a useful advantage. The aerobraking problem is
simulated using the parameters of Table 1 with a
tether length of 290 km. The hyperbolic orbit is
chosen to represent a general Earth to Mars transfer
(eccentricity 2.0 and semimajor axis — 3485 km). The
initial radius is taken far away from the planet where
atmospheric effects are not present. The initial tether
orientation is chosen so that the natural motion of the
system places the probe at a low altitude during
periapsis, where the drag effects are significant. The
energies of the system and of the individual particles
(the probe and the orbiter) are monitored to deter-
mine the point at which aerocapture is achieved. The
behavior of the system is shown in Fig. 4, where
dramatic changes in R and « occur at the time when
the energy of the system becomes negative (at approx.
1000 s). During the maneuver the orbiter reaches a
minimum altitude of 97 km while the probe descends
to an altitude of 45km. These results indicate that
aerocapture can be achieved while maintaining the
orbiter away from the sensible atmosphere.
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This possibility leads to some exciting implications
that may have significance in future space vehicles.
However some problems remain unsolved. Very large
tension forces, up to 20,000 N, are present. This
indicates that a strong tether is required, and with
present materials this implies great mass. Alterna-
tively, new materials may provide greater strength.
The forces also indicate that, as in the elliptic transfer
case, the rigid rod model is not entirely valid since
some transverse components and even compressive
components are found in the rigid tether. As men-
tioned before, the flexible tether analysis in [3] indi-
cates that the rigid tether model may be a good
approximation even in cases where the tether forces
at the masses are not consistent with a flexible tether.
Eventually the effects of flexibility must be included
in the analysis, but these initial results indicate that
aerocapture with tethers is possible.

7. CONCLUSIONS

The results obtained with the new tether model
indicate that the use of tethers in an atmosphere is
feasible for circular and elliptic orbits. For aerocap-
ture from hyperbolic orbit, the forces are very large,
but the behavior of the system is quite acceptable in
that the orbiter is maintained at a safe altitude.
throughout the aerobraking maneuver. The large
forces are of course closely tied to the physical
parameters of the particular problem studied here.
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