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TRANSVERSE VELOCITY SOLUTION FOR A

SPINNING-UP RIGID BODY SUBJECT TO CONSTANT

BODY-FIXED FORCES AND MOMENTS ∗

Mohammad A. Ayoubi † and James M. Longuski ‡

A spinning, nearly-axisymmetric rigid body subject to constant body-fixed

forces and moments about all three is considered. Because of constant axial

torque along the spin axis, the spin rate increases linearly with time. By

further assuming small deviation of spin axis (with respect to an inertially-

fixed direction), an approximate closed-form analytical solution is obtained

for transverse velocity. Numerical simulations confirm that the solutions

are highly accurate when applied to typical motion of a spacecraft such as

the Galileo spacecraft.

INTRODUCTION

In rigid body dynamics there is a rich history of analytical solutions, much of which
is well represented in the treatise by Leimanis.1 The work goes back to the classical
analysis of the top and continues to modern works on spacecraft dynamics.2−31 The
early dynamicists had no access to computers and they devoted great effort to finding
integrals of the motion and reducing the dynamics problem to “quadrature integrals.”
Kepler had a great interest in finding quadratures for simple geometric shapes and
along these lines he discovered that the area swept out by a planet in its elliptical
orbit about the Sun is the same at different points in the orbit when the time interval
is the same. The idea of a quadrature integral is to find the square area under a
given curve or function. Once a problem has been reduced to quadratures, it is
possible to tabulate its value over the range of integration. Such tabulation could be
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accomplished by simple numerical integrations that can be made arbitrarily accurate.
Mathematical handbooks are replete with examples of famous quadrature integrals
such as Jacobian Elliptic functions, the Fresnel integrals, Bessel functions, the error
function, etc.

One of the advantages of a closed-form analytical solution is to help scientists and
engineers to perform parametric studies. While it is easy to numerically solve the
equations of motion governing a rigid body subject to moments and forces, it is not
easy to determine uncertainty in geometric parameters, mass properties and related
parameters that affect the solution and the final conditions. Ref. 32 is an example of
such study.

Among the numerous benefits of analytical closed-form solutions is verifying the
numerical simulations and results. Suppose that we are studying a new dynamical
system. We run our program on a computer and it generate reams of data. Most
of the time we need to understand system dynamics to recognize incorrect numerical
results. (Here we recall the old computer proverb “Garbage in, garbage out.”) By
having analytical solutions we can check our results and also have better insight into
the problem.

In this paper, we use the results of Tsiotras and Longuski27 and Gick31 to find
the analytical velocity solution of a spinning-up rigid-body. The spin rate increases
linearly with time and the body-fixed forces and moments are assumed constant.
We present approximate closed-form solution for transverse velocities. The results
are valid for axisymmetric, nearly-axisymmetric, and under certain conditions, for
asymmetric rigid bodies.

Euler’s Equations of Motion

The motion of a self-excited rigid body in inertial reference frame can be described
by Euler’s equations of motion which can be written as

ω̇x(t) = Mx/Ix − [(Iz − Iy)/Ix] ωyωz (1)

ω̇y(t) = My/Iy − [(Ix − Iz)/Iy] ωzωx (2)

ω̇z(t) = Mz/Iz − [(Iy − Ix)/Iz] ωxωy (3)

where ωx, ωy, and ωz are components of the absolute angular velocity of the rigid body
in the body-fixed reference frame, Mx, My, and Mz are constant body-fixed moments
and Ix, Iy, and Iz are principal moments of inertia around the x, y, and z axes of the
body-fixed reference frame, respectively. For axisymmetric, nearly-axisymmetric rigid
bodies or asymmetric rigid bodies where the product ωxωy is small enough, Eqs.(1-3)
can be simplified as:

ω̇x(t) = Mx/Ix − [(Iz − Iy)/Ix] ωyωz (4)

ω̇y(t) = My/Iy − [(Ix − Iz)/Iy] ωzωx (5)

ω̇z(t) ≈ Mz/Iz (6)
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By integrating Eq.(6) and assuming that axial moment, Mz, is constant, we obtain

ωz(t) ≈ (Mz/Iz)t + ωz0, ωz0 , ωz(0) (7)

which is, of course, exact for axisymmetric rigid bodies.

The Kinematic Equations

By using a Type I: 3-1-2 Euler angle sequence33 which relates the orientation of
body-fixed reference frame to inertial reference frame, the kinematic equations can
be written as follows:

φ̇x = ωx cos φy + ωz sin φy (8)

φ̇y = ωy − (ωz cos φy − ωx sin φy) tan φx (9)

φ̇z = (ωz cos φy − ωx sin φy) sec φx (10)

where φx, φy and φz are the Eulerian angles. With the assumption that φx and φy

are small and φyωx is small compared to ωz, Eqs.(8-10) can be simplified as:

φ̇x = ωx + ωz φy (11)

φ̇y = ωy − φxωz (12)

φ̇z = ωz (13)

After substituting Eq.(13) into Eq.(6) and integrating, we obtain

φz =
1

2

Mz

Iz

t2 + ωz0t + φz0, φz0 , φz(0) (14)

The Inertial Acceleration Equation

In the presence of constant body-fixed forces fx, fy, and fz, the rigid body will
accelerate with respect to the inertial reference frame. The following equation relates
the acceleration in the body-reference frame with respect to the inertial reference
frame 




v̇X(t)
v̇Y (t)
v̇Z(t)



 = [A]





fx/m
fy/m
fz/m



 (15)

where [A], is the direction cosine matrix

[A] =




cφzcφy − sφzsφxsφy −sφzcφx cφzsφy + sφzsφxcφy

sφzcφy + cφzsφxsφy cφzcφx sφzsφy − cφzsφxcφy

−cφxsφy sφx cφxcφy


 (16)

When φx and φy are small, the direction cosine matrix can be simplified as

[A] =




cφz −sφz φycφz + φxsφz

sφz cφz φysφz − φxcφz

−φy φx 1


 (17)

3



By introducing the complex functions

φ = φx(t) + i φy(t) (18)

v(t) = vX(t) + i vY (t) (19)

f = fx + i fy (20)

and using the first two rows of Eq.(15), the transverse acceleration can be written in
the following compact form

v̇(t) = eiφz(t)

[
f

m
−

ifz

m
φ(t)

]
(21)

Before integrating Eq.(21) and finding the transverse velocity solution, we need to
know the closed-form solutions for φz(t) and φ(t) which are given in Ref. 31. Because
the closed-form solutions for the Euler angles are bases of the transverse velocity
solution, in the next section we provide a brief review of those results.

Closed-Form Analytical Solution for the Eulerian Angles

By substituting a new variable τ ,

τ(t) , ωz = (Mz/Iz) t + ωz0, τ(0) , ωz0 (22)

into Eq.(13) and integrating with respect to τ , φz(τ) can be obtained as

φz(τ) =
λ

2
(τ 2 − τ 2

0 ) + φz0 (23)

where λ is defined as

λ ,
Iz

Mz

(24)

It can be shown that Eqs.(11-12) can be combined and written in the following com-
plex form

φ′(τ) + i λτφ(τ) = λω(τ) (25)

where the complex function ω(τ) is defined as

ω(τ) = ωx(τ) + i ωy(τ) (26)

Equation(25) is a first order non-homogeneous differential equation with a variable
coefficient. It can be shown that the solution is:27

φ(τ) = φ(τ0) e−iλ(τ2−τ2

0
)/2 + λ e(−iλτ2/2) Iφ(τ0, τ ; λ, ρ) (27)

where

Iφ(τ0, τ ; λ, ρ) ,

∫ τ

τ0

e(iλu2/2)ω(u) du (28)
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Iφ(τ0, τ ; λ, ρ) = k1Iφ1(τ0, τ ; λ, ρ) + k2Iφ2(τ0, τ ; κ, ρ) (29)

k1 , (
√

kx +
√

ky)/2k, k2 , (
√

kx −
√

ky)/2k (30)

kx , (Iz − Iy) /Ix, ky , (Iz − Ix) /Iy (31)

k ,
√

kx ky (32)

where the k’s represent the mass properties of the rigid body and Iφ2 provides the
contribution from an asymmetric body.

Iφ1(τ0, τ ; λ, ρ) ,

∫ τ

τ0

e(iλu2/2)Ω(u) du (33)

Iφ2(τ0, τ ; κ, ρ) ,

∫ τ

τ0

e(iλu2/2)Ω̄(u) du (34)

We see that the integrals Iφ1 and Iφ2 have Ω(u) in the integrand, which represents
the solution for the Euler’s equations of motion:

Ω(u) = Ωx(u) + i Ωy(u) (35)

Ωx(u) = ωx(u)
√

ky, Ωy(u) = ωy(u)
√

kx (36)

Iφ1(τ0, τ ; λ, ρ) = [Ω(τ0)e
(−iρτ2

0
/2) − F Īu0(τ0; ρ)] Īu0(τ0, τ ;−µ)

+ FJu0(τ0, τ ; µ, ρ)
(37)

Iφ2(τ0, τ ; κ, ρ) = [Ω̄(τ0)e
(iρτ2

0
/2) − F̄ Iu0(τ0; ρ)] Iu0(τ0, τ ; κ)

+ F̄ J̄u0(τ0, τ ;−κ, ρ)
(38)

ρ , kλ, µ , λ + ρ, κ , λ − ρ (39)

Here we observe that Iφ1 and Iφ2 depend ultimately on the Fresnel integral:

Iu0(τ0, τ ; λ) ,

∫ τ

τ0

e(iλu2/2) du (40)

F = Fx + iFy (41)

where F represents the transverse body-fixed torque:

Fx , (Mx/Ix)(Iz/Mz)
√

ky (42)
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Fy , (My/Iy)(Iz/Mz)
√

kx (43)

and where Ju0 is an integral of the Fresnel integral:

Ju0(τ0, τ ; µ, ρ) ,

∫ τ

τ0

e(iµu2/2) Īu0(u; ρ) du (44)

which we analyze later. Now by having the closed-form solutions for the Eulerian
angles, we will find the transverse velocity solution in the next section.

TRANSVERSE VELOCITY SOLUTION

Before integrating Eq.(21), we need to replace the variable t with τ by multiplying
both sides of Eq.(21) by dt/dτ as follows

dv

dτ
=

λ

m
eiφz(τ)[ f − ifz φ(τ)] (45)

after integration of both sides, we get

v(τ) = v(τ0) +
λf

m
T11(τ0, τ ; λ) −

iλfz

m
T11(τ0, τ ; λ) (46)

where T11 and T12 are defined as

T11(τ0, τ ; λ) ,

∫ τ

τ0

eiφz(u) du (47)

T12(τ0, τ ; λ) ,

∫ τ

τ0

eiφz(u)φ(u)du (48)

By substituting Eq.(23) into Eq.(47), T11 can be written in the following form.

T11(τ0, τ ; λ) = ei(φz0−λτ2

0
/2) Iu0(τ0, τ ; λ) (49)

where

Iu0(u; µ) =

√
π

|µ|
sgn(u)Ẽ

(√
π

|µ|
u

)
(50)

Ẽ(x) =

{
E(x) when µ < 0.

Ē(x) when µ ≥ 0.
(51)

and

E(x) ,

∫ x

0

e(−iπu2/2)du (52)

is the complex Fresnel integral. The sgn(.) symbol in Eq.(50) represents the signum
function which is sgn(x) = 1 for x ≥ 0 and sgn(x) = −1 for x < 0.

Substituting Eq.(23) and Eq.(27) into Eq.(48) (after some algebra) provides
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T12(τ0, τ ; λ) = φ(τ0)e
iφz0(τ − τ0) + λ ei(φz0−λτ2

0
/2)T21(τ0, τ ; λ, ρ) (53)

where

T21(τ0, τ ; λ, ρ) ,

∫ τ

τ0

Iφ(τ0, u; λ, ρ)du (54)

Substituting Eq.(29) into Eq.(54), yields

T21(τ0, τ ; λ, ρ) = k1T31(τ0, τ ; λ, ρ) + k2T32(τ0, τ ; κ, ρ) (55)

where T31 and T32 are defined as

T31(τ0, τ ; λ, ρ) ,

∫ τ

τ0

Iφ1(τ0, u; λ, ρ)du (56)

T32(τ0, τ ; κ, ρ) ,

∫ τ

τ0

Iφ2(τ0, u; κ, ρ)du (57)

By integration by parts, we can show that T31 and T32 can be determined as

T31(τ0, τ ; λ, ρ) = τIφ1(τ0, τ ; λ, ρ) −
F

iµ

[
eiµτ2/2Īu0(τ ; ρ) − eiµτ2

0
/2Īu0(τ0; ρ)

]

− (iµ)−1
[
Ω0e

−iρτ2

0
/2 − F Īu0(τ0; ρ)

] (
eiµτ2/2 − eiµτ2

0
/2

)

+
F

iµ
Iu0(τ0, τ ; λ)

(58)

T32(τ0, τ ; κ, ρ) = τIφ2(τ0, τ ; κ, ρ) −
F

iκ

[
eiκτ2/2Iu0(τ ; ρ) − eiκτ2

0
/2Iu0(τ0; ρ)

]

− (iκ)−1
[
Ω̄0e

iρτ2

0
/2 − F̄ Iu0(τ0; ρ)

] (
eiκτ2/2 − eiκτ2

0
/2

)

+
F̄

iκ
Iu0(τ0, τ ; λ)

(59)

With T31 and T32, the analytical closed-form transverse velocity solution is completed.

SIMULATION AND NUMERICAL RESULTS

We compare our analytical solution with the exact solution. By “exact solution,”
we mean a highly accurate numerical integration of Eqs. (1-3, 8-10, 15-16). Because
of the approximation of Ju0(τ0, τ ; µ, ρ) function via two piecewise continuous functions
(see appendix A) for small and large arguments, we present the results for two cases:
The “low spin rate” and the “high spin rate.” The low spin rate includes spin rates
from 0–2.24 rpm and the high spin rate is from for spin rates higher than 2.24 rpm
which in our case is 2.24–10 rpm. We note that our approximation solution for Ju0

is very accurate for all spin rates–it does not break down at intermediate spin rates.
The following mass properties and body-fixed forces and moments (inspired from the
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Figure 1: Exact and Analytical Solutions

for Inertial Velocity vX at Low Spin Rate

case of the Galileo spacecraft) are used during the simulation with setting all the
initial conditions to zero.

m = 2000 kg, Ix = 2985, Iy = 2729, Iz = 4183 kg.m2 (60)

fx = 7.66, fy = −6.42, fz = 10.0 N (61)

Mx = −1.253, My = −1.494, Mz = 13.5 N.m (62)

Figure 1 shows the x component of the transverse velocity for low spin rate in inertial
frame. The solid line and dashed lines represent the exact and analytical solutions,
respectively. Because of the low spin rate (corresponding to low gyroscopic rigidity),
there is a noticeable difference between the exact and numerical solutions. The asso-
ciated error between the exact and analytical solutions is shown in Fig. 2. It can be
seen that the order of magnitude of the relative error is about 10−2 mm/s. In Fig.
3, we show the x component of the transverse velocity for high spin rate. Again the
solid line represents the exact solution and the dashed line represents the analytical
solution which are indistinguishable in this case. Figure 4 shows the associated error
between the exact and analytical solutions. The order of magnitude of the relative
error is about 10−3 mm/s.
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Figure 2: Exact Minus Analytical Solution

of Inertial Velocity vX at Low Spin Rate

Figure 3: Exact and Analytical Solutions

for Inertial Velocity vX at High Spin Rate
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Figure 4: Exact Minus Analytical Solution

of Inertial Velocity vX at High Spin Rate

CONCLUSION

A complete, closed-form, approximate analytical solution has been found for the
transverse velocity of a spinning rigid body subject to constant forces and torques
about all three body axes. We demonstrate that this solution is highly accurate
when compared to the exact solution. Our analysis applies to axisymmetric, nearly-
axisymmetric and (under special conditions) asymmetric rigid bodies. This behavior
of the rigid body is fundamentally based on the Fresnel integral and related integrals.
Applications of this analytical theory may include spacecraft on-board computations,
probabilistic error modeling for mission-planning, and development of the new control
concepts for spacecraft maneuvers. The solution follows the classical works of Rosser
and Davis from the 1940’s and 1950’s which seek to develop a mathematical theory
of rocket flight; it complements the contributions of numerous contemporary authors
in the literature.

NOTATION

A = transformation matrix relating body and inertial frames
c = cosine
F = rescaled transverse body-fixed moments, 1/s2

f = body-fixed force, N
I = moment of inertia, kg-m2

M = body-fixed moment, N-m
m = rigid body mass, kg
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φ = Euler angle, rad
Ω = rescaled transverse angular velocities, rad/s
ω = angular velocity, rad/s
τ = spin rate, rad/s

Subscripts

X,Y,Z = components in inertial frame
x,y,z = components in body-fixed frame
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APPENDIX

A. Approximating Ju0 function

In the definition of Ju0(τ0, u; µ, ρ), Eq.(44), it was shown34 that Ju0 can be approxi-
mated as

Ju0(τ0, u; µ, ρ) =

{
Ju0s(u; µ, ρ), if u ≤ τs =

√
8/ |ρ|

Ju0s(τs; µ, ρ) + Ju0l(τs, u; µ, ρ), otherwise.
(A-1)

where, for u ≤ τs

Ju0s(u; µ, ρ) ,

√
π

|ρ|

11∑

n=0

(an + i bn)

(
|ρ|

8

)(n+ 1

2
)

×

∫ u

0

e(iλξ2/2)ξ2n+1dξ

(A-2)

and for u ≥ τs we have

Ju0l(τs, u; µ, ρ) ,

√
π

|ρ|

(1 − i)

2

∫ u

τs

e(iµξ2/2)dξ

+

√
π

|ρ|

11∑

n=0

(cn + i dn)

(
8

|ρ|

)(n+ 1

2
) ∫ u

τs

e(iλξ2/2)

ξ2n+1
dξ

(A-3)

B. Iu(u; λ, n) function and its integral

Iu(τ0, τ ; λ, n) ,

∫ τ

τ0

e(iλu2/2)un du (B-1)

∫ τ

0

Iu(ξ; λ, n)dξ =
−i

λ
Iu(τ ; λ, n − 1)

+
i(n − 1)

λ

∫ τ

0

Iu(ξ; λ, n − 2)dξ (n = 0, . . . , 11)

(B-2)

∫ τ

0

Iu0(ξ; λ)dξ =

√
π

|λ|

∫ τ

0

sgn(ξ)Ẽ(
√
|λ| /π ξ)dξ (B-3)

∫ τ

0

Iu(ξ; λ, 1)dξ =

∫ τ

0

−i

λ

[
e(iλξ2/2) − 1

]
dξ

=
−i

λ
[τ − Iu0(τ ; λ)]

(B-4)
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Table A-1:
BOERSMA’S NUMERICAL VALUES OF COEFFICIENTS

FOR THE Juo(τ ;µ, ρ) APPROXIMATION [34]

i ai bi ci di

0 1.595769140 -0.000000033 0.000000000 0.199471140
1 -0.000001702 4.255387524 -0.024933975 0.000000023
2 -6.808568854 -0.000092810 0.000003936 -0.009351341
3 -0.000576361 -7.780020400 0.005770956 0.000023006
4 6.920691902 -0.009520895 0.000689892 0.004851466
5 -0.016898657 5.075161298 -0.009497136 0.001903218
6 -3.050485660 -0.138341947 0.011948809 -0.017122914
7 -0.075752419 -1.363729124 -0.006748873 0.029064067
8 0.850663781 -0.403349276 0.000246420 -0.027928955
9 -0.025639041 0.702222016 0.002102967 0.016497308
10 -0.150230960 -0.216195929 -0.001217930 -0.005598515
11 0.034404779 0.019547031 0.000233939 0.000838386

C. Id(u; λ, n) function and its integral

Id(τ0, τ ; λ, n) ,

∫ τ

τ0

e(iλu2/2)

un
du (C-1)

∫ τ

τs

Id(ξ; λ, n)dξ =
1

n − 1
[Id(τs, τ ; λ, n − 1)

+ iλ

∫ τ

τs

Id(ξ; λ, n − 2)dξ ] (n = 0, . . . , 11)

(C-2)

∫ τ

τs

Id0(ξ; λ)dξ = Iu0(∞; λ)(τ − τs) −

√
π

|λ|

∫ τ

τ0

sgn(ξ)Ẽ(
√

|λ| /π ξ)dξ (C-3)

∫ τ

τs

Id(ξ; λ, 1)dξ = τId(τ ; λ, 1) − τsId(τs; λ, 1) + Iu0(τs, τ ; λ) (C-4)
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