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- On the Attitude Motion of a
Self-Excited Rigid Body'

James M. Longuski’

Abstract

In 1965, Leimanis published a monograph containing both the Bodewadt solution of Euler’s
equations of motion of a symmetric rigid body subject to constant body-fixed torques, and the
corresponding solution for the Eulerian angles of rotation. These analytic results, if accurate,
could provide important tools for the analysis of currently planned spacecraft. Attempts to apply
these solutions in the performance assessment of the Galileo spacecraft during spin up and spin
down maneuvers have been made. Unfortunately, due to the fact that Galileo is not precisely
symmetric, the solution for Euler’s equations of motion fails to achieve the desired accuracy for
useful analysis. In the case of the Eulerian angles, the analytic results are generally incorrect for
theoretical reasons. To remedy this situation, analytic solutions have been developed which
satisfy the criterion of high accuracy and provide a useful analytic tool for the performance
assessment and maneuver analysis of the Galileo spacecraft and many similar nearly symmetric
spinning spacecraft. Simulation results provide a comparison of the relative accuracies of the
Bodewadt solution for Euler’s equations of motion and the author’s solution, and the restricted
regions of validity of the Bodewadt solution for the Eulerian angles are clearly indicated.

Introduction

In 1965, Leimanis published [1], which contains Bédewadt’s solution of Euler’s
equations of motion for a symmetric rigid body subject to a time-independent, self-
excitement in a body-fixed direction, together with Bédewadt's solution for the corre-
sponding angles of rotation. While the solution of Euler’s equations of motion can be
considered exact, it provides a poor approximation to the problem of nearly Ssymmetric
rigid bodies when a high degree of accuracy (less than 1 percent error) is required. A
much more accurate approximate solution is provided in [2). In the case of the Eulerian
angles, the result given in [1] for arbitrary constant torques is incorrect. The approxi-
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Administration,
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mate solution given in [2], however, is extremely accurate and suitable for computer
design work and error analysis of spacecraft performance.

In this paper the solutions are reviewed and the specific regions of validity of the
solution for the Eulerian angles are pointed out.

Bodewadt’s Solution of Euler’s Equations of Motion

Euler’s equations of motion for a rigid body with principal axes at the center of
mass are

M, = de)x + (Iz - Iy)wywz (D
M, = Lo, + (I, — L)oo, (2)
M, = Iz(bz + (Iy - Ix)wxwy (3)

In 1952 Bodewadt obtained an exact analytic solution of these equations for a
symmetric rigid body subject to arbitrary constant torques [3]. The solution allows for
variable spin rate and is given in terms of the Fresnel integrals. Unfortunately, for
nearly symmetric rigid bodies, such as the Galileo spacecraft, this solution does not
provide great enough accuracy for performance analysis. This is especially true when
the solution for the angular velocity components is used in the kinematic equations in
order to find the Eulerian angles. This problem can be circumvented by the following
assumption for nearly symmetric bodies:

w, = (M, /)t + wy 4

When I, = I,, equation (4) is exact as in the Bodewadt solution. When I, = I, the
approximation provides very useful accurate solutions, particularly when w, and w, are
small, which is usually the case for spin stabilized spacecraft. The solution for w,
is [2]

w,(8) = wy cos T, — (A /L) "w, sin 7,
+ u sgn a S|2a/"[(A,/1)"d cos T, + ¢ sgn a sin 77

+ C|2a|™"c sgn a cos T, — (A\/A2)"*d sin 1,] (35
where
Al = (!z - Iy)/lx, AZ = (Iz - Ix)/ly (6)
a= (AlAZ)l/zMz/lz9 b = (/\IAZ)szZO (7)
c =M/, d =M/, _ (8)
73 T2
C = f t~'2 cos tdt, S = f t~'2 sin tdt )
T0 70
70 = b*(2Ja})”", 7, = (at?*/2) + bt (10)
7. = [(at’/2) + bt + b*/(2a)] sgn a (1
u = 1 for spin up (a and b same sign) (12)

1

u = =1 for spin down (a and b opposite signs) and only for0 <t =< —b/a

(13)
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FIG. 1. Bodewadt Solution for Symmetric Body versus Numerical Solution for Nearly
Symmetric Body.

The solution for w, is obtained from the solution for w, by interchanging (A,/A )"
and —(A5/A)"2, ¢ and d, and @, and w,,. Note that these solutions retain the dis-
tinction between I, and ,, which is a trivial extension mathematically, but one which
has important consequences numerically as shown in Figs. 1 and 2. Itis also interesting
to note the difference in the derivation of equation (5) in [2] from that of [1]. A simple
nonlinear time transformation is used in [2] to decouple the linear first order differential
equations with time varying coefficients into two separate linear second order differ-
ential equations with constant coefficients and time varying forcing functions. In [1],
the Bodewadt solution is derived using the familiar complex variable approach with
the definition

0 = o, t+io, (14)

The relative accuracy of the Bédewadt solution when applied to the Galileo space-
craft spin up maneuver is of the order of a few percent as shown in Fig. 1. The exact
solution, @, numerical, was found by numerical integration using ACSL (Advanced
Continuous Simulation Language) for the Galileo spacecraft parameters given in
Table 1.
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FIG. 2. Difference between Exact Numerical Solution (Case of Fig. 1) and Solution for Nearly
Symmetric Body [equation (5)].

Bodewadt’s solution was found using the relation.
IT = (ley)llz (15)

to approximate the symmetric parameter.

When the result given by equation (5) is plotted, the accuracy is so high that the two
plots, numerical and analytic, are indistinguishable, so this result is not shown. Fig. 2
shows the plot of w, exact minus w, analytic, which indicates a relative error of the
order of one tenth of one percent.

Bodewadt’s Solution for the Eulerian Angles

In [1], Leimanis presented Bédewadt’s solution [3] for the angles of rotation of a
rigid body subject to a time-independent, self-excitement with a body-fixed direction.
The fundamental equation is

A=aw | (16)

where W is the affinor of rotation

W=| w, 0 -o, . 17
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TABLE 1. Galileo Spacecraft Parameters

I 2985 kg m*
1, 2729 kg m?
I, 4183 kg m’
M, —1.253 Nm
M, —1.494 Nm
M, 13.5 Nm
Wxo 0

Wyo 0

©so 0.33 rad/s
Wy 1.047 rad/s

and o,, ®,, and w, are the body fixed angular velocity components. A is the tensor
which transforms body fixed coordinates to the inertial coordinates, the solution of
which gives the Eulerian angles. Bddewadt proposed a solution of equation (16) of
the form

A = A(tp)e? : (18)

where

0-y B |
U=| vy 0 —a (19
-B a O
and
a = f w,dt, B = J w,dt, Y= f w,dt (20)
to fo to

It is well-known that in such a case, the solution given by equation (18) is only valid
when W and U commute. This is easily verified by substituting from equation (18) into
equation (16).

The conditions for which W and U commute and equation (18) is correct are

w,f = wy,a (21)
' w,Y = o,a (22)
w0,y = 0.8 (23)

Clearly when w,, w,, and w, are constant, conditions (21)-(23) are satisfied. These
conditions can be stated in a number of interesting ways, for example,

w/a = w;/B = w,/v (for a, B, ¥y nonzero) (24)
or

w(r) X I o(n)dr =0 25)

]

for all values of #,, and . By breaking the integral in equation (25) into parts, it is easy
to see that
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() X f w(Ddr =0 ' 26)

0

Since equation (25) is also valid for ¢ = ¢, then
o) X o(t)) =0 27

for all 7 and ¢,.
Wertz [4] observes that equation (18) is a solution when

w(r) = w(t)e (28)

where e is a constant vector. This is equivalent to equation (27). Thus, the direction of
the spin vector, w, must not change.
Now the special cases of Bodewadt can be reviewed.

Case 1: No Spin

In this case, for symmetric rigid bodies, Bodewadt shows that the solution of Euler’s
equations of motion, equations (1)—(3), is

w, = (M, /It + (29)
w, = M,[I;})t + wy, (30)
w, =0 31
when

L=1=1 (32)
w,o =0 T (33)
M, =0 (34)

The parameters a, 8, and 7, of equations (20) are
a = M) — 1) + wult — 10) (35)
B = M,Q2)7Ne* — 1§) + 0,0t — 10) (36)
y=0 37

Substitution from equations (29)—(31) and (35)—(37) into equations (21)—(23) [or
substitution from equations (29)—-(31) into equation (27)] shows that the condition

Mwy = Myw,o (38)

must be satisfied for equation (18) to represent a solution, and not, in general, as
supposed in [1].

Case 2: Constant Spin
In this case Bddewadt assumes that
L=1=1I (39)
W, =w,#F0 (40)
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M,=0 41

so that
w, = e cos + fsinQt + ¢ (42)
=—fcosUt +esinQt +h (43)

where
€ =wo— g, f=—w,nth (44)
g =-M6GLQ)", h=MIQ)" (45)
A=, -1/, Q= weA (46)

By integrating equations (42) and (43) and using equations (21)—(23), it can be
shown that equation (18) is a solution only when

Wy = Wy = _My[(lz - IT)sz]—l . (47)
wy = 0,0 = M, — I, (48)

whieh is the case of constant angular velocity for all time; obviously equatlons (47) and
(48) sitisfy equation (27).

Case 3: Linearly Varying Spin

In this case, Bédewadt assumes that

L=1=1I ' (49)
M,#0, M, #0, M #0 (50)
0, = M,/L)t + wg (51)

The solution has already been discussed, and the value for w, can be found by
applying equations (49)—(51) to equation (5). Once again by using equations (21)—(23)
(the a, B, y terms are given in [1] and [3]), or by employing equation (27), it can be
shown that equation (18) is a solution for a very limited set of conditions, namely

W, = W, = 0 (52)
but these conditions violate equations (49)—(51), since they imply that
M,=M,=0 (53)

Therefore, Case 3 cannot be solved by the method of equation (18) in general. The
only related situation which can be solved this way is the trivial one in which
equation (53) is used so that the only allowable torque is about the spin axis. To solve
this problem one does not need to use equation (18), since the kinematic equations can
be integrated directly: '

¢: = by (54)
¢y = ¢y0 (55)
¢.= (1/2) (M, /L) + oot + ¢ (56)
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where ¢,, ¢,, ¢, can be any set of Eulerian angles.
Case 4: Kinetic Symmetry

Bodewadt makes the following assumption:

L=1=1I=1 (57)
so that
w, = M/t + wy (58)
w, = (M,/I)t + w, (59)
w, = M/t + wy, (60)

‘Integrating equations (58)—(60) to obtain a, B, and vy and using equations (21)—(23)
indicates that

Mw,o = Myw, (61)
wazo = Mzwxo (62)
Myw,, = Mw,, (63)

in order for the solution, equation (18), to be true. Equations (61)-(63) can be re-
arranged as

wa/Mx = wyO/My = sz/Mz ) (64)

but this particular form gives undefined results for cases where conditions (61)—(63) do
not. Note that equations (61)—(63) and (64) are equivalent to wy, X M = 0 and con-
sequently to @ X M = 0.

Solution for the Eulerian Angles

When equations (21)—(23) are satisfied, as for the specified conditions above, the
solution for the Eulerian angles is facilitated by Bodewadt’s equation,

eV =1+ Uvrtsinv + U 41 — cos v) (65)
where
v=a*+ B2+ y? . (66)

A can then be found from equation (18), and the individual Eulerian angles can be
identified.

n

An Approximate Solution for the Eulerian Angles for a Near Symmetric
Rigid Body Subject to Constant Moments

An approximate solution for the Eulerian angles has been found corresponding to
Case 3 of Bédewadt [2]. The main restriction in the solution is that two of the Eulerian
angles [¢, and ¢, in equations (68)—(69)] must remain small so that, if ¢ is one of the
two, the approximation

singd = ¢ 67
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holds. The form of the solution (for Type 3-1-2 Eulerian angles as defined in [4]) is
é.(t) = P.ocOs uTy + yo sin 7, + u SgN a[Wys(Tl) + W] (68)
&,(f) = Py cOS Uy — yo sin w1y + u sgN a[W,.(ry) + W,())] (69)

é.(0) = M;(2L,)7'* + wot + ¢oo (70)
where ‘
n = (AA)~ "2 ‘ (M)
and the notation of equation (5) is used. The W,, and W,, functions are
W,i(y) = L [w,(£) sin(pry, — pé)] (b + 2a¢)""dé (73)
Welm) = fo [w.(£) cos(ur, — &)} (b? + 2a€)™"?d¢ (12)

where w, and w, are given in equation (5). W, and W,, are defined analogously. The
details of writing these integrals in terms of Fresnel, sine and cosine integrals and
elementary functions are given in [2]. ‘
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FIG. 3. Approximate Analytic Solution for the Eulerian Angle, &
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FIG. 4. Exact Minus Analytic Solution for the Eulerian Angle ¢,

Results

Figure 3 contains plots of both numerical and analytic solutions for ¢,(r) for the
Galileo spin up maneuver using the same parameters used to obtain Figs. 1 and 2. The
discrepancy between the plots is indiscernible, so Fig. 4 is presented to indicate
the difference between the solutions. The relative error in the analytic solution is of the
order of one half of one percent. The error in the ¢,(¢) solution (not shown) is of the
order of one hundredth of one percent. Clearly, the approximation given by
equation (4) was instrumental in obtaining such accurate results for the nearly sym-
metric case.

The analytic solution, equations (68)—(70), is currently being used to study the
motion of the Galileo spacecraft during spin up maneuvers. Of particular interest is the
orientation of the angular momentum vector at the end of the maneuver (see [5]), which
is found through equations (5) and (68)—(70). Since error analysis is being done,
several cases must be simulated in order to find the variance of the final condition. If
the analytic solution were not available, this type of study would be extremely time
consuming and expensive.
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Conclusions

While the Bodewadt solution of Euler’s equations of motion are exact for the
symmetric case, they cannot provide useful approximate solutions for the more typical
situation of nearly symmetric bodies found in many spacecraft applications. An ex-
tremely accurate approximate analytic solution similar in form has been independently
derived by the author.

The Bédewadt solution for the Eulerian angles is much more restricted than origi-
nally supposed. It is incorrect for the case of variable spin rate. However, a highly
accurate approximate solution has been found for the case in which two of the Eulerian
angles are small. ‘
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