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Abstract. Although analytic solutions for the attitude motion of a rigid body are available
for several special cases, a comprehensive theory does not exist in the literature for the
more complicated problems found in spacecraft dynamics. In the present paper, analytic
solutions in complex form are derived for the attitude motion of a near-sy mmetric rigid
body under the influence of constant body-fixed torques. The solution is very compact,
which enables efficient and rapid machine computation. Numerical simulations reveal that
the solution is very accurate when applied to typical spinning spacecraft problems.
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1. Introduction

Mathematicians have been working on the problem of rigid body motion
for over two centuries. However, an analytic solution to the general prob-
lem of a rigid body under the influence of arbitrary external torques, is far
from complete. In fact, most existing analytic theories apply to highly ide-
alized cases, such as torque-free or symmetric bodies. Solutions have been
obtained for these and several other special cases by Euler, Jacobi, Poinsot
and others, and are reported by Leimanis (1965) and Grammel (1954). Un-
fortunately these solutions are hardly of practical importance to the more
complex problems encountered in spacecraft dynamics and control. In fact,
prior to the advent of jet propulsion, the problem of the self-excited rigid
body, that is, a body under the influence of body-fixed torques, was mainly
of academic interest, and most of the previous analytic theory was merely
concerned with the case when the applied torques are dependent on the ac-
tual orientation of the body. Furthermore, even for these simple cases, such
as the case of torque-free motion of a general rigid body, where an analytic
solution involving Jacobian elliptic functions has existed since the late 1800s,
most modern authors of classical mechanics texts have elected not to discuss
the details of the explicit analytic solution, in favor of the motion analogy
to an ellipsoid rolling on an invariable plane, first given by Poinsot (1851).

As a result of the small amount of attention that has been paid to the
development of a comprehensive analytic theory which treats the rigid body
motion, scientists and engineers have come to rely on numerical methods for
the solution of the problem. Even though such numerical solutions are easily

Celestial Mechanics and Dynamical Astronomy 51: 281-301, 1991.
© 1991 Kluwer Academic Publishers. Printed in the Netherlands.



282 P. TSIOTRAS AND J.M. LONGUSKI

found by computer simulations, analytic solutions can provide deeper insight
into the problem, and can be used in obtaining quick solutions over large
intervals of time, in error analyses, and in computer algorithms for on board
computations. Recently, new interest has been revived in the area of ana-
lytic solutions for the motion of spinning spacecraft. Analytical formulations
have been obtained for satellite attitude computations, which significantly
extend the classical torque-free and rigid body assumption of Poinsot mo-
tion (Cochran, 1972; Kraige and Junkins, 1976; Kraige and Skaar, 1977;
Cochran and Shu, 1983). Other authors (Junkins et al., 1973; Morton et
al., 1974) have also developed new formulations for Poinsot motion itself.
Current interest in the area of analytic solutions for spinning spacecraft is
carried on, mainly because they have been found to be extremely useful in
control problems and stability analyses associated with this class of vehi-
cles (Likins, 1967; Larson and Likins, 1973; Junkins and Turner, 1980; Gol-
ubev and Demidov, 1984; Branets et al., 1984; Winfree and Cochran, 1986).
Among the recent developments in this field we can briefly mention especially
the work by Larson and Likins (1974), where they obtained a close-form so-
lution for linearized equations in which transverse torques appear, but the
spin rate is constant, and also the work by Cochran et al. (1982) where an
exact solution was obtained for the free motion of a dual-spin spacecraft.
For a symmetric rigid body subject to body-fixed torques about its principal
axes a solution is given by Bodewadt (1952) and is discussed by Leimanis
(1965), but the solution for the orientation of the body in inertial space is
incorrect in these references, for reasons explained by Longuski (1984). The
case of near symmetry is dealt with by Longuski (1980) which includes an
analytic solution for the Eulerian velocities (which reduces to the exact so-
lution of Bodewadt in the case of symmetry) and an approximate analytic
solution for the Eulerian angles which provides the orientation of the body in
inertial space. The accuracy of the solutions has been tested, and the results
are reported by Kia and Longuski (1984). Price (1981), using Longuski’s
solution as a first order approximation, has developed a semi-analytic solu-
tion in the form of power series in one of the applied torques. Although the
series converge very rapidly, the method is limited to selected time intervals,
so it has short term validity. Van der Ha (1984) gives a perturbation solu-
tion for the attitude motion under body-fixed torques, based on the ratio of
transverse-to-spin-rotation rate as the small parameter, but his solution is
also valid only for short time intervals.

The scope of the present paper is to provide analytic solutions to the
problem of the attitude evolution of a near-symmetric rigid body under
constant body-fixed torques. The use of complex variables allows the solu-
tion to be expressed in a very compact form. The solution of Euler velocities
is given in terms of a complex Fresnel integral function, and it is ezact for
an azisymmetric body. For a near-symmetric body, the solution is valid when
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the product of the transverse angular velocities is small relative to the an-
gular acceleration about the spin axis. The solution for Euler angles is more
involved, due to the difficulty in evaluating certain integrals in closed form,
and it is limited by the assumption that the two angles defining the direc-
tion of the spin axis must remain small. As compared to previous related
results (Longuski, 1980; Price, 1981), the current solution also has the ad-
vantage, that it remains valid even for the case of despinning through the
zero spin rate neighborhood. This is a significant extension to the exist-
ing theory, as no other analytical solutions for the low spin rate case have
been reported in the literature. The accuracy of the solution is tested by
numerical simulations and comparison with the solutions of the governing
differential equations. Two cases are presented here, the first a spin-up ma-
neuver from 3.15 to 10 rpm, and the second a spin-down maneuver through
zero spin rate. Specific parameters were taken from the Galileo spacecraft
(in its all-spin mode), and the results reveal an excellent agreement between
the ‘exact’ numerical integration solution, and the analytic solution.

2. Solution for Angular Velocities

Euler’s equations for motion of a rigid body with principal axes at the center
of mass are

M, = Lo, + (Iz - Iy)wywz (la)
My = Lo, + (I; - I)w,w, (1b)
M, = Lo, + (I - I)wyw, (Lo

where M, M, and M, are assumed to be constant body-fixed torques, I,
I, and I, are the moments of inertia about the principal axes and wy, wy and
w, are the angular velocity components along the same axes. For a nearly
symmetric (about the 2 axis) rigid body I, = I, one can immediately solve

(1c) to obtain
w(t) = %— t+ wsy, wz(0) = w,g - (2)

z
The approximation (2) is not only valid for nearly symmetric bodies, but also
for the important practical case of spin-stabilized vehicles (such as rockets
and spacecraft), since then both Euler velocities wz, and wy tend to remain
small so that their product wyw, can be discarded in a first order approx-
imation. Such a case implies that the spinning is about the principal axis
z with constant torque M, whereas M, and M, act as disturbance torques
lying in the transverse plane. If the magnitude of the disturbance torques
M and M, is small compared to the axial torque M., as is often the case,
then it is safe to discard the product of the transverse angular rates wyw,, as
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it will indeed be much smaller than the axial spin acceleration w,. In fact,
Kia and Longuski (1984) have found through numerical simulations, that
whenever (M2 + M2)'/2/Lw?, < 1, the approximation (2) tends to remain
valid even for asymmetric bodies. This explains why w, and wy are often
referred to as angular velocity errors.

Substituting (2) into (1a) and (1b) provides

. M, .

Mz = [pwy + (Iz ~ Iy)wy <T t+ wzo) (33,)
: M,

My = Lwy + (I — I:)w; (T t +wz0) (3b)

z

Note that although we have assumed I, = I, for the solution of w,, we have
retained the distinction between I, and I, in the equations for w, and Wy.
This appears to be a trivial extension of the symmetric rigid body case;
however, it will be shown that this assumption has significant consequences
to the accuracy of the solution.

Rearranging terms, Equations (3) can be written in the following conve-
- nient form

Q. + (At + B)Q, = F, (4a)
Q, — (At + B)Q, = F, (4b)
where

Q. = wg ky, Qyzwy\/z;a
F:z: ='(Mz/lz)\/k-';’ Fyz(My/Iy)\/k;
k:z: = (Iz - y)/Ix ’ ky = (Iz - I-’L‘)/Iy

A=ka, B=kg, a=Mz/Iz, f=wso, kz\/z'zzy-

The above definitions hold whether the spin axis ~ here assumed to be 3 -
is the one which corresponds to the maximum or the minimum moment of
inertia. Without loss of generality, we will assume that the spinning is about
the axis of the major principal axis of inertia. The case where spinning is
about the intermediate moment of inertia will not be considered here, since
it will always result in unstable motion.

Introducing the complex variables

Q=Q,+iQ,, F=F,+iF, | (6)

(8)

we can combine (4a) and (4b) into the following complex scalar equation

Q-i(At+B)Q=F. | (7)
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This is a linear differential equation with a time-varying coefficient. For
the constant spin-rate case it reduces to a linear time-invariant differential
equation, which can easily be solved, by standard methods of operational
calculus, for several special cases of forcing functions (Kurzhals, 1967). Phys-
ically Q represents the trace of the total transverse rate velocity vector in
the skewed body-fixed zy plane. The term skewed arises from the fact that
() is not the actual transverse velocity vector — this would be we + twy —
but it is related to it by (5). That is, when the Q vector traces a unit circle
in the zy plane, the actual velocity vector traces an ellipse with semiaxes
kz and ky. This difference is the result of the assumed asymmetry, and it
vanishes for an axially symmetric body.
It can be easily verified that the solution of (7) is given by

Q) = Qoexpli(} A2+ Bt +C)] +
t
-r1 2 i 1 2 )
+exp[i(} 4+ Bt + )| F [exp[-i(3 A + Bt 4+ 0))dt (8)

where the first term of the right-hand side of the equation represents the
homogeneous part of the solution, and the second term represents the par-
ticular part due to the forcing function F. For reasons that will become
obvious later, we choose the constant C to be equal to
B? :
C = 9
24 M
Then § is related to the initial condition on Q(t) as follows

2(0) = Qo exp( ZB;) ' (10)

Thus, given the initial conditions w;(0), wy(0) and w,(0), and the mass
properties of the body k; and ky, one can use Equation (10), in order to
determine Qo. Note from (8), that the choice of C' affects only the homoge-
neous part of the solution, so we can always pick the value of the constant C'
arbitrarily, as long as we.deﬁne the relation between the constant Qg and the
initial condition (0) in a consistent manner, as done here in (10). With this
choice of C, and recalling that F is constant, Equation (8) can be rewritten

Q(t) = Qoexp[ Léf;;)i] +
+ expv[i (A%A—Bili] F / exp [—i (—A—ti;—B;)i] dr . (11)

0
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In order to evaluate the integral involved in (11), consider the following
transformation

) .
-t (12)
then
(AT + B)dr = s3do and (AT + B) = s34/2|A|o (13)
where ‘ |
s3 =sgn(A) and sy =sgn(Ar + B) (14)
and sgn(.) is the signum function, defined by
| 1 ifz>0
sgn(z) = 0 ifz=0
| -1 ifz<0
Note that s3 = +1 corresponds to a spin-up maneuver, and s3 = —1 cor-

responds to a spin-down maneuver. The case s3 = 0 corresponds to constant
spin-rate and it will not be considered here. Under the previous definitions,
the integral involved in (11) becomes -

I, = jexp[—i M] dr =

. 2A
o1
1 B\ exp(—iszo
= Al / sgn(r + Z) —(\/_%) do (15)
o0 . .
where
At + B)? B?
gy = -('——‘2-# and gg = ml' (16)

Integrals of the form

, 1 f cos(7) 2) = 1 7 sin(n)
Cz((l?) = \/El: J ﬁ dTl ’ 52( )"" \/2—7!_ J \/1—7 d’? (17)

are called Fresnel integrals. They have been extensively studied and their
values have been tabulated (Abramowitz and Stegun, 1972). If we now define
the complex Fresnel integral function by

exp(—1s30)

1 . —_ 1 f
E(z)=Cz($)~z3352(z)—\/2—7rO/ G

do - (18)
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we can readily evaluate [, as

= B\ _(At+ B)? B\ _: B?
I, = \A;T{sgn(t+z) E[(—Q_TAI*)]—S@(Z)E[HAI]} =

= ILAI [s1E(01) — 50 E(00)] (19)
where
s1 =sgn(t+ B/A) and so =sgn(B/A) . (20)

3. Evaluation of Fresnel Integrals

Fresnel integrals are notorious for their difficulty in approximating over a

large range of their argument. However, an excellent approximation based on

the 7-method of Lanczos (1956), and given by Boersma (1960) is satisfactory.

According to this method, two approximations are used, one valid for small

values of the argument, and the other valid for large values of the argument.
If we define the function

T

e—it :
= | —==dt = Cy(z) — i, '
(@) / 5 4= Ca(@) - iSy(2) (21)
then
flz) = i( +1b )(f)"w2 | for0<z<4 = (22
z)=¢e n=oan ) (5 or0<z< - (22)
1—i e _ 4\n+1/2
f(z) = —— +e E (en + idy) (-2-:) forz>4. (23)
n=0

The numerical values of the coeficients @n, bn, cn and d, are given by
Boersma (1960), and for the reader’s convenience, are reproduced here in
Table I. The maximum error is 1.6 x 10~2 for the first approximation and
0.5 X 10~ for the second approximation. The complex functions E(z) and
f(z) are related by

flz) ifsz=+1

Blz)= { f2) ifss=—1 (24)

where the asterisk indicates the complex conjugate. The advantage of this
approximation is that it provides both Fresnel integrals in complex form, as
required by Equation (19). It is then an easy matter to separate the real
and imaginary parts, if desired.
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Numerical values of coefficients for the Fresnel Integral computation
(Boersma, 1960). -

ao = +1.595769140 &, —0.000000033 co 0 do

ay = —0.000001702 by, = +4.255387524 c¢1 = —0.024933975 d; = 4+0.000000023
az = —6.808568854 b, = —0.000092810 ¢z = +0.000003936 do = —0.009351341
a3 = —0.000576361 b3 = —7.780020400 c3 = +0.005770956 d3z = +4-0.000023006
ay = +6.920691902 b, = —0.009520895 ¢4 = +0.000689892 dy = +0.004851466
as = —0.016898657 bs = 45.075161298 c¢5 = —0.009497136 ds = +0.001903218
ag = —3.050485660 bsg = —0.138341947 ¢ = +0.011948809 ds = —0.017122914
ar = —0.075752419 by = —1.363729124 c7 = —0.006748873 d7 = +0.029064067
as = +0.850663781 bs = —0.403349276 ¢cs = 40.000246420 ds = —0.027928955
ag = —0.025639041 by = 4+0.702222016 cg = +0.002102967 dy = +0.016497308
a10 = —0.150230960 byo = —0.216195929 cj0 = —0.001217930 d;0 = —0.005598515
a;; = +0.034404779 bu*‘—" +0.019547031 c¢;; = +0.000233939 dy; = +0.000838386

Other approximations for Fresnel integrals and for integrals of Fresnel

integrals, using asymptotic and/or series expansions or rational functions
can be found in Abramowitz and Stegun (1972).

4. Solution for the Euler Angles

If we use a 3-1-2 Euler angle sequence to describe the orientation of the body-
fixed reference frame, with respect to an inertially fixed reference frame, the
following kinematic equations hold:

Pz = Wz COS Py + W, sin @, (25a)
Py = wy — (W; €OS @y — wy sin @y) tan @, (25b)
@z = (Wz COS Py — wy sin ) sec py . (25¢)

A small angle approximation for ¢, and ¢, reduces this system of equations
to

.

Pz = Wg + Py, (26a)
L Py = Wy — Prw; ' (26b)
Pz = Wy — Py (26¢)

If we also assume that the product ¢,w, is small compared to w,, we can
immediately solve for ¢, to get

t

0s(t) = / w,(r)dr . (27)

0

+0.199471140 -
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Note that the differential Equations (26a) and (26D) are independent of ¢,,
hence, the accuracy of the solution of ¥z, and ¢, will not be affected by
dropping the term —¢,w, in (26c). If, however, one wishes a more precise
solution for ¢, it may be possible to reinstate the ignored term as a per-
turbation. . ‘
Using the expression for w,(t) from (2), one can readily perform the
integration for (,(¢) to obtain '

P
<

I,

Introducing the complex variables

Saz(t) = % t2 + wzot + @20 , (Pz(o) = $¥z0 . (28)

P=¢rtipy and w=w;+iw, (29)
we can combine (26a) and (26b) into a simple complex scalar equation
P +iw o =w. (30)
The solution of (30) has the same form as for the case of the angular veloc-
ities, where now the forcing term is w(t). The solution is given by '
©(t) = poexp [—i(% at? + Bt + 7)] +
t

+ exp [—z(% at? + Bt + 7)] /w(r) exp [z(-;- at? + Bt + 7)] dr .
0
(31)

Again, the choice of v affects the homogeneous part in (31) so we can choose
the constant v and the initial conditions such that

2a

Then we can rewrite (31) in the form

2 2
v = 5 » 9(0) = o exp(-i gg) : | (32)

w(t) = saoexp[—igai;{.ﬁ)j] +

+ exp [—z’ Lat%aﬁ)z] / w(T)exp [z (—(1—%'3—)2] dr . (33)

Recall that w(?) = wy(t) + iwy(t) and Q) = Q2(t) + iQy(t). Thus, we can
express the angular velocity w(t) in terms of Q(¢) as follows
0) HO) _ A +20) | o) -2
g T T s 2k
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Using this relation the integral in (33) can be rewritten as

t
I, = /w(‘r)exp (aTQZﬂ)z]dr =
0

= ———_‘/k_“L‘/EI ‘/E;_‘/EI

2 \/EE o1 T _2_—"—\/5];—;— ) (35)
where
_ (et + f)?
I,, = | Q(r)exp [z 5a ] dr  and

0/ r
: . (36)
0/

Let A = 1/k, then from (5) & = A and B = AB. Using the already known
solution for €}(¢) and the independent variable o introduced in (12), we can
rewrite the integral [, as

t

| I,, = [Qo - F \/%SOE(UO)] / exp [z(/\ + 1) (—A%-)-Z-] dr +

0

' F\/;/ exp[i0+ ) A g (7.4 2 B(oyar an

It is not difficult to show that the first integral in the above equation is
easily evaluated as in (15), with an obvious change of independent variable,
as follows

t

/exp[i(z\+1)(—’%£ﬁ] dr =

= w/W;\rTn (LB [(A + Dou] = 5o B [(A + )oro] - (38)

The evaluation of the second integral in (37) is more involved. Use the
transformation (12) to rewrite the integral in the form

-t

/ exp [1(/\ +1

0

) (—A:—ﬂ] sgn(‘r + B) E(o)dr =

[Wi(A,01) = Wi(h,00)] (39)

1
V2[4]
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where

i Wl(/\,IE) =/ exp[i33(/\+ 1)77] E(’I) d’?

40
J N (40)
is a function to be evaluated later. Then, I,, takes the final form
T
I<P1 = [QO - F m SQE(UO)] .
T . .
| : ,/m{le [(A+ 1)o1] - soE [(/\+1)00]} +
. F [x
+ W ﬁ[W](A,U])—Wl(A,Go)] . (41)
In a similar way, one can show that the integral I, is given by
E 3 * 7r *
I, = [0~ F raj oF (00)] -
T * * »
. /m {$LE" [0 = D] - soB"[(A = D)oo} +
[T
+ m 5 [Wz(/\,dl) - W)(z\,d’o)] (42)
where
J V1

The evaluation of the integrals W1(A,z) and Wy(\,z) will be discussed
next. Without loss of generality, and for the sake of brevity, we will consider
only the case when s3 = +1, since for the case s3-= —1 one can simply
substitute for Wi(A,z) and Wy(A,z) in (41) and (42) their complex conju-
gates. First recall that the expression for E(z) involves, according to (24),
two different approximations, one valid for 0 < z < 4 and the other valid
for z > 4. Thus, we can rewrite Wi(A,z) for 7 = 1,2 as

Wi\ z) 0<z<4
Wi = e + wra 4 4
J( ? )+ J( ,iB) z>
where

V1

4
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Wél(/\,x)=/ exP[i33(’\\’;ﬁl)"7] E*(U)d

After substitution of (24) into (40) and (43), and integrating term by term,
we get for both Wj(A, z) and Wy (), z) that

(46)

11 . ;
/ [an — i(~1)7b,]
WiAz)=1 Z% o I (z) for0<z <4 (47)
and
1+ ¢(—1) [ 2 ]1/'2

2 A= (=1)

B A= (-1)a) - B[ - (=174} +

Wi z) =

11
+2 ) [en —i(=1)d,]4"[!(z) forz >4 (48)
n=0

where 7 = 1,2, and where

I(z) = / exp(iAn)n"dy n=0,1,2,..,11 (49)
" exp(z/\u _
I"(z) _/ T n=0,1,2.,11. (50)
a

These sequences of integrals can be evaluated recursively, using the relation-
ships

L(= )——TeXP(z/\z)H I_y(z) n=1,2,.,11 (51)
I(z) = - exl:z(’;\z)l 1,';_1(2:) n=1,2,..11. (52)

The first integrals of the above sequences are

| Ii(z) = / exp(iAv;)dn = - -j{ [exp(iAz) — 1] | (53a)
0

I(z) = / i‘l’%ﬂ dn = [Ci(Az) - Ci(M)] + i-[Si(/\'z) — Si(M)] .

(53b)
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Where Si(z) and Ci(z) are the well-known sine and cosine integrals defined
by

Si(z) = / i"t(t_)dt  Ci(z) = 7 + In(2) + / fP-S(Lt)‘—ldt (54)
(4] 0

and 7 = Euler’s constant (= 0.57721...). The evaluation of the sine and
cosine integrals in (54) can be easily performed uniformly, by rational ap-
proximations (Abramowitz and Stegun, 1972). The maximum error e(z) for
these approximations is given by |e(z)] < 5 x 10~7.

We should mention in passing, that one should be careful with the def-
inition of the complex function E(z) since its argument should be always
positive. It is a well-known fact however, that the following relations hold be-
tween the principal moments of inertia of an arbitrary rigid body (excluding
the planar case)

L+1,>1L, L+I.>I,, L,+I,>I,. (55).

From the first and second equations, along with the definitions for kr and
ky, we get that

~1<k;<1 and —-1<k,<1. (56)

As mentioned at the beginning, for a rigid body spinning about one of the
two stable principal axes, k = \/kzk, > 0. Hence, the parameter k satisfies
the inequality 0 < k < 1, and since A = 1/k, we have

l1<A< . (57)

As a consequence, both A+1 > 0 and A — 1 > 0 and the arguments of E(z)
are well-defined in Equations (41), (42), and (48).

5. Discussion of the Solution

Taking advantage of the special symmetric structure of the problem, we
have used a complex analytic approach to derive analytic solutions for the
problem of the attitude motion of a self-excited rigid body. The use of com-
plex variables allowed for the formulation of the solution in a very compact
form, which is appealing especially for machine computations. This is very
important, since it appears that for future applications, realistic compact
- analytical expressions modeling the attitude evolution, will become vital in
on board attitude control software. Although complications arise from the
sign functions in the solution, these functions were included in order to give
the solution in complete form, i.e., a solution for both Eulerian rates and
angles, valid for both spin-up and spin-down maneuvers, and valid also in
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the critical neighborhood of zero-spin rate. This is the first time that such
a complete solution for this problem is reported in the literature, as far as
the authors know.

In complex form the analytic solutions are considerably shorter than pre-
vious related results, but they are still quite lengthy for hand computations.
Nevertheless, definite conclusions can be drawn about the asymptotic be-
havior of the solution. By keeping in the solution for example, only those
terms that create secular effects, one can capture the essential behavior of
the motion, thus gaining invaluable insight into the nature of the problem.
In fact, it has been shown in the past that such simplified procedures can be
extremely successful in the study of attitude motion and control of modern
spacecraft (Longuski, 1989).

6. Numerical Examples

The application of the theory is illustrated by means of practical examples,
such as spin-up or spin-down maneuvers of the Galileo spacecraft. Two cases
are examined. The first case is a spin-up maneuver from w,(0) = 3.15 rpm
to w(ty) = 10 rpm. The second is a spin-down maneuver from w,(0) = 3.15
Tpm to w;(ts) = —3.15 rpm. For both cases, the following initial conditions
are assumed '

wz(0) = wy(0) = 0 (58)
z(0) = 9y (0) = ¢2(0) =0 . (59)

Representative values for the mass proper‘ties of the Galileo spacecraft (in
the all-spin mode) are

I; = 2985 kg-m? , I, =2729kgm?, I,=4183kg-m?. (60)

In general, transverse torques arise during spin-up or spin-down maneuvers,
due to error sources such as thruster misalignment or thruster mismatch.
The Galileo spacecraft is a rather extreme example of a spacecraft that uses
a single thruster for the spin-up and spin-down maneuvers. Moreover, the
center of mass does not lie in the plane of the applied thrust. As a result,
there are significant torques about all three body-fixed axes. The torques
generated about the body axes are given by

M;=-1253 Nm, M,=-1494Nm, M, =+13.5 Nm (61)

where the plus sign in M, corresponds to spin-up, and the minus sign to
spin-down. -
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6.1. CASE 1: SPIN-UP FROM 3.15 TO 10 RPM

The analytic solutions for the attitude motion are compared to the ‘exact’
solutions which are found by numerical integration of Equations (1) and (25).
Figure 1 compares the exact solution for w,(t) with the analytic solution.
In Figure la both exact and analytic solutions are displayed, but they are
indistinguishable from one another. Their difference, presented in Figure
1b, has oscillatory behavior, with a linearly increasing envelope. The same
plot indicates that the analytic solution for w,(t) deviates from the exact
solution by only about 0.1%. Similar results were found also for the solution
for wy(2). Figure 2 demonstrates that the linearity assumption (2) for wz(t)
is reasonable, since the error indicates a discrepancy of only about 0.01%
from the exact solution.

In Figure 3, the exact solution for .(t) is compared to the analytic
solution. The discrepancy between the exact and analytic solutions is not
apparent in Figure 3a, but Figure 3b, which displays their difference reveals
an error reaching 0.5%. In Figure 4 the analytic solution for ,(t) is shown
to be within about 0.01% of the exact solution.
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6.2. CASE 2: SPIN-DOWN FROM 3.15 ToO —3.15 rPM

The second example examines the very important case of despinning, pos-
sibly through the region of zero spin rate. Low spin-rate, in conjunction
with the nonlinear rate coupling effect inherent in the Euler equations, can
have catastrophic consequences, as was vividly demonstrated by the GEOS-1
satellite experiment (Van der Ha, 1984). ’
Figures 5a and 5b reveal that the assumption w;(t) = M, /I, +w,g still re-
mains valid, where the error with respect to the exact solution has increased
to a maximum of only about 1%. The solutions for wy(t) (shown in Figure
6) and wy(t) are still very accurate, up to the point when w,(2) crosses the
critical zero spin rate value. At very low spin rates, however, the transverse
torques create large angular displacements, and the small angle approxima-
tion for ¢;(¢) and ¢,(t) is no longer valid. The kinematics equations have
entered the region of nonlinearity, which is clearly illustrated by the phase
shift in Figure 7. The solutions for ¢z(t) and @y (t) are not affected by
©z(t), as mentioned earlier. On the other hand, however, errors introduced
in the solutions of ,(t) and ¢, (t) do affect the solution for ¢z(t). The per-
turbative effects of the nonlinearities are clear in Figure 8, where the exact
solution for ¢, (t) departs from the parabolic solution (28) after crossing zero
spin rate. From this point of view, a nonlinear method, such as Poincaré’s
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or Lindstedt’s method of small parameters (Blaquiére, 1966), could prove to
be useful, in a second order approximation of the solution. Regardless of this
fact, the solutions are still qualitatively correct, and the analytic solution
predicts the time history of the attitude orientation very closely. The degra-
dation of the accuracy of the solution at the low spin rate region should be
expected: Further simulations, however, (not presented herein) have shown
that low spin-rate by itself is not a matter of concern. Rather the relative
magnitude of the transverse to the axial torques, Te. (M2 + Mg)l/ 2/IM,,
acting during the time that the body is in the neighborhood of zero spin
rate, has proven to be the major factor for the inaccuracy of the analytic
solution.

7. Conclusions

Analytic solutions have been derived for the attitude motion of a spinning,
self-excited near-symmetric rigid body. The complex representation enables
the solution to take a compact form, especially suitable for implementation
in maneuver or attitude control software. The solution assumes exact axial
symmetry in order to write the solution for the angular velocity about the
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spinning axis in a linear form, but keeps the distinction of the moments of
inertia in the other two equations for the angular velocities. A small angle
approximation allows the Euler angles to be given as the solution of a linear,
time-varying system with the expression for the angular velocities acting as
a forcing function. Numerical simulations reveal that the solutions are very
accurate in describing the rotational motion-of a typical spacecraft. Current
and previous research indicate that such analytic solutions are extremely
helpful in capturing the fundamental behavior of the motion and provide
insight into the mechanics of the motion, which cannot be derived from
numerical solutions.
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