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Abstract

Future missions may involve the use of acrocapture for planetary exploration and atmospheric
braking for acroassisted orbital transfers. When only one pass through the atmosphere is consid-
ered to deplete the speed to the desired value at exit, the exit conditions are very sensitive to the
entry angle. Near a certain critical entry angle, a slight modification of the entry angle may
change a skip trajectory into a crashing trajectory. In this paper, we have derived a generalized
Yaroshevskii’s system of equations for analyzing ballistic entry at super-circular speeds. Then,
by an artifical introduction of a small parameter, the nonlinear system can be integrated by
Poincaré’s method. The second-order theory displays explicitly the influence of the ballistic
coefficient, entry speed and entry angle on exit conditions. The analytic solution is in excellent
agreement with the numerical solution. The critical entry angle at which the vehicle fails to skip
out can be predicted by an explicit formula to within one hundredth of a degree.

Introduction

When an orbital maneuver is required and there is an atmosphere-bearing celestial
body in the vicinity, it may be advantageous to utilize aerodynamic force in effecting
the maneuver to reduce the fuel consumption as compared to the cost for a purely
propulsive maneuver. Examples of aeroassisted transfer include orbital transfer from a
high orbit to a low orbit with or without plane change, and aerogravity capture to put
a spacecraft into an orbit around a distant planet. A comprehensive survey of aero-
assisted orbital transfer has been presented by Walberg [1).

The operation always includes one phase of atmospheric fly-through along which the

_speed of the vehicle is reduced from an initial entry speed V, to a final exit speed V;, -
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while the flight path angle varies from a negative value, 7., to a positive value, . An
accurate prediction of the final values, V; and v, is important for guidance and naviga-
tion purposes and also for an evaluation of the characteristic velocity involved in the
overall aeroassisted maneuver.

It is the purpose of this paper to present an analytic investigation of this important

- skip phase for the case of constant ballistic coefficient. Extensive numerical in-
vestigation has been carried out for this type of ballistic skip trajectory with and without
drag modulation [2]. With only the drag force involved and with the effect of the
rotation of the atmosphere neglected, the motion is planar.

For constant ballistic coefficient, the following phenomena have been observed. The
speed ratio, V;/V,, decreases as the drag parameter, SCp/m, increases. Here S, Cp, and
m are the reference area, drag coefficient and mass of the vehicle, respectively. The
speed ratio also decreases when the entry speed decreases. The dependence of the exit
condition on the entry angle is pronounced. For a shallow entry trajectory the exit speed
is high, while the exit angle is nearly equal to the negative of the entry angle. As the
entry angle becomes steeper, the exit speed is significantly reduced for the same drag
parameter and entry speed.

Near a critical entry angle y¥, the exit angle decreases rapidly to grazing exit,
v = 0. The ballistic trajectory is sensitive to change near this critical value. With a
slight modification of the entry angle, the trajectory may change from a skip trajectory
to a crashing trajectory (Fig. 1).

Since, in optimal aeroassisted transfer, a shallow exit trajectory will reduce the
characteristic velocity for orbit insertion, it is of interest to have accurate analytic
expressions for the exit variables as functions of the entry conditions and drag para-
meter. Once this dependence is made explicit through pertinent analytic formulas and
the phenomena mentioned above are clearly understood, an optimal strategy for adap-
tive guidance of a ballistic skip trajectory can be soundly formulated.

In the following sections we will transform the equations of motion into dimen-
sionless form and integrate these equations using Poincaré’s method of small parame-
ters to arrive at a second-order analytical solution for the altitude and flight path angle
variables. These analytic solutions will then be compared with the results from numer-
ical integration for both shallow entry angles and entry near the critical angle.

Dimensionless Equations

Using the standard notation with r for radial distance, V for speed, ¢ for time, p for
atmospheric density and g for gravitational acceleration, we have the following planar
equations of motion for flight inside the atmosphere of a non-rotating planet.

dr/dt =V sin y ¢))
dV/dt = —pSCpV*/(2m) — g siny )
Vdy/dt = —(g — V*/r) cos y 3)

The atmosphere is assumed to be locally exponential according to the relation
dp = —B(r)pdr (4)
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FIG. 1. Geometry of Ballistic Skip Trajectory with Behavior Near Critical Entry Angle, y*.

where B is the inverse scale height. Using R as the radius of the atmosphere, we make
the assumption g (r) = g(R) and V?/r = V?/R. It can be shown that the error commit-
ted by this assumption is of the same order as the one committed while neglecting the
Coriolis force associated with a rotating Earth. Furthermore, for a flight path angle of
only a few degrees, we neglect the small component of the gravitational acceleration,
—g sin 7. This is invariably the case in the present study since the critical entry angle
v#, which is the steepest flight path angle, is always small.
By using the variables

Z = pSCom™\R/B)" )
¢ = —(BR)" sin y (6)
x = log(V3/V?) )

to denote the altitude, flight path angle and speed, respectively, and the parameter a,
given by

a = gR/VI =Vi/V; ®

we can transform the equations of motion into dimensionless form as
dZ/dx = ¢ €
dp/dx = (ae* ~ 1)Z7" cos? y (10)

where the equations corresponding to equations (1) and (3) have been divided by
equation (2) to remove the time. Consistent with the small angle approximation, we
integrate the equations in the form

dZ/dx = ¢ (1)
d¢/dx = (ae* — 1)Z™! (12)
with the initial.conditions
x=0, Z(0)=e¢e=pSCom'(R/B)"”, ¢(0)=—(BR)?siny.=c (13)

We notice that x is the speed variable and is monotonicall’y increasing, while ¢ is the
dimensionless drag parameter. The effect of the entry angle is denoted by the value
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¢ > 0. In equation (8) the effect of the entry speed is represented by the parameter a,
with @ = 0.5 for parabolic entry and increasing to @ = 1 for circular entry. Of course,
when a < 0.5 we have hyperbolic entry which is applicable to the case of planetary
aerocapture. The parameter SR is Chapman’s atmospheric planetary parameter and for
the Earth’s atmosphere it has the value SR = 900. In deriving the equation for Z we
have used a varying 8. By neglecting a quantity of the order of 1/8R we have the
resulting equation which is the same as if 8 had been considered as constant. Discussion
of this rather subtle point can be found in [3]. Equations (11) and (12) constitute the
generalized Yaroshevskii’s equations for supercircular ballistic entry [4]. It has been
verified numerically that for circular entry (@ = 1) the numerical integration of equa-
tions (11) and (12) provides nearly identical results as compared to the numerical
solution of the exact equations (1)-(3) [5]. This has also been verified for the case of
parabolic entry (@ = 0.5). Hence, in the following we shall integrate analytically the
system (11), (12) and compare the results with its numerical solution.

The simplest way to integrate the generalized Yaroshevskii’s equations is to use the
conventional power series solutions. In using this approach, however, the radius of
convergence of the series is small and the solution obtained is designed for use with
small variations in the speed. To extend the range of validity of the solution, we shall
use Poincaré’s method by artificially inserting a small parameter. For this purpose, we
make the final change of variables

y=2/e, t=x[e, d()fdr=() (14)
to obtain the equations

Y =6, ¢ =(ae"~ Dy (15)
with the initial conditions
=0, y0) =1 ¢0)=c (16)
For the time of flight, we add the uncoupled equation
dé/dr = o'y ! Y
where 0 is the dimensionless time, given by
0 = (Bg)"™t (18)

A parameter of interest along the ballistic trajectory is the longitudinal deceleration,
which can be expressed as

a/g = £(2a)7'(BR)’ye™ (19)
By maximizing this function we have the relation at the point of peak deceleration
¢ = ¢y (20)

Expressions can also be found for various heating rates and conditions where the peak
heating rates occur.

The altitude variable has been represented by the dimensionless atmospheric density
y, normalized with respect to the density at the entry altitude (taken as k, = 120 km).
The variation of the linear altitude & is simply

B(h — h,) = BAh = —logy @1
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Integration by Poincaré’s Method

We first integrate equations (15) using Poincaré’s method of small parameters. By
noticing that the drag parameter ¢ is of the order of 1073, we seek solutions of the form

Y=Yt eyt eyt - (22)
d=¢do+ ep + ¢+ - (23)
with the initial conditions
¥(0) =1, »n(0) = »0)=---=0 (24)
¢0(O) =c, $:(0) = $(0)=---=0 (25)

Upon substituting into equations (15) and equating coefficients of like powers in g, we
have the systems of equations

Yo = o (26)
¢ = —(1 ~ a)/y, 1))
i =é (28)
¢i = (1 = ay/¥ + ar/y, (29)
Y2 = ¢2 (30)
¢: = (1 = a)n/ys = am/y§ + at?/2y, = (1 — a)yi/% IV
For the zeroth order solution, we write the equation
dyo/dpo = —yebo/(1 — @) - (32

which, upon integration, provides the variation of the altitude as a function of the flight
path angle

Yo = exp[(c? — ¢})/5] (33)
where, for convenience of notation, we have put
=21 - a) (34)

The speed, which is represented by the variable 7, is found by substituting for y, from
equation (33) into equation (27), which upon integration provides

T = (m/8)" exp(c?/8) [erf(cd™"?) — erf(¢od~"?)] (35)
Here the error function, which is a tabulated function [6], is defined to be

X

erf(x) = 2712 f e “dt (36)

0
The zeroth order solution is adequate for high-speed entry, where the parameter « is
not near unity, with shallow flight path angle. The vehicle exits when y, = 1, and as

a consequence, in this approximation the exit angle is equal to the negative of the entry
angle, that is, ¢, = —c.
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To inélude' the effect of variation of the speed, we consider the first order system
equations (28) and (29), written as

%y — (1 — a)y, = ayer (37

It is easy to verify that the solution of the homogeneous system is
» = By + Bz()’o = ¢o1) (38)
¢1 = —(1 — a)Byi" + (1 ~ @) B;7y5" (39)

By varying the parameters B, and B, and forcing the solution, equations (38) and (39),
to satisfy the complete system, equations (28) and (29), we have the equations

B| = 2a8 oty — 7) , (40)
B; = 2ad '¢ys" 41)
These quadratures can be performed by integration by parts and we now have
B, = —2ad ¥y, — ¢o1)* + A, (42)
B, = ad7't + 2a872¢po(yo — ¢oT) + A (43)

By substituting into equations (38) and (39) and evaluating the constants of integra-
tion, A, and A,, using the initial conditions from equations (24) and (25), we have the
first order solution

Y = 2a8 %Py + 287 %k (yo — ¢o1) (44)
$ = a8kt — 1)yg' + a8 (3o — $o7) (45)

where, by definition,
k=(1-a)—c (46)

The integration of the second-order system, equations (30) and (31), is performed in
the same way as with the first-order system, equations (28) and (29), but the quad-
ratures involved are much more elaborate. The final results are

y2 = 2087y — $om)[(1 + @) + (1 — a)7?]
+ ad¢orla + (8/6)(a + 2)7*] — ad(a + 2))3
— 87kt — )% + ad %y,
~ 6ad*a + 2)¢fK(do) — K(c)] (47
¢z = 2a87H(yy — PoT)T + ad3pfa + (1 - a)(a + 2)77]
+ (@/6)87*1y;'[3(a + 2) + (1 — a)(4 — a)7?]
+ 0?87kt — 1VPays? + (a/2)87'y, + a8 %y
— 22?87 (kr — Dys'lk + (1 — a)7]
+ 3ad7(a + 2)y;'[K(do) — K(c)]  (48)

where, by definition, _
K(¢o) = (87/12)"? exp(3c?/8) erf[(3/8)" ] (49
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Poincaré’s method of integration with a small parameter is a uniformly convergent
scheme, but since the equations generated are based on the series expansion of e*", the
solution to the second order is restricted to the range of speed where er is small. We
notice that if 77 is the final value, the speed ratio is

Vi/V., = exp(—x;/2) = exp(—e7/2) (50)

By the solution for 7, equation (35), with the approximation ¢(7) = —c, we can see
that a small 7; requires high speed entry (small a) and a shallow entry angle (small ¢).

Numerical Example

In the numerical applications of the second-order solution, ¢, is used as the indepen-
dent variable which monotonically decreases from the initial value ¢. For each value
of ¢, we compute the speed variable 7 and subsequently the flight path angle variable
¢ and the altitude variable y.

As an example, we consider the case of parabolic entry, @ = 0.5, with a ballistic
parameter & = 0.0005. The exact numerical integration of equations (15) has been
performed using various entry angles Ye = —1°, —2°, etc. The results are presented in
Figs. 2 through 5.

Figure 2 presents the variations of the dimensionless linear altitude, 8 Ah =
—log y, as a function of the flight path angle for the case of small entry angles,
—7¥. = 3°. As expected in this case the second-order solution is very accurate. To the
accuracy of the plot we have simply used the zeroth order solution. By equation (33),
this simple analytic solution represents in the space (y, B Ah) the trajectories as a

70

ﬁBAh

—— Numerical solution

® Equation (33)

FIG. 2. Ballistic Skip Trajectories with Parabolic Entry at Small Angles. Case of ¢ = 0.0005.
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FIG. 3. Ballistic Skip Trajectories with Parabolic Entry at Large Angles. Case of ¢ = 0.0005.

family of parabolas. If the second-order solution is used, for the case of y, = —-3° the
difference in linear altitude is less than 50 meters at the exit point.

At larger entry angles, there is a drastic change in the behavior of the trajectory. This
is shown in Fig. 3, which plots the variations of the dimensionless altitude as a function
of the dimensionless time, (Bg)"*t. The critical entry angle y* is between the values
—4.51° and —4.52°. The sensitivity of the trajectory near this critical value is obvious.
While at y, = —4.51°, the vehicle still exits at an angle 9 = 0.545°% by increasing
—7, by one-hundredth of a degree, the vehicle fails to exit while reaching a maximum
altitude at a point 20 km below the top of the sensible atmosphere. The effect is due
to the larger drag force along a lower trajectory. '

Figure 4 presents the variations of the flight path angle as a function of the speed
variable 7. Along a skip trajectory with small entry angle, the flight path angle
monotonically increases, with y; slightly less than the absolute value of ., as shown
in the figure for the case where —7, = 4°. When the entry angle y. approaches its
critical value y¥, the exit angle decreases rapidly to grazing exit, ¥ = 0. When
—1v, =< 3°, the second-order solution is nearly identical to the numerical solution. At
larger entry angles the second order solution has a limitation which reduces its range
of application. This is because for the analytic solution, by virtue of equation (35), the
variable 7 has an asymptotic value when the error function becomes unity, and the
solution cannot be extended beyond this value. As a rule, the second order solution can
be used for trajectories with an entry angle up to one degree away from the critical
entry angle. For the case of entry angles near the critical value, we shall derive in the
following section an alternate solution in equation (62). This solution is shown in small
circles in Fig. 4.
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FIG. 4. Variation of the Flight Path Angle as a Function of the Speed Variable.

In general, for all entry angles up to the critical value y¥*, the second-order solution
is accurate up to the lowest point of the trajectory. This is sufficient for the computation
of the peak heating rate and the peak deceleration, since they both occur during the
descent. To make this behavior more explicit, we have plotted in Fig. 5 the deceleration
as given by equation (19) for the case of a rather large entry angle, y, = —4°. The
second-order solution is used, with ¢, as the independent variable, which decreases
from the initial value ¢ = 2.09 down to ¢ = —1. At this point the speed variable 7
[as computed from equation (35)] has reached 92 percent of its asymptotic limit, and
to finish the plot we have used the alternate solution [equation (62)]. The figure shows
an excellent agreement between the analytic solution and the numerical solution.

To obtain the point of maximum deceleration from equation (20) which expresses the
stationary condition for the function a /g, we use the first order solution to write

do + €d, = €y, + 82)’1 (31)

It is clear that ¢, is small and from the zeroth and the first-order solutions, we take
approximately at this point

yo = exp(c?/8), 7 = (mw/8)?y, erf(cd™"?) (52)

k=1 - a)r, ¢ = abkryy! + adlyy = a7y [1 + (7/2) erfi(cd7'?)]
(33)
= 2a87%ky, = ad 72y} erf(c67'?) (54)

By substituting into equation (51), we have explicitly for ¢,
$o + ead'[1 + (w/2) erf(c6'?)]y, = ey
+ Ead a2y} erf(cd'?) (35)
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FIG. 5. Variation of the Deceleration along a Ballistic Skip Trajectory.

where, of course, y; is given by the first of equations (52) as a function of ¢. Once this
value of ¢, (which is near zero) has been computed the value of ¢ (which is positive)
and the normalized density y at the point of maximum deceleration can be obtained
using the second-order theory. Using the first order solution and taking ¢¢ = 0, we
have the useful formula for the flight path angle at the point of maximum deceleration

¢ = ead™ ! exp(c?/8)[1 + (m/2) erf¥(c67'?)] (56)

which displays the various effects of entry angle, entry speed, and ballistic coefficient
on this critical flight path angle.

To assess the influence of the ballistic coefficient on exit conditions, equations (15)
have been integrated numerically with a = 0.5 for parabolic entry and with various
entry angles, while two values of the ballistic coefficient, ¢ = 0.0001 and 0.0025, are
selected for the two families of trajectories generated. As expected, the behavior of the
ballistic skip trajectory remains the same as for € = 0.0005. For the case of low
ballistic coefficient, ¢ = 0.0001, the critical angle y¥* is between the values —5.12°
and —5.13°, while for the case of high ballistic coefficient, ¢ = 0.0025, it is between
the values —3.81° and —3.82°. Again, a difference of one-hundredth of a degree
changes the trajectory from skip to crashing. This shows the desirability of having some
thrusting mode near exit to guide the trajectory along the desired flight path.

Figure 6 is a plot of the exit angle v, versus the negative of the entry angle v, for
the three values of the ballistic coefficient. It is seen that the influence of ¢ is slight at
low entry angle, since the exit angle is practically the negative of the entry angle, as
given by the zeroth order solution. The primary effect of high drag coefficient is in
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FIG. 6. Exit Angle as a Function of the Entry Angle for Different Values of Ballistic Coefficient.
Case of Parabolic Entry.

reducing the exit speed and in lowering the absolute value of the critical angle y*.
Large wing loading, that is, a high value of mg /S, has the opposite effect. The effect
of € on exit speed is obvious from equation (50).

Finally, the effect of entry speed is considered by varying the value of the speed
parameter . With ¢ = 0.0005, we now take the value @« = 0.577, which corresponds
to an entry speed for a return from a geosynchronous orbit. From the zeroth order
solution, at the lowest point of the trajectory

Ymax = exp(c®/8) (57)
and at the exit point, when the entry angle is not near the critical angle,
7 = 2(w/8)"* explc?/8) erf(cd™'?) . (58)

Hence, the lower entry speed (that is, a lower value of &) for the same value of entry
angle, the lowest altitude is smaller and the exit speed ratio V;/V, is also smaller. Low
entry speed also reduces the absolute value of the critical angle y*. This fact will be
made explicit in the following analysis.

The speed ratio, V;/V,, as a function of the entry angle, is presented in Fig. 7 for
the two cases of parabolic entry and return from geosynchronous orbit. The analytic
solution is also plotted in the graph. At low entry angle it is accurate to use the zeroth
order solution as given in equation (58). Near the critical angle, however, an alternative
equation, derived below, has to be used.

Trajectory Near the Critical Angle

As seen in Fig. 4, for a skip trajectory with shallow entry angle, the flight path angle
monotonically increases from a negative value to a positive exit value which is slightly
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FIG. 7. Effect of Entry Angle and Entry Speed on Exit Speed Ratio. Case of £ = 0.0005.

less in absolute value than the entry value. As the entry angle becomes steeper,
approaching the critical value y¥, after passage through the minimum altitude, where
v = 0, the flight path angle increases to a maximum and then decreases again to zero,
when the vehicle reaches the maximum altitude. If this maximum altitude is inside the
atmosphere, the vehicle fails to exit. At the point of maximum flight path angle, the
trajectory exhibits an inflection point. To account for this behavior, we return to
the original system, equations (11) and (12), to obtain the speed variable at the in-
flection point -

x; = —log a (59)

From the definitions of x and «a, it is seen that this corresponds to circular speed.

For the critical trajectory, v, = y¥, 9 = 0, itis obvious that the final speed variable
x; is larger than this value. This means that the exit speed is subcircular. To have
the correct behavior of the flight path angle near the critical case, we use the zeroth
order solution,

Z =gy = ¢ expl(c? — ¢?)/8] (60)
in equation (12) to have approximately
e exp[(c® — ¢%)/8]dd = (ae* — 1)dx (61)

We notice that the approximate function ¢, obtained by the analytical integration of
this equation, passes through its stationary value at exactly the same speed as the exact
solution obtained through numerical integration. Hence, using this scheme, the ana-
lytical solution for ¢ expressed as a function of the speed variable x displays the
correct behavior of the flight path angle. This flight path angle is slightly larger than
the exact value, due to the approximation in altitude as given in equation (60). Upon
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. integrating equation (61) we have the following relation between the flight path angle
and the speed.

(£/2) (87)" exp(c?/6) [erf(cd™"?) — erf(¢pd D] = x + a(l — &*) (62)

This formula has been verified numerically, and the results are shown in Fig. 4. Up
to the value vy, = —4°, the results are in excellent agreement with the numerical
solution. At higher entry angles, the approximate formula shows a slightly higher value
of flight path angle, but its usefulness is evident since it is applicable to the case of near
critical entry, as shown in the figure for the case where y, = —4.51°.

The final speed is given in equation (50) by the final value x;. Theoretically, it is
obtained from y(7) = 1, but an approximate estimate is obtained as follows. If the
zeroth order solution is used, then we have equation (58) rewritten here in terms of x
for convenience as

x, = 2&(mw/8)"? exp(c?/8) erf(c6™"?) (63)

‘However, this only represents a lower bound since the zeroth order solution for the
altitude is always higher than the actual altitude; that is, at the speed x; the vehicle is
still inside the atmosphere and as a consequence x; < x;.

On the other hand, if equation (62) is used with subscript 2 for the condition at exit,
as mentioned above, we always have ¢ > .—¢, > —¢,. Hence, using ¢ = —c in this
equation, we have a value x, which represents an upper bound, x; < x,, for the final
speed. The equation giving x, is

e(8m)"* exp(c?/8) erf(cd™"?) = x, + a(l — %) (64)
comparing the last two equations, we have the relations between the two bounds
(1 —a)x;, =x+ a(l — &%) (65)

In summary, since the speed ratio decreases as the speed variable increases, we have
the bounds

e-x212 < Vf/vc < e—x|/2 (66)

For a prediction of the final speed, with a given ballistic coefficient ¢, entry speed
a, and entry angle c, the values x, and x; are obtained from equations (63) and (64),
respectively. At high entry speed and small entry angle, the values are close to each
other and yield an accurate prediction for the speed ratio. At higher entry angle the
speed ratio is closer to the lower bound, and we have the approximation x; = x,. We
notice that for given values of £, a and ¢ the value x, can always be evaluated from
equation (63). On the other hand, since the right-hand side of equation (64) is maxi-
mized when x, = —log a = x;, we can only solve for x, when the left-hand side of this
equation is less than the maximum value of the right-hand side (which equals
a — 1 — log a). This method of final speed prediction has been tested numerically for
a variety of skip trajectories and the results are shown in Fig. 7 for the two cases of
parabolic entry and return from geosynchronous orbit with a ballistic coefficient
e = 0.0005. At low entry angle, we use the solution x; = x,, while at high entry angle
we have the approximate solution x; = x,.
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While the second-order theory, which is obtained from a rigorous technique of
integration. provides excellent results for the speed, altitude and flight path angle
relationships, it is restricted to the case of small X;. Concerning the accuracy of the
prediction of the final speed., it is possible to assess this restriction based on equations
(65) and (66).

Let V, be the unknown exit speed and AV, be the absolute value of the error incurred
using the analytic solution. Let us assume that we require the accuracy

AV,/V;=n — | (67)

where n is a certain prescribed number. close to unity. i.e..n = 1.005. To achieve this
accuracy. based on the bounds as given in the inequalities (66). it is easy to show that
we must have conservatively

X:—x, =2logn (68)

By substituting into equation (65), we have the equation for the limiting value of x,,
which only depends on the entry speed ‘

et = x, =1+ (2/a) log n (69)

As an example, with n = 1.005. for parabolic entry. a = 0.5. we have the limit
vy = 0.128022. From equation (68). the upper bound is x» = 0.137997. At these
limiting values. the speed ratio at exit is such that

0.933328 < V,/V, < 0.937995 (70)

Hence the desired accuracy is achieved. Of course. for lower values of x,. we have
better accuracy in prediction. It should be noticed that the limiting value of x, obtained
is valid for the whole family of parabolic entries with the accuracy n. It means that any
combination of ballistic coefficient and entry angle considered must give a value x,,
from equation (63). less than the limiting value to have the required accuracy. For
example. by taking ¢ = 0.0005. y, = —3°, for parabolic entry. we have from equa-
tions (63) and (64). x; = 0.020303 and x> = 0.020515. The value X, is much less than
the limiting value and the prediction for the final speed is within the desired accuracy.
As a matter of fact, for this case. the numerical solution gives X; = 0.020485 and hence

0.989795 < V;/V. = 0.989810 < 0.989900 an

What remains is the prediction of the critical angle. y¥, for grazing exit. v = 0. and
as a consequence. the smallest exit speed. V;. along this trajectory. This is obviously
a difficult task due to the sensitivity which has been displayed through numerical

analysis. _
First. due to the inflection point. which must occur for grazing exit, we have the
condition x7 > x; = —log «. Hence. we have the condition. valid for all trajectories

with an inflection point,
Vi<a'V,=V. (72)

which gives an upper bound for the critical exit speed. Next. based on equation (62).
along the critical trajectory (that is, with ¢ = ¢*) and at the point before exit where the
flight path angle is maximized (that is. when v = —log &), we have
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(e/2) (8m)"* exp(c?/8) [erf(cd™) + erf(|pminld™D)] =a — 1 — log a (73)

If the value ¢,., = —(BR)" sin 7, is known, we can solve for the value ¢ = c*.
Since the error function is near unity, and along the critical trajectory, the point of
maximum y occurs slightly before exit, at about 1°, and due to the fact that equation
(62) overestimates the flight path angle, we take the empirical value 1.67 for the sum
of the error functions in equation (73) to have

0.8356(8m)" expl(c*)’/6]l =a — 1| — log a _ (74)

The critical angle y*, according to this formula, is plotted in Fig. 8 versus the drag
parameter ¢ for several values of the entry speed, from parabolic entry, @ = 0.5, to
near circular entry, a = 0.9.

In the figure, the small circles denote the cases which have been venﬁed numerically.
As expected, high ballistic coefficient decreases the magnitude of the critical angle. -
Low speed entry also has the same effect. These behaviors are displayed explicitly i/
equation (74). Furthermore, over a large range of values of a and ¢, this formula
predicts the critical angle to within one-hundredth of a degree and hence within the
sensitivity of the numerical analysis.

As for the smallest exit speed, the appearance of the inflection point near the top of
the sensible atmosphere, along the critical trajectory, is always close to grazing exit.
At that altitude the rate of decrease in speed is small, and for all practical purposes we
can use the empirical formula

V; = 0.98 a'?V, 9

Equation (74)

@ Verified by numerical integration
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FIG. 8. Variation of Critical Angle as a Function of Ballistic Parameter.
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FIG. 9. Grazing Exit Trajectory.

To have a more rigorous assessment of this speed, we consider Fig. 9 which shows the
critical trajectory for grazing exit.

We shall attempt an analytical integration of equations (11) and (12) between the
inflection point and the exit. As shown in the figure, with the partial knowledge of the
end conditions, this amounts to solving a two-point boundary value problem if either
the flight path angle, 7;, or the density Z; at the inflection point is known. It has been
found through extensive numerical analysis that at the inflection point the altitude
depends strongly on the ballistic coefficient ¢, while the flight path angle is always near
1°. This is because at that point, the flight path angle is stationary, and then decreases
over a small variation in the speed to the final value zero. With numerical data for a
large number of skip trajectories we take the average values

Y = 0.7%, ¢ = —(BR)" sin vy, (76)
Let Ax be the speed increment beyond the inflection point
' x=x +Ax = —log a + Ax an
Then, for small Ax, we write equations (11) and (12) as
dZ/d Ax = ¢ (78)
dp/d Ax = Ax/Z ' a9

We integrate equation (78) by using an average value for ¢, taken as the value at the
inflection point. This approximation is correct since between the inflection point and
the grazing exit, most of the speed depletion occurs at the lower part of the trajectory.
Then, we have the linear approximation for the variation of the density

Z =27 + ¢ Ax (80)

Upon substituting into equation (79) and integrating between 7, and zero, we have
the relation

yilogy: = 1) = —1 — ¢}’ (81)

With the estimated value of ¢; as given in equation (76), this equation can be solved
for y;, that is, for the altitude at the inflection point. Its dependence on the ballistic
coefficient ¢ is clear from the equation. The altitude at the inflection point is lower with
lower ballistic coefficient. The speed increment between the inflection point and the
exit is obtained from equation (80) as :
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Ax = —e(i — /¢, (82)

The last points on the curves in Fig. 7 are computed using equation (74) for the flight
path angle and equations (81) and (82) for the speed. The estimate for the speed is
slightly smaller than the numerically computed speed. Hence, it constitutes a lower
bound for equation (72). Due to the sensitive nature of the critical trajectory, other
attempts for an improvement of the accuracy have not been successful.-

Conclusions

In this paper we have derived a generalized Yaroshevskii system of equations for
analyzing ballistic skip trajectories at supercircular entry speeds. Using Poincaré’s
method of small parameters, a second-order analytical solution has been obtained
which for small entry angles shows excellent agreement with the numerical solution.

The analytic solution displays explicitly the influence of the ballistic coefficient,
entry speed and entry angle on exit conditions. At higher entry angles, near a critical
angle where the vehicle fails to exit, the trajectory exhibits an inflection point where
the flight path angle is stationary. This critical trajectory is analyzed in detail, and
analytic formulas are obtained for the prediction of the critical angle, the altitude of the
inflection point and the smallest exit speed in terms of the ballistic coefficient and the
entry speed. The results obtained are useful for an in-depth understanding of a ballistic
skip trajectory, which constitutes an important phase in the problem of planetary
aerogravity capture and the problem of aeroassisted orbital transfer.
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