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Low-thrust trajectories can be modeled as a series of impulsive (∆V) maneuvers 
connected by conic arcs. We study new ways of parameterizing the ∆V vectors with a 
reduced number of variables and constraints. When optimizing low-thrust gravity-assist 
trajectories, the ∆V magnitudes can be parameterized with switch on/off times of the engine; 
the steering angles can be parameterized with coefficients of a Chebyshev series.  We present 
numerical results for several missions, including: Earth-Jupiter rendezvous, Earth-Mars-
Vesta flyby, Earth-Mercury rendezvous and a seven-synodic-period Earth-Mars roundtrip 
mission.  In most of these cases, we found significant improvements in convergence speed 
(with acceptable accuracy) with the new formulations. 

Nomenclature 
kN = Number of On/Off-Nodes 
kθ = Degree of a Chebyshev series for modeling the clock angle θ 
kψ = Degree of a Chebyshev series for modeling the clock angle ψ 
m = Number of nonlinear constraints 
N = Number of segments on a low-thrust trajectory 
n = Number of optimization variables 
∆V = Impulsive maneuver vector, km/s 
∆V = Magnitude of a maneuver, km/s 
θ  =  Clock angle of a maneuver, deg 
ψ = Cone angle of a maneuver, deg 

I. Introduction 
NTERPLANETARY missions via electric propulsion (EP) have been proposed in the literature for many years,1-6 
with destinations that include Mercury,7-9 Mars,10-11 Jupiter,12-16 the Outer Planets,17-21 and the Heliospheric 

boundary of the solar system.22 In 1998, NASA launched Deep Space 123 which successfully demonstrated the first 
use of ion propulsion in an interplanetary mission. With a specific impulse of about ten times that of a chemical 
rocket,24 Deep Space 1’s (solar-powered) propulsion system provides a large saving in propellant mass (and thus 
mission costs). Following Deep Space 1, four missions are expected to further demonstrate the effectiveness of 
electric propulsion.  SMART-125 was launched in 2003 and is orbiting around the Moon while Hayabusa26 was 
launched in that same year as a sample return mission from an asteroid.  The DAWN27 mission is planned to be 
launched to Ceres and Vesta in 2007, and BepiColombo9 is scheduled for launch in 2013 to visit Mercury.  
  With its high efficiency, electric propulsion (compared with chemical propulsion) can help increase the payload 
mass and reduce the trip time of a mission. However, the design of trajectories for electric propulsion missions is 
often more challenging than missions using chemical propulsion. Acceleration of a spacecraft propelled by EP is 
usually very small and the thrust duration can be a significant portion of the total time-of-flight (TOF). For low-
thrust missions, the control parameter is the spacecraft’s thrust vector as a function of time, which is infinite 
dimensional. 
 In optimizing low-thrust trajectories, we vary the thrust vector (as a function of time) to find a solution with 
minimum propellant spent (or with maximum final mass).  Typically, there are two approaches to solve a low-thrust 
trajectory optimization problem: indirect or direct.  
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 Indirect methods28-30 are based on calculus of variations, which often lead to a two-point boundary-value 
problem. Problems solved by indirect methods are usually very sensitive to their initial guesses, especially for 
trajectories with multiple gravity-assists. Indirect methods also require an initial guess for the Lagrange multipliers 
(which may not have any physical meaning) to satisfy the terminal constraints.  

On the other hand, direct methods parameterize the problem to a set of finite variables, subject to the constraints 
of the mission (e.g. maximum allowable thrust).  We can use nonlinear programming techniques to solve the direct 
problem.  Comparatively, it is often less sensitive to the initial guesses of the variables.  A variety of the direct 
method techniques have been studied in the literature.31-34 In 1999, Sims and Flanagan35 proposed a direct method 
for optimizing low-thrust trajectories. Several papers10,11,15-17,20,21 have been written based on this model on the 
design and optimization of low-thrust, gravity-assist (LTGA) trajectories to various destinations in the Solar System. 

The size of the problem can vary quite a lot with the direct optimization method. For example, in the Sims and 
Flanagan model, the number of variables, n, and the number of constraints, m, can range from n = 100 and m = 50 
for an Earth-Jupiter direct mission, to n = 2000 and m = 800 for a 45-year Earth-Mars Cycler.10 Often, the 
computational run time increases with the problem size.  

In this paper, we study new ways to parameterize low-thrust, gravity-assist trajectories with a reduced number of 
variables and constraints.  Our goal is to save computation time in the trajectory design process.  Even if we have to 
sacrifice some accuracy, a reduced parameterization of the problem can be very valuable for mission designers, 
especially for those studying a broad design space15,16 (e.g. launch period, TOF, hardware parameters of low-thrust 
missions to Jupiter). 

We follow the work of Ref. 36 and present optimized results using the new formulations.  We compare the 
speed, accuracy, and robustness of the new parameterizations with the original method. 

II. Trajectory Model 
Figure 1 illustrates the trajectory model proposed by Sims and Flanagan.35 Trajectory is divided into legs which 

begin and end with a planet or a control node (a control node can be any point in space).  Low-thrust arcs on each 
leg are modeled as sequences of impulsive maneuvers (∆V), connected by conic arcs.  The ∆V at each segment 
should not exceed a maximum magnitude, ∆Vmax, where ∆Vmax is the velocity change accumulated by the spacecraft 
when it is operated at full thrust during that segment. At each leg, trajectory is propagated (with a two-body model) 
forward and backward to a matchpoint (usually halfway through a leg).  The forward- and backward-propagated 
half-legs should meet at the matchpoint in order to have a feasible trajectory.  We assume planetary flybys happen 
instantaneously.  
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Figure 1: Trajectory model (after Sims and Flanagan 35). 
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III. Optimization Problem and Software 
Our LTGA trajectory optimization program, GALLOP17,37 (which stands for Gravity-Assist Low-thrust Local 

Optimization Program), is written based on the Sims and Flanagan model. The objective of GALLOP is to either 
maximize the final mass or minimize the initial mass of the spacecraft; subjected to the constraints on the ∆V 
magnitude (where ∆V ≤ ∆Vmax), the matchpoint (where the position, velocity, and mass of the spacecraft should be 
continuous), and the flyby altitude (where it should above a minimum height at a flyby body). Additional constraints 
can be added such as total time-of-flight (TOF), V∞ magnitude, and encounter dates of a body. Variables in 
GALLOP includes (but not limited to): ∆V on each segment, Julian dates at each planetary encounter, states of the 
spacecraft at each control node (which includes position, velocity, mass, and time), and the encounter conditions at 
each body (such as the V∞ magnitude, flyby altitude, and B-plane angle).  

GALLOP uses a nonlinear programming software called NPOPT, which is a wrapper for a sparse nonlinear 
optimizer SNOPT,38,39 to solve the constrained nonlinear optimization problem. SNOPT implements sequential 
quadratic programming (SQP) to find a locally optimal solution. We can specify some parameters for NPOPT which 
determines when to end an optimization run. These parameters include the major iteration limit, the major feasibility 
tolerance, εFEA, and the major optimality tolerance, εOPT. (For a detailed explanation of these parameters, please see 
Ref. 39.) The major feasibility tolerance specifies how tightly the constraints should be satisfied, while the major 
optimality tolerance specifies closeness to the optimality conditions. Unless otherwise stated, we set both εFEA and 
εOPT to 10-6 (the default in NPOPT). 

IV. Parameterizations of the ∆V 
The ∆V on each segment can be written in many Coordinate systems,40 such as Spherical Coordinates and 

Cartesian Coordinates. In this paper, we assume the ∆V is expressed in Spherical Coordinates. We present four ways 
to parameterize the ∆V.36 Although we use GALLOP, these parameterizations may also be applied to other low-
thrust (with or without gravity-assist) trajectory optimization programs. 

A. N-Vector (Original) Formulation 
As the “Original” formulation, N-Vector uses the ∆V coordinates on each segment, namely ΔVi, θi, ψi, as 

optimization variables, where i runs from 1 to N.  For a trajectory of N segments, there are 3N variables on the ∆V 
(not including other variables such as V∞) and N nonlinear constraints on ΔVi (where ∆Vi ≤ ∆Vmax,i ). 

B. Node (On/Off-Node) Formulation 
The Node formulation replaces the N ∆V magnitudes into a set of On/Off-Nodes. If we assume a low-thrust 

trajectory follows a sequence of Maximum-Thrust (MT) and Null-Thrust (NT) arcs, then an On-Node defines the 
switching point from NT to MT while at an Off-Node the spacecraft switches from thrusting to coasting. As an 
example, in Fig. 2 for an Earth-Jupiter rendezvous mission, we can assume the trajectory follows an MT-NT-MT (or 
thrust-coast-thrust) scheme. An Off-Node and an On-Node can be placed at the 34th and the 54th segment, 
respectively.  

We can impose linear constraints on the node epochs such that the order of the On/Off-Nodes remains 
unchanged. In the case where an On-Node merges with an Off-Node, the two corresponding MT arcs combines to 
become one and the NT arc vanishes. For trajectories with multiple thrust pulses, the number of nodes should be 
carefully selected such that it has a fair representation of the thrust profile. 

There are 8 optimization variables (position, velocity, mass, and time of the spacecraft) which corresponds to 
each On/Off-Node. For a trajectory with kN nodes, there are in total 8kN + 2N optimization variables on the ∆V. The 
constraints on the ΔV magnitudes are also removed since the ΔV are either at maximum or zero (i.e. it cannot 
violate the constraint of ∆V ≤ ∆Vmax). As compared with N-Vector formulation, however, there are constraints on 
the additional matchpoint(s) between each On-Node and Off-Node, since each extra On/Off-Node adds a leg (and 
hence a matchpoint) to the trajectory optimization problem.  

C. Chebyshev Formulation 
In the Chebyshev formulation, for each planet-to-planet leg, we model the ∆V angles (θ and ψ) as Chebyshev 

series:41  

 0 0 1 1( ) ( ) ... ( )k kc T u c T u c T u+ + +  (1) 
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where Tk(u) is the Chebyshev polynomial of degree k; and u, as the independent variable of the Chebyshev 
polynomial, is the leg-duration normalized to span from -1 to 1. Figure 3 shows a schematic of the modeling. 
 The parameters associated with the ∆V angles are the coefficients on the Chebyshev series, {c0,c1,…,ck}. If the 
degree of Chebyshev series on θ and ψ are kθ and kψ, respectively, then the number of variables on the ∆V is N + kθ 

+ kψ + 2. The degree of the Chebyshev series should be chosen carefully such that it can follow the shape of the ∆V 
angles. In general, the higher the degree, the more robust the modeling is. However, increasing the degree may not 
always improve the modeling accuracy, especially when the angles jump through different quadrants. We should 
pick a coordinate frame (e.g. inertial frame, a spacecraft rotating frame like V-C-N or r-θ-h) for the ∆V angles such 
that it can be modeled easily by a Chebyshev series.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D. Node + Chebyshev (N.C.) Formulation 
The Node + Chebyshev (N.C.) formulation is the combination of the Node formulation and the Chebyshev 

formulation. It uses On/Off-Nodes to parameterize the ∆V magnitude, while the ∆V angles are parameterized with 
coefficients of Chebyshev series. With the On/Off-Nodes, a trajectory using N.C. is divided into a set of thrusting 
and coasting arcs. Unlike the Chebyshev formulation, for each individual thrusting arc, there is one, for each angle θ 
and ψ, Chebyshev series modeling the ∆V angles. For coasting arcs, no variable on the ∆V (magnitude and 
directions) is required. Using the Node + Chebyshev formulation, the number of variables on the ∆V becomes 8kN + 
kθ + kψ+ 2 and the nonlinear constraints on the ∆V magnitudes are removed. 
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Figure 2: ΔV magnitude of an Earth-Jupiter rendezvous mission. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: ∆V angle written as Chebyshev series. 
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V. Numerical Results 
We present results optimized by the four formulations in this section. Unless otherwise stated, our objective is to 

maximize the final mass of the spacecraft and the ∆V are expressed in Spherical Coordinates. All tests are 
performed on a Sun Blade 1000 Workstation.  

A. Earth-Jupiter Rendezvous 
In Ref. 36, we presented an Earth-Jupiter trade study using the N-Vector, Node, and Node + Chebyshev 

formulations (i.e. without the Chebyshev formulation). We provide the results for the Chebyshev formulation here 
for completeness. Table 1 gives the parameters of a nuclear electric propulsion (NEP) spacecraft for this mission.   

Figure 4 shows the trade-off curves of a time-of-flight (TOF) trade study for the four formulations. The study 
begins with a TOF of 2330 days and ends with a TOF of 2150 days, with a step size of 20 days. The solution from 
the previous step is used as the initial guess for the next step.  

Among the four formulations, results found by three of them agree closely, except for the Chebyshev 
formulation with TOF from 2230 to 2330 days. The difference is not due to the modeling error in Chebyshev 
formulation, but from the fact that it has converged to another locally optimal solution family (i.e. a solution with a 
different number of revs around the Sun). Ignoring the points with TOF from 2230 to 2330 days, the final masses 
found by the three new formulations agree within 20 kg (or 0.1% of the final mass) with those found by N-Vector. 
 We also note that with TOF from 2150 to 2330 days, the N-Vector formulation converges to some suboptimal 
solutions, with a lower final mass than the other formulations. In our experience, the N-Vector formulation 
sometimes switches to a suboptimal point when the ∆V are written in Spherical Coordinates, due to the fact that the 
∆V angles in the coasting segments may be perturbed during the iterations of the optimizer. On the other hand, the 
Node formulation and the Node + Chebyshev formulation do not diverge to a suboptimal solution in this test case. 

Table 2 shows the overall performance of the four formulations, including the total run time. Run times for 
individual steps are provided in Figure 5. The Node formulation takes an exceptionally long time to converge in 
some of the runs (TOF = 2270, 2210, 2150 days). Overall, the Node + Chebyshev formulation has the best 
performance among the four, which is 10 times faster than the N-Vector formulation. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Comparing Four Formulations on an E-J Trade Study 
Formulation Number of 

Optimization 
Variables 

Number of 
Nonlinear 

Constraints 

Total Run Timeb in 
the Trade Study, sec 

N-Vector 187 67 160 
Node 129 21 321 
Chebysheva 93 67 241 
Node + Chebysheva 63 21 15 
a Degree of Chebyshev Series (for both θ and ψ): 10 on Leg 1 and 5 on Leg 3. 
b On a Sun Blade 1000 Workstation. 

 

Table 1: Spacecraft Parameters for an Earth-Jupiter 
Rendezvous Mission 

Parameter Values 
Power Available to the Thrusters 95 kW 
Specific Impulse 6,000 s 
Overall Efficiency 70 % 
Thrust 2.26 N  
Mass Flow Rate 38.4 mg/s 
Initial Mass at zero V∞ 20,000 kg 
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Figure 5: Run times (on a Sun Blade 1000 Workstation) for an E-J rendezvous 
mission trade study (starting from 2330 days, ending at 2150 days). 
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Figure 4: TOF trade study of an E-J rendezvous mission (starting from 2330 
days, ending at 2150 days). 
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B. Earth-Mars-Vesta Flyby 
We can assess the accuracy of a formulation by comparing results with the literature. We study an Earth-Mars-

Vesta flyby mission found in Ref. 35. The spacecraft is propelled by a solar-powered ion thruster, similar to that 
used in Deep Space 1.24 We compare results of our new formulations to those from CLSEP, a direct optimization 
tool based on the trajectory model in Fig. 1, and to those from an indirect optimization tool called SEPTOP. 5  
Table 3 summarizes the mission specification and Fig. 6 shows the trajectory plot.  

We assume a coast-thrust-coast sequence on the Earth-Mars leg and a thrust-coast sequence on the leg from 
Mars to Vesta. For the ∆V directions, a fourth degree Chebyshev series is used to parameterize the angles. The ∆V 
angles are expressed in the r-θ-h frame (a spacecraft rotating frame). There are 26 and 36 segments on the leg from 
Earth to Mars and on the leg from Mars to Vesta respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Parameters of an Earth-Mars-Vesta Flyby Mission 
Characteristics Values 
Power Available to the Spacecraft at 1AU 10 kW 
Earth Launch Date Oct 4, 2009 
Mars Flyby Date May 2, 2010 
Vesta Flyby Date Jan 27, 2011  
Launch V∞

a 2.8 km/s 
Initial Mass 545 kg 
Lower Bound on Mars Flyby Altitude 200 km 
a The spacecraft is launched by Delta 7326. 
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Figure 6: Trajectory plot of an Earth-Mars-Vesta flyby mission optimized by N- Vector formulation 
(left) and Node (right) formulation. 

Table 4: Accuracy for the Earth-Mars-Vesta Flyby Test Case 
Final Mass, kg  

Launch 
V∞ 

 
Earth 

Launch 
Date 

 
Mars 
Flyby 
Date 

 
Vesta 

Arrival 
Date 

CLSEPa SEPTOPa GALLOP
N-Vector 

GALLOP 
Node 

GALLOP 
Cheby. 

GALLOP 
Node + 
Cheby. 

Fixed Fixed Fixed Fixed 493.73 493.74 493.727 493.741 493.726 493.740 
Free Free Fixed Fixed 503.46 503.39 503.439 503.398 503.438 503.397 
Free Free Free Fixed 504.43 504.36 504.423 504.368 504.423 504.368 
Free Free Free Free 535.24 535.23 535.652 535.708 535.652 535.708 

a Results of CLSEP and SEPTOP are from Ref. 35. 
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We begin with a fixed (or frozen) launch V∞ and encounter dates, then subsequently release these variables in a 

series of runs; Tables 4 and 5 summarize the results. As can be seen in the tables, the final masses found by the four 
formulations agree within a half kg with those found by CLSEP and SEPTOP. The differences could be caused by 
an updated ephemeris (JPL-de405) used by GALLOP. For the convergence speed, using the new formulations 
(Node, Chebyshev, and Node + Chebyshev) provides only some improvements over the N-Vector formulation. 
Among the four formulations, Node + Chebyshev is the fastest except for the run when the Vesta arrival date is free.  

In addition, we perform a launch period study by varying the launch date from July 28, 2009 through Nov 20, 
2009, with a step size of 5 days. The starting guess is from the last run in Table 4, where all the encounter dates are 
free and the Earth launch date is on Sept. 23, 2009. Solutions are found by adding or subtracting launch dates from 
the converged solution of the immediately preceding step. Figure 7 shows the trade-off curves for the four 
formulations. We notice that the final masses of the four formulations agree closely for the most part. For launch 
range from 0 to 50 days since July 25, 2009, the N-Vector formulation finds suboptimal solutions in which the final 
mass is about 2 to 6 kg (about 1% of the final mass) less than the other formulations. These suboptimal points found 
by N-Vector can be improved if we perturb the Vesta arrival dates to the optimal values (found by the other 
formulations) and by doing so the final masses of the four formulations agree within 0.5 kg. The run times of the 
four formulations are shown in Table 6. We note that the run time can be cut by half using the Node formulation or 
the Chebyshev formulation, while the Node + Chebyshev formulation saves 75% of time compared with the N-
Vector formulation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Speed of Convergence on the Earth-Mars-Vesta Flyby Test Case 
Run Time, sec  

Launch 
V∞ 

 
Earth 

Launch 
Date 

 
Mars 
Flyby 
Date 

 
Vesta 

Arrival 
Date 

GALLOP
N-Vector 

GALLOP 
Node 

GALLOP 
Cheby. 

GALLOP 
Node + 
Cheby. 

Fixed Fixed Fixed Fixed 16.1a 6.0a 9.0a 2.9a 
Free Free Fixed Fixed 3.0 5.9 3.0 1.5 
Free Free Free Fixed 4.8 2.7 5.3 1.3 
Free Free Free Free 19.1 10.5 4.0 36.5 

a Initial Guesses are from a shape-based tool called STOUR-LTGA.42 
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Figure 7: Launch period study of an Earth-Mars-Vesta flyby mission. 
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C. Earth-Mars Roundtrip Mission 
An Earth-Mars roundtrip mission found in Ref. 11 is considered as a test case here. The mission uses nuclear 

electric propulsion (NEP) to transfer back and forth between Earth and Mars over 15 years (seven Earth-Mars 
synodic periods). Table 7 gives the key parameters for this mission.  

Figure 8 shows the trajectory for the first cycle of this mission. The spacecraft launches at E-1 and arrives Mars 
in about one year. The transfer vehicle stays at Mars’ orbit for 30 days (for the exploration on the surface of Mars) 
and begins its inbound trip back to the Earth. We assume a net mass drop of about 45 mt (metric tons) at Mars to 
account for the propellant expenditure of the crew taxi vehicle. At the arrival back at Earth, the transfer vehicle stays 
for 30 days before it continues its outbound trip to Mars again. The net mass gain at Earth is about 120 mt to account 
for injected payload from the surface, which includes propellant and consumables on the transfer vehicle. We 
assume a V∞ of zero (i.e. rendezvous) on each Earth and Mars encounter.  

The optimization of this problem includes 15 planetary encounters and 371 segments in total, which comprises 
over 1,000 variables and 400 nonlinear constraints using the N-Vector formulation (see Table 8). We assume a 
Thrust-Coast-Thrust scheme for each leg. The degree of the Chebyshev series ranges from 3 to 6 for parameterizing 
the ∆V angles and the angles are expressed in the inertial frame for legs from Earth to Mars and in the V-C-N frame 
for legs from Mars to Earth. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6: Convergence Speed of a Launch Period Study for an Earth-
Mars-Vesta Flyby Mission 

Run Time, sec N-Vector Node Chebyshev Node + 
Chebyshev 

Average 2.6 1.1 1.4 0.6 
Maximum 5.1 2.1 7.3 0.8 
Total 62.5 27.1 34.1 15.3 

 

-2 -1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

x, AU

y,
 A

U

E-1 

M-2,   
arrival

M-2,
departure 

E-3, arrival

E-3, 
departure

cycle repeats

 
 

 

Figure 8: First cycle of an Earth-Mars round trip mission. 

Table 7: Parameters for an Earth-Mars Roundtrip Mission 
Parameter Values 
Power Available to the Thrusters 11.6 MW 
Specific Impulse 10,204 s 
Overall Efficiency 64.5 % 
Thrust 150 N  
Initial Mass at E-1a  346,636 kg 
Final Mass at E-15b  214,525 kg 
a Initial guess value (i.e. not yet optimized). 
b Frozen during optimization. 
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The starting guess of this problem is from the concatenated solutions found in Ref. 11. That is, we patch the 

solutions which are optimized within a single synodic period to a series of seven roundtrip mission between Earth 
and Mars. Our objective is to minimize the initial mass on E-1, which corresponds to the wet mass of the transfer 
vehicle for its first trip to Mars.  

Table 9 summarizes the results of this large scale optimization using four different formulations. The N-Vector 
formulations took over 15 hours to complete the run and ends up with an initial mass slighter higher (by 180 kg) 
than the value of the initial guess (where the value of the initial guess may be infeasible to the problem). The Node 
formulation took over 20 hours to find a solution slightly better than that of N-Vector (by 713 kg or 0.2%). On the 
other hand, both the Chebyshev formulation and the Node + Chebyshev formulation fail to converge with the default 
values (10-6) for their major optimality and feasibility tolerances.  

If we loosen the tolerances to 10-4, the Node + Chebyshev formulation finds a solution with a greater initial mass 
(by 3,694 kg or 1%) than that found by N-Vector (with tolerances of 10-6). However, the savings in run time using 
the Node + Chebyshev formulation is quite remarkable: it takes less than 2 hours while N-Vector takes over 15 
hours (12 hours for tolerances equal to 10-4) to converge. For this large scale problem, it seems difficult for the Node 
+ Chebyshev formulation to converge within the default tolerances.  

For preliminary trade studies, often an accuracy of 1% is sufficient. If we need more precision on a solution, we 
can apply the Node + Chebyshev formulation to find an intermediate solution, which can then be used as an initial 
guess for the N-Vector formulation to further improve the accuracy. The total computational time for this two-step 
process could be shorter than using the N-Vector alone.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 8: Comparing Four Formulations on the Earth-Mars Round Trip Mission 
Characteristics N-Vector Node Chebyshev Node + 

Chebyshev 
Number of Variables 1198 1067 624 641 
Number of Nonlinear Constraints 469 312 469 280 

 

Table 9: Optimization of the Earth-Mars Round Trip Mission using Four Formulations  
Formulation Exit Condition of 

NPOPT 
Run 

Time, 
hour 

Initial Mass 
at the end of 
the run, kg 

Additional Notes  

N-Vectora Optimal Solution Foundc 15.5 346,816  
Nodea Optimal Solution Foundc 20.1 346,102  
Chebysheva Infeasible Problemd 0.6 354,613 Final Feasibility ~ 10-2 
Node + Chebysheva Infeasible Problemd 0.7 368,264 Final Feasibility ~ 10-5 
N-Vectorb Optimal Solution Foundc 12.2 346,816e Final Feasibility ~ 10-5 
Node + Chebyshevb Optimal Solution Foundc 1.7 350,510 Final Feasibility ~ 10-10 
a Major feasibility tolerance and major optimality tolerance are both set to 10 -6 (the default for NPOPT). 
b Major feasibility tolerance and major optimality tolerance are both set to 10 -4.  
c Optimal Solution Found means the feasibility and optimality at the end of the optimization run both satisfy their 

tolerances. 
d Infeasible Problem means the optimizer fails to find a solution which satisfy the constraints within the feasibility 

tolerance and so the objective function (initial mass) reported is not meaningful.   
e The initial mass found by setting the tolerances to 10-4 is 0.15 kg higher than that of the tolerances equal to 10-6 (for N-

Vector). 
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D. Earth-Mercury Rendezvous 
We study an Earth-Mercury mission where the spacecraft makes many revs around the Sun. The spacecraft uses 

solar electric propulsion similar to the propulsion system used in Deep Space 1.24 Table 10 gives the parameters of 
this mission and Fig. 9 shows the trajectory plot. In Fig. 9, for the Node + Chebyshev formulation, we note that the 
number of segments on coasting arcs is reduced to 2 (the minimum for each leg in GALLOP), so that redundant 
variables on coasting segments are reduced to minimal during optimization. All variables shown in Table 10 are 
kept frozen during optimization. 

The spacecraft makes 12 revs around the Sun during its 6.3 years interplanetary flight to Mercury. The ∆V of 
this trajectory is changing quite rapidly, both in magnitude and directions (see Fig. 10 for the ∆V angles). There are 
15 on/off pulses in total and we only use 13 pairs of On/Off-Nodes to model the ∆V magnitude (since some of the 
pulses are too short). For the ∆V angles, with the Chebyshev formulation, we study cases with the degree of 
Chebyshev series from 4 to 9. With Node + Chebyshev, we use a 2nd to 4th degree Chebyshev series to model the 
angles on each thrusting arc (13 in total).   

We use 242 segments in this problem. The N-Vector formulation has more than 700 variables and 200 nonlinear 
constraints, which can be considered as a mid-size optimization problem (as compared with the Earth-Mars 
roundtrip mission). The initial guess is created by moving the Mercury arrival date of an optimal solution later by 
0.1 days.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 9: Trajectory plot of an Earth-Mercury rendezvous mission optimized by N-Vector formulation (left) 
and Node + Chebyshev formulation (right). 
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Table 10: Parameters of an Earth-Mercury Rendezvous 
Mission 

Characteristics Values 
Power Available to the Spacecraft at 1AU 10 kW 
Earth Launch Date March 21, 2007 
Mercury Arrival Date Aug. 22, 2013 
Launch V∞ 0 km/s 
Initial Mass 660 kg 
 



 
American Institute of Aeronautics and Astronautics 

 

12 

Table 11 summarizes the results of this test case using different formulations. We note that N-Vector has the 
shortest convergence time among the other formulations. Node formulation fails to converge for over 3 hours, while 
Chebyshev formulation (with various degrees) finds a solution 2% (7 kg) less than that found by N-Vector. With the 
Node + Chebyshev formulation, we have to loosen the major optimality tolerance to 10-3 in order to find a solution 
which has fair accuracy comparing with N-Vector (0.03% or 0.11 kg difference).  However, unlike the previous test 
cases (where N.C. is usually fastest), Node + Chebyshev takes almost twice as long as the N-Vector to converge. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 11: Optimization of an Earth-Mercury Rendezvous Mission using Different Formulations 
Formulation n m Exit Condition of NPOPT Run 

Time, 
min 

Final Mass at 
the end of the 

run, kg 
N-Vectora 733 249 Optimal Solution Foundc 4.5 371.73 
Nodea 547 175 User stopped the run > 180 Not Available 
Chebyshev (kθ = 4, kψ = 5)a 260 249 Optimal Solution Foundc 6.6 364.25 
Chebyshev (kθ = 7, kψ = 7)a 265 249 Optimal Solution Foundc 13 364.99 
Chebyshev (kθ = 9, kψ = 9)a 269 249 Optimal Solution Foundc 16 365.24 
Node + Chebysheva 390 175 MILEd 69 371.75 
Node + Chebyshevb 390 175 Optimal Solution Foundc 8 371.62 
a Major feasibility tolerance and major optimality tolerance are both set to 10 -6 (the default for NPOPT). 
b Major feasibility tolerance is set to 10-6 and major optimality tolerance is set to 10-3.  
c Optimal Solution Found means the feasibility and optimality at the end of the optimization run both satisfy their tolerances. 
d Major Iteration Limit (5000) Exceeded, with a feasibility < 10-6 and an optimality ~ 10-4 at the end of the run. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 10: The clock angle θ (left) and the cone angle ψ (right) of the ∆V, in the r-θ-h frame, for an 
Earth-Mercury rendezvous mission, optimized by N-Vector formulation. 
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Furthermore, we perform a launch period study for this mission using N-Vector and Node + Chebyshev. We 
vary the launch date from April 14, 2007 to July 18, 2007, with a step size of 5 days (20 runs in total). Solution from 
the immediate preceding step is used as an initial guess for the next step. Figure 11 shows the trade-off curves of this 
launch period study. We note that Node + Chebyshev does not quite follow the shape of N-Vector for launch date 
from 60 to 100 since April 9, 2007. Nevertheless, the maximum deviation in final mass between the two 
formulations is only 0.62 kg, which is less than 0.2% of the final mass. Table 12 compares the run times of the 
formulations. We note from Table 11 that Node + Chebyshev has to loosen its optimality tolerance, so we do the 
same for this launch period study.  The Node + Chebyshev formulation takes 3 hours less than N-Vector to complete 
the launch period study, even if we set the tolerances for both formulations to be the same.   
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Figure 11: Launch period study of an Earth-Mercury rendezvous mission. 
(Solutions of N-Vector are found by setting the major feasibility and optimality 
tolerances to 10-6, while solutions of Node + Chebyshev are found by setting the 
major feasibility tolerance to 10-6 and the major optimality tolerance to 10-3.) 

Table 12: Convergence Speed of a Launch Period Study for an Earth-
Mercury Rendezvous Mission 

Run Time N-Vectora N-Vectorb Node + Chebyshevb 
Average 9.8 min 11 min 21 sec 
Maximum 15.9 min  176 min 4.6 min 
Total 197 min 219 min 7.1 min 
a Major feasibility tolerance and major optimality tolerance are both set to 10-6 (the 
default for NPOPT). 
b Major feasibility tolerance is set to 10-6 and major optimality tolerance is set to 
10-3.  
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VI. Discussion 
We make the following observations and comments based on the research we have done:  
1. N-Vector is most stable (converges in most cases with the default NPOPT parameters) among the four 

formulations, but it may not be the fastest approach. It can be served as a good standard method (or 
workhorse) for cases where we only need to perform a single (or a few) run. The N-Vector formulation 
should be the first method to use when solving a new problem. 

2. Node + Chebyshev can save hours of computer operation time for mission designer who look at broad 
ranges of design space.  

3. For cases we have studied, the N-Vector formulation can converge to suboptimal solutions in a parametric 
study while Node + Chebyshev stays on the same family of optimal solutions.  

4. When solving a difficult problem (e.g. when n > 500 and m > 250), we might need to loosen the tolerances 
in the optimizer when we are using the new formulations (Node, Chebyshev, and Node + Chebyshev).  

5. The performance of the four formulations can be very different than the results we have shown in this paper 
when solving a new type of problem. It is difficult to predict the behavior of the optimizer when tackling 
problems that we have never attempted. 

6. As future work, we would like to study other parametric functions (e.g. trigonometric functions) to model 
the ∆V angles (other than Chebyshev polynomials). 

7. The accuracy of the Node + Chebyshev can be further improved if we optimize the solution found by Node 
+ Chebyshev using the N-Vector formulation. We can use Node + Chebyshev to find an intermediate 
solution, then use N-Vector to find a better solution. Yet, the effectiveness of this process is still unknown. 

8. There is no definite answer of which formulation is the best; it depends on how accurate and how fast we 
need for a certain case. It is helpful for the user to have an array of methods for tackling different types of 
problems. We can make an analogy of our formulations to different methods in numerical integration:43 
Runge-Kutta (RK4) is a standard method for solving general problems but the Adams method can be more 
efficient than RK4 at stringent tolerances; N-Vector is the standard formulation for solving a new problem 
but Node + Chebyshev is usually faster in parametric runs. 

VII. Conclusion 
We study new ways in parameterizing the ∆V when optimizing low-thrust, gravity assist trajectories. We 

compare the performance of four formulations: N-Vector, Node, Chebyshev, and Node + Chebyshev. For the cases 
we studied, Node + Chebyshev formulation is the fastest, with the exceptions of N-Vector being faster on the Earth-
Mars-Vesta flyby mission (on one of the runs) and the Earth-Mercury rendezvous mission (on one of the runs).  For 
an Earth-Jupiter rendezvous mission and an Earth-Mars-Vesta flyby mission (small scale problems), the Node + 
Chebyshev formulation can saves 75% to 90% of the run time with an accuracy of 0.1% compared with N-Vector. 
For a seven-synodic-period Earth-Mars roundtrip mission (a large scale problem), Node + Chebyshev saves over 10 
hours of run time with an error of 1% in the objective function; and for the launch period study of an Earth-Mercury 
rendezvous mission (a mid scale problem), the convergence speed of Node + Chebyshev is 3 hours faster than N-
Vector, with an accuracy of 0.2%.  The Node + Chebyshev formulation is particularly useful in parametric studies 
(e.g. flight time, launch period, hardware parameters) where we can save hours of computational time with fairly 
accurate results.  
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