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Low-thrust trajectories can be modeled by an evenly-spaced sequence of ∆V impulses
connected by coasting arcs. Such a model transforms the trajectory optimization problem
from an optimal control problem into a finite nonlinear programing problem. Analysis and
experimental results are given to help decide which coordinate system to use for the ∆V

vectors. In particular, we consider an Earth-Mars flyby mission, an Earth-Tempel 1 ren-
dezvous mission, an Earth-Mars-Ceres rendezvous mission, an Earth-Mercury rendezvous
mission, and an Earth-Jupiter flyby mission. If the initial guess is good (i.e. nearly opti-
mal), we find that spherical coordinates lead to the fastest optimization convergence. If
the initial guess is bad (i.e. not close to feasible), we find that a feasible solution will be
found most quickly if Cartesian coordinates are used. While it would not be prudent to
attempt any generalizations, we provide some conjectures for the observed behavior based
on the nature of the coordinates we have investigated.

Nomenclature

d Direction vector
g Standard acceleration due to gravity, 9.80665 m/s2

Isp Engine specific impulse, s
m Spacecraft mass, kg
N Number of segments on the trajectory
n0 Number of segments that have nearly zero ∆V

S Set of segment numbers having a nonzero ∆V

V∞ Hyperbolic excess speed, km/s
∆V Impulsive velocity-change vector, km/s
ε Fudge factor when using Cartesian coordinates, km2/s2

η Constraint function associated with MDV coordinates
θ Vector clock angle, deg
φ Constraint function associated with MC coordinates
ψ Vector cone angle, deg

Subscripts

i Segment index
l Lower bound
u Upper bound
x x-component
y y-component
z z-component
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I. Introduction

H
umanity has only just begun to explore the distant places in our solar system, as traveling into space is
still very difficult and expensive. For example, it costs about $36,000 per kilogram to launch a spacecraft

into geostationary orbit.1 Once a spacecraft is in interplanetary space, every kilogram is used to its fullest
advantage. If a kilogram of propellant can be saved, then that mass can be reallocated to the scientific
payload, thereby improving the scientific return of the mission. By varying control inputs like the launch
date and the the thrust vector (which is a function of time), one can change the required propellant mass.
The trajectory optimization problem is to find control inputs that achieve the goals of the mission, yet use
the minimum propellant mass (so the final mass is maximized).

There are many approaches to solving the trajectory optimization problem. The books by Lawden,2

Marec,3 Bryson and Ho,4 and Bryson5 are excellent references. Betts6 gives an overview of many common
numerical methods; new ones continue to be developed.7,8 In 1999, Sims and Flanagan described a new
technique for preliminary optimization of trajectories.9 They modeled a low-thrust trajectory as a sequence
of impulsive ∆V maneuvers connected by conic arcs. In essence, continuous control is approximated by
coasting arcs (long intervals with no control) plus a finite number of impulsive controls. We extend the
technique of Sims and Flanagan in this paper.

Once a trajectory model is specified, there are more decisions to be made before the optimization problem
is well-defined (i.e. parameterized). For example, one must choose the coordinate system for each vector (e.g.
Cartesian or spherical). Since the majority of the optimization variables are associated with the impulsive ∆V

vectors, the choice of coordinate system for these vectors is significant. We find that numerical optimization
software converges differently depending on the parameterization of the problem. To determine how different
parameterizations affect the reliability of the optimization and the speed of convergence, we consider several
alternatives.

II. Models

The low-thrust trajectory model of Sims and Flanagan9 makes a number of assumptions:

1. Each planet-planet leg of the trajectory is divided into a fixed number of equal-duration segments.

2. The effect of the engine thrust on a particular segment is modeled by an instantaneous ∆V maneuver
at the midpoint of the segment. (The thrust is modeled as being zero at all other times.)

3. The spacecraft mass changes instantaneously at the midpoints of the segments. The new mass is
calculated using the rocket equation.10

4. During the intervals of zero thrust, the only force acting on the spacecraft is the gravity of the Sun.
Hence the spacecraft follows conic arcs during these intervals.

5. Gravity-assist maneuvers rotate the V∞ vector instantaneously at the endpoints of the legs.

6. No ∆V maneuver is required to target particular flyby conditions (i.e. flybys can be targeted for free).

An optimizer is used to maximize the final mass of the spacecraft by varying the encounter times, the
initial velocity vector, the ∆V vectors, the final velocity vector, the flyby conditions, and the spacecraft mass
at each body. These control inputs cannot be chosen arbitrarily. There are a number of constraints:

1. The magnitude of the ∆V on a segment cannot exceed a maximum that depends on the thrust, the
mass-flow rate, the segment duration, the engine duty cycle, and the spacecraft mass.

2. Flyby altitudes must be above a minimum height.

3. The first part of each leg is propagated forward to a prespecified matchpoint time and the last part of the
leg is propagated backward to the same time. The position, velocity, and mass of the spacecraft must
be the same just before and just after the matchpoint time. (The sudden changes in the spacecraft’s
velocity and mass occur at the segment midpoints, but the matchpoint time occurs at a segment
endpoint.)
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Figure 1. Trajectory model (after Sims and Flanagan9).

Figure 1 illustrates the key characteristics of the Sims-Flanagan trajectory model. We note that it has
similarities with the models used by Kawaguchi et al.11 and by Byrnes and Bright.12

In this paper, our solar array model is the same as the model Williams and Coverstone-Carroll used for
their parametric studies.13 We assume that the spacecraft uses no power, so all power is available for the
engine. The models to calculate engine thrust and mass-flow rate (from the input power) are the same as
those of Williams and Coverstone-Carroll.13 The engine duty cycle is assumed to be 100%. The minimum
power needed to operate the engine is assumed to be 0.649 kW and the maximum power usable by the engine
is assumed to be 2.6 kW. We use these model parameters throughout, unless otherwise noted.

III. Parameterizing the Optimization Problem

So far, our description of the trajectory model has been geometric. For example, we said that the
optimizer can vary the ∆V vectors. Unfortunately, optimization software is not designed to vary geometric
vectors (i.e. entities with magnitude and direction). Optimization software is designed to vary an array of
scalars. Therefore, each ∆V vector must be represented by a set of scalars (i.e. must be parameterized).

To parameterize a velocity vector, one must choose 1) a reference frame (three basis vectors), 2) an
observer (since velocity is relative), and 3) a coordinate system (such as spherical coordinates). In our
current software, we assume that the reference frame is the ecliptic and equinox of J2000 (i.e. the “inertial
frame” with the x direction toward the first point in Aries and the z direction parallel to Earth’s angular
momentum vector on January 1, 2000). The observer of the initial spacecraft velocity is chosen to be the
Earth. All other velocity vectors have the Sun as their observer. Since each ∆V vector is the difference
between two velocity vectors, the motion of the observer cancels out. Therefore, ∆V vectors have no observer
associated with them.

There are many coordinate systems for three-dimensional vectors. The most common examples are
Cartesian coordinates, spherical coordinates, and cylindrical coordinates. These three are all examples of
orthogonal coordinate systems, where surfaces of constant coordinate are orthogonal to each other. Other
examples of orthogonal coordinates are conical coordinates, ellipsoidal coordinates and toroidal coordinates.14

In our software, the initial velocity vector of the spacecraft is parameterized using spherical coordinates and
all other velocity vectors are parameterized using Cartesian coordinates.

Since most of the optimization variables are associated with the ∆V vectors, we experiment with param-
eterizing them in four different coordinate systems. We will now give the definition of those four coordinate
systems and then discuss their relative merits.
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A. Cartesian Coordinates

The Cartesian coordinate ∆Vx of a ∆V vector is the component of the ∆V vector along the x̂ vector (which
is one of the three basis vectors for the frame). The coordinates ∆Vy and ∆Vz have analogous definitions;
formally:

∆Vx ≡ ∆V · x̂ (1)

∆Vy ≡ ∆V · ŷ (2)

∆Vz ≡ ∆V · ẑ (3)

B. Spherical Coordinates

We denote the spherical coordinates of a ∆V vector by ∆V , θ, and ψ. The first coordinate, ∆V , is the
magnitude of the ∆V vector, i.e.

∆V =
√

∆V · ∆V (4)

The second coordinate, θ, is the “clock angle” from the x̂ vector to the projection of the ∆V vector onto
the x-y plane. The third coordinate, ψ, is the “cone angle“ from the ẑ vector to the ∆V vector. Figure 2
illustrates both the Cartesian and the spherical coordinates. To represent all possible ∆V vectors, θ can
range from 0 deg to 360 deg and ψ can range from 0 deg to 180 deg. (Other choices for the ranges are
possible.)

z

y

x

V∆
∆V

∆V

V∆

θ

ψ

Figure 2. Cartesian and spherical coordinates.

C. Magnitude and Cartesian Coordinates

One can parameterize a ∆V vector by its magnitude and its three Cartesian coordinates: ∆V , ∆Vx, ∆Vy,
and ∆Vz. These four coordinates are not independent; they must satisfy

φ(∆V,∆Vx,∆Vy,∆Vz) ≡ ∆V 2
x + ∆V 2

y + ∆V 2
z − ∆V 2 = 0 (5)

We call these coordinates “Magnitude and Cartesian Coordinates” (MC coordinates).
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D. Magnitude and Direction-Vector Coordinates

One can parameterize a ∆V vector by its magnitude and the Cartesian components of a vector that points
in the same direction (which we call the “direction vector” d): ∆V , dx, dy and dz. We call these coordinates
“Magnitude and Direction-Vector Coordinates” (MDV coordinates). The Cartesian components of a ∆V

vector can be calculated using

∆Vx =
∆V dx

d
(6)

∆Vy =
∆V dy

d
(7)

∆Vz =
∆V dz

d
(8)

where d ≡
√

d2
x + d2

y + d2
z is the length of the direction vector.

To prevent division by zero, the direction vector must not have zero length, i.e.

η(∆V, dx, dy, dz) ≡ d2
x + d2

y + d2
z > 0 (9)

Inequality (9) is the only required constraint associated with MDV coordinates. However, one may choose
to impose additional constraints. We considered constraining the direction vector to lie between two spheres
of radius dl and du, i.e.

d2
l ≤ η(∆V, dx, dy, dz) ≤ d2

u (10)

where dl > 0, and du ≤ ∞. The direction vector can be constrained to be a unit vector by setting both dl

and du to 1.

When deciding which coordinate system to use for the ∆V vectors, there are many considerations to
take into account. For example, since numerical optimization software generally slows down as the number
of optimization variables increases, one usually wants to keep the number of optimization variables small.
Suppose there are N segments on the trajectory. Then there are N ∆V vectors to parameterize. If Cartesian
or spherical coordinates are used, then there will be 3N optimization variables associated with the ∆V

vectors, but if MC or MDV coordinates are used, there will be 4N such variables (33% more).
Furthermore, numerical optimization software generally works faster and more reliably if there are fewer

nonlinear constraints. Spherical and Cartesian coordinates have no associated constraints, but MC and
MDV coordinates do [Eqs. (5) and (10)]. In fact, when using MC or MDV coordinates, there is a nonlinear
constraint associated with each ∆V vector!

Cartesian coordinates are not without their problems. For example, the maximum ∆V allowable on
segment 2 depends on the mass of the spacecraft as it approaches the midpoint of segment 2. That mass
depends on the magnitude of the ∆V that occurred at the midpoint of segment 1. If the ∆V vectors are
parameterized using Cartesian coordinates, then one calculates the magnitude of the ∆V on segment 1 using

∆V1(∆Vx1, ∆Vy1, ∆Vz1) =
√

∆V 2
x1 + ∆V 2

y1 + ∆V 2
z1 (11)

The right-hand side of Eq. (11) seems fine at first, but closer inspection reveals that the derivative (with
respect to ∆Vx1, for example) is undefined when ∆Vx1 = 0, ∆Vy1 = 0, and ∆Vz1 = 0. To see why, consider
the special case when ∆Vy1 = 0 and ∆Vz1 = 0:

∆V1(∆Vx1, 0, 0) =
√

∆V 2
x1 = |∆Vx1| (12)

The derivative of the absolute value function does not exist at zero (i.e. it is not differentiable at zero).
This is a problem because the numerical optimization software that we are using requires all constraint
functions to be differentiable everywhere (or at least everywhere in the neighborhood of optimal solutions).
The fact that the magnitude function is not differentiable at (0, 0, 0) is pertinent because it is very common
for an optimal trajectory to have some ∆V vectors that are zero.
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One solution to the nondifferentiability of the magnitude function is to replace it with a differentiable
approximation. We use

∆Vapprox(ε; ∆Vx, ∆Vy, ∆Vz) ≡
√

∆V 2
x + ∆V 2

y + ∆V 2
z + ε (13)

where ε is a small “fudge” factor with the dimensions of velocity squared. Figure 3 shows the difference
between the true magnitude and our differentiable approximation when ε = 0.001 km2/s2. When the ∆V

vector is zero, the error in the approximation is the worst; it is
√

ε. Since the error is smaller when ε is
smaller, one might conclude that ε should be made as small as possible. We have found that when ε is made
smaller, our numerical optimization software takes longer to converge, so there is a tradeoff between error
and convergence speed. A numerical example of this phenomenon is given in the next section.

Of course, the problem of the nondifferentiable magnitude function can be avoided by using a coordinate
system where the magnitude is a differentiable function. Spherical, MC and MDV coordinates all have the
magnitude as one of the coordinates, so the function to calculate the magnitude from the coordinates is
differentiable. (Of the four coordinate systems we consider, only Cartesian coordinates have the problem of
the nondifferentiable magnitude function.)

Another problem with Cartesian coordinates is that it is not as easy to constrain the magnitudes of the
∆V vectors. Constraining the magnitude is easy when using spherical, MC, or MDV coordinates because the
magnitude is one of the optimization variables—all one does is put bounds on that optimization variable.
(Bounds on optimization variables are easy to satisfy.) When using Cartesian coordinates, however, a
nonlinear constraint is required to bound the ∆V magnitude.
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Figure 3. The true magnitude and our differentiable approximation (∆Vy = ∆Vz = 0, ε = 0.001 km2/s2).

Spherical coordinates have some problems as well. For example, if the ∆V magnitude is zero (a common
occurrence), then the two angles (θ and ψ) have no meaning. A change in θ or ψ has no effect on the
objective or constraint functions, so the optimizer can make large changes to the angles with impunity—and
it does! Then if the optimizer tries to make the ∆V magnitude nonzero, the ∆V vector may be pointed in
a suboptimal direction (or worse). A similar problem happens if the cone angle ψ is 0 or 90 deg—the clock
angle θ becomes meaningless (even if the ∆V magnitude is nonzero). MDV coordinates have an analogous
problem, only it is the direction vector that becomes meaningless when the ∆V magnitude is zero. Cartesian
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and MC coordinates, however, do not have problems with optimization variables that sometimes become
meaningless.

Another problem with spherical coordinates arises when one puts bounds on the clock angle θ. For
example, one might constrain θ to be between 0 deg and 360 deg. Suppose the optimal value of θ is 355 deg
(which is the same as -5 deg) and the initial guess for θ is 2 deg. Then the optimizer will try to move θ

from 2 deg to -5 deg, but it will run into the lower bound at 0 deg. (The optimizer will not increase θ from
2 deg to 355 deg.) The θ angle will get stuck at 0 deg (a suboptimal value). A similar problem can happen
with bounds on the cone angle ψ. One solution to this problem is to remove the bounds on the angles, but
that opens the door for another problem: the optimizer might make some of the angles very large (and large
numbers cause numerical problems). We usually bound θ between -360 deg and 360 deg and ψ between
2 deg and 178 deg. We then check the “optimal solution” to make sure there are no angles stuck to their
bounds. These “problems with angles” only arise with coordinate systems that have angles (so they do not
arise with Cartesian, MC, or MDV coordinates).

There is a subtle yet devastating problem with MC coordinates. Recall that the MC coordinates asso-
ciated with each ∆V vector must satisfy Eq. (5). In other words, the point (∆V,∆Vx,∆Vy,∆Vz) ∈ R

4 is
restricted to the set where Eq. (5) is satisfied (the feasible set). Once the optimizer finds a point in the
feasible set, it tries to keep the current solution feasible by ensuring that all steps are tangential to the
feasible set, that is, are orthogonal to the gradient of the constraint function:

∇φ(∆V,∆Vx,∆Vy,∆Vz) = (−2∆V, 2∆Vx, 2∆Vy, 2∆Vz) (14)

When the ∆V is zero, the gradient of the constraint function is zero, i.e.

∇φ(0, 0, 0, 0) = (0, 0, 0, 0) (15)

This is a problem because all steps are orthogonal to (0, 0, 0, 0). The optimizer will probably take a step
in a bad direction and arrive at a new point that violates the constraint. As will be seen in the next section,
we had poor results when using MC coordinates and we believe that the problem of the constraint gradient
being zero was one of the main culprits. MDV coordinates do not have this problem: their constraint gradient
is never zero (on the feasible set).

To calculate the constraint functions, the Cartesian coordinates of the ∆V vectors must be calculated.
To calculate Cartesian coordinates from MDV coordinates, one uses Eqs. (6)–(8). That transformation is
not differentiable—there is a division by zero that occurs whenever d = 0. However, d is prevented from
being zero by a constraint, so this is never a problem. The transformations from spherical to Cartesian and
from MC to Cartesian coordinates are differentiable.

The transformations from Cartesian to spherical, MC, or MDV coordinates are not differentiable, but
those transformations are never used to calculate the objective function or constraint functions, so we do
not discuss them any further.

We see that Cartesian, spherical, MC, and MDV coordinates all have problems. To help us decide which
coordinate system to use when parameterizing the ∆V vectors, we tried all four in a number of numerical
experiments.

IV. Software

We call our trajectory optimization software the Gravity-Assist Low-thrust Local Optimization Program
(GALLOP). The objective function (final mass), the constraint functions, and all their first derivatives
are (analytically) calculated to double precision. That is, no first derivatives are estimated using finite-
difference approximations. (We found that calculating all derivatives improves the speed and robustness of
the optimization.) GALLOP has been used to optimize numerous trajectories.15–19

GALLOP uses the numerical nonlinear programming optimization software NPOPT, a wrapper for the
sparse nonlinear optimizer SNOPT.20 SNOPT is an implementation of the sequential quadratic programming
(SQP) method to find a locally optimal solution to a constrained optimization problem.

When using NPOPT, one can specify some parameters which determine when or how an optimization
run will end. One of these parameters is the “major feasibility tolerance.” The smaller the major feasi-
bility tolerance, the more accurately the constraints must be satisfied before NPOPT considers a solution
feasible. Another of the NPOPT parameters is the “major optimality tolerance.” The smaller the major
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optimality tolerance, the more accurately the optimality conditions must be satisfied. An optimization run
nominally ends once the current solution satisfies both the major feasibility tolerance and the major optimal-
ity tolerance. For the experiments described in this paper, we set both tolerances to 10−6 (unless otherwise
noted).

One can also set a “major iterations limit,” so that NPOPT will stop if it exceeds that number of
major iterations. (We will not discuss the meaning of a major iteration versus a minor iteration here;
the interested reader may consult Gill’s paper.20) Sometimes, the optimizer cannot find a solution that
is feasible or optimal enough. In those cases, other exit conditions may occur. An example is “EXIT –
Infeasible problem, nonlinear infeasibilities minimized” (which may occur even if a feasible solution exists).

V. Numerical Results

A. The Effect of Changing ε

We begin our numerical experiments with an example of how ε [the fudge factor in Eq. (13)] affects the
outcome when using Cartesian coordinates for the ∆V vectors. We use an Earth-Mars flyby trajectory
launching on May 20, 2003 and arriving at Mars on Dec. 6, 2003. The launch V∞ is 1.66 km/s and the
initial spacecraft mass is 585 kg. The launch date, launch V∞, initial mass and arrival date were all held
frozen so the optimizer could not change them. We divided the trajectory into 50 equal-duration segments.
To find the “true” maximum final mass, we optimized the trajectory using spherical coordinates for the ∆V

vectors. Then we switched over to Cartesian coordinates and reoptimized the trajectory using a number
of values for ε. Figures 4 and 5 show how the time to converge and the error in the maximum final mass
depend on ε. When ε is increased from 10−15 to 10−4, the convergence time decreases by a factor of about
15, whereas the error in the optimal final mass increases by a factor of about 105.
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Figure 4. How convergence time depends on ε (for Earth-Mars flyby trajectory).

We can estimate the error in the final mass (when using Cartesian coordinates) for any trajectory. Recall
that when using Cartesian coordinates, the magnitude of the ith ∆V vector is calculated using the ∆Vapprox

function defined in Eq. (13).
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Figure 5. How error in the final mass depends on ε (for Earth-Mars flyby trajectory).

To estimate what the true final mass would be, one just uses ε = 0 when calculating the magnitudes
of the ∆V vectors. (The optimizer can’t use ε = 0 but there is nothing to prevent us from using ε = 0.)
The estimated error is just the difference between the final mass calculated with ε = 0 and the final mass
calculated with ε > 0.

mferror ≈ mε=0
f − mε>0

f (16)

= m0 exp



−
N

∑

i=1

√

∆V 2
xi + ∆V 2

yi + ∆V 2
zi

gIsp,i





−m0 exp



−
N

∑

i=1

√

∆V 2
xi + ∆V 2

yi + ∆V 2
zi + ε

gIsp,i



 (17)

where m0 is the initial mass, mf is the final mass, g = 9.80665 m/s2 and Isp,i is the specific impulse of the
engine on segment i. We note that the points on Fig. 5 are nearly collinear. To understand why, we make
some simplifying assumptions. We begin by sorting the ∆V vectors into those that are nearly zero and those
that are nonzero. Let n0 be the number of ∆V vectors that are nearly zero. Let S be the set of segment
numbers whose ∆V vectors are nonzero. Assume that

√

∆V 2
xi + ∆V 2

yi + ∆V 2
zi + ε ≈

√

∆V 2
xi + ∆V 2

yi + ∆V 2
zi for i ∈ S (18)
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Suppose also that the engine Isp is constant throughout the trajectory. Equation (17) then becomes

mferror ≈ m0 exp



−
∑

i∈S

√

∆V 2
xi + ∆V 2

yi + ∆V 2
zi

gIsp





−m0 exp



−





n0

√
ε

gIsp

+
∑

i∈S

√

∆V 2
xi + ∆V 2

yi + ∆V 2
zi

gIsp







 (19)

=
(

mε=0
f

)

·
[

1 − exp

(−n0

√
ε

gIsp

)]

(20)

≈
(

mε=0
f

)

·
[

1 −
(

1 − n0

√
ε

gIsp

)]

(21)

=
n0

√
ε
(

mε=0
f

)

gIsp

(22)

If we take the logarithm of both sides of Eq. (22), we find that

log(mferror) ≈
1

2
(log ε) +







log





n0

√
ε
(

mε=0
f

)

gIsp











(23)

Equation (23) has the linear form y = mx + b. This explains why the points on Fig. 5 (in which both axes
are log-scale) are nearly collinear.

We set ε to 10−10 km2/s2 for all other experiments described in this paper. This value of ε was chosen
to ensure that the optimal final mass would have a very small error. All cited convergence times associated
with using Cartesian coordinates should be understood as being contingent on the choice of ε.

B. Convergence Speed when the Initial Guess is Nearly Optimal

When the initial guess is near an optimal solution, one expects the optimizer to converge to the optimal
solution fairly quickly. In our experience with optimizing over 30 trajectories,15–19 we have found that
convergence (from a good initial guess) is fastest when using spherical coordinates for the ∆V vectors. We
now describe experiments with four different trajectories which help quantify the differences in convergence
speed associated with using different coordinate systems.

1. Earth-Mars Flyby Mission

To get a good (but non-optimal) initial guess for an Earth-Mars flyby mission we took an optimal solution
(which had fixed launch and arrival dates) and moved the arrival date to a day later. The main characteris-
tics of the mission are given in Table 1. All of the characteristics in Table 1 were held frozen (i.e. they were
not optimization variables). Table 2 summarizes the outcomes when using different coordinate systems for
the ∆V vectors. We note that when spherical coordinates were used, the optimizer converged more than
eight times faster than with any other coordinates.
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Table 1. Earth-Mars Flyby Mission

Characteristic Value

Power available to the spacecraft at 1 AU 6 kW

Launch date May 20, 2003

Launch V∞ 1.66 km/s

Initial mass, m0 585 kg

Arrival date Dec. 7, 2003a

a The initial guess came from an optimal solution that arrived on
Dec. 6, 2003.

Table 2. Dependence of Outcome on Coordinate System for Earth-Mars Flyby
Case

Coordinate System Exit Condition Convergence/Exit Time

Spherical OSFa 5.4 sec.

Cartesian with ε = 10−10 km2/s2 OSFa 1.4 min.

MC OSFa 34 min.

MDV with dl = du = 1 OSFa 50 sec.

MDV with dl = .1 and du = 10 OSFa 2.0 min.

MDV with dl = 1 and du = ∞ OSFa 44 sec.

a Optimal Solution Found (mf = 554.6 kg).

2. Earth-Tempel 1 Rendezvous Mission

We wanted a test trajectory in which the spacecraft does a significant amount of out-of-plane thrusting. That
way, all coordinates of the ∆V vectors would be fully exercised. A rendezvous mission to the comet Tempel 1
was chosen. When the spacecraft arrives at Tempel 1 on Dec. 4, 2005, Tempel 1 is 0.37 AU below the ecliptic
plane. In order to get so far from the ecliptic, the ∆V vectors must often have a significant z-component.
Table 3 summarizes the key characteristics of the Earth-Tempel 1 rendezvous mission. All characteristics in
Table 3 were frozen during optimization. Table 4 summarizes the outcomes of the optimization runs when
using various coordinate systems.

Table 3. Earth-Tempel 1 Rendezvous Mission

Characteristic Value

Power available to the spacecraft at 1 AU 10 kW

Launch date Nov. 28, 2002

Launch V∞ 0.831 km/s

Initial mass, m0 576 kg

Arrival date Dec. 4, 2005a

a The initial guess came from an optimal solution that arrived on
Dec. 3, 2005.
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Table 4. Dependence of Outcome on Coordinate System for Earth-Tempel 1 Ren-
dezvous Case

Coordinate System Exit Condition Convergence/Exit Time

Spherical OSFa 13 sec.

Cartesian with ε = 10−10 km2/s2 OSFa 5.0 min.

MC MILEb 2.4 hrs.

MDV with dl = du = 1 “OSF”c 9.9 min.

MDV with dl = .1 and du = 10 “OSF”c 27 min.

MDV with dl = 1 and du = ∞ MILEb,d 2.8 hrs.

a Optimal Solution Found (mf = 387.4 kg).
b Major Iteration Limit (2000) Exceeded.
c Optimal Solution Found, but the “optimal” final mass is less than 387.4 kg.
d Final solution was feasible but not optimal.

As in the Earth-Mars flyby case, the optimizer converged fastest when spherical coordinates were used.
Cartesian coordinates came in a distant second, taking over 22 times longer than spherical coordinates. Two
of the runs didn’t converge to an optimal solution (despite being given over two hours to try). In two of the
runs that used MDV coordinates, the optimizer found an “optimal” solution that was not as good as that
found using spherical coordinates (e.g. mf = 372.2 kg instead of 387.4 kg).

3. Earth-Mars-Ceres Rendezvous Mission

We wanted a test trajectory with a gravity-assist maneuver, so we chose an Earth-Mars-Ceres rendezvous
similar to the one optimized by Sauer.21 (Ceres is the largest asteroid in the asteroid belt.) Table 5 summa-
rizes the key trajectory characteristics. We note that some of the power model parameters are a bit different
from those given in the Model section. All values in Table 5 were held frozen during optimization.

Table 5. Earth-Mars-Ceres Rendezvous Mission

Characteristic Value

Power available to the spacecraft at 1 AU 5 kW

Power used by the spacecraft 0.125 kW

Minimum power usable by the engine 0.5 kW

Launch date May 6, 2003

Launch V∞ 1.6003 km/s

Initial mass, m0 568 kg

Mars flyby date Feb. 1, 2004

Lower bound on Mars flyby altitude 200 km

Arrival date June 13, 2006a

a The initial guess came from an optimal solution that arrived on
June 12, 2006.

The outcomes of the tests are summarized in Table 6. Once again, spherical coordinates led to the shortest
convergence time, with Cartesian coordinates coming in second. Two of the cases using MDV coordinates
found an “optimal” final mass lower than what was found using spherical coordinates (e.g. 413.0 kg vs.
414.0 kg). This seems to be a recurrent problem with MDV coordinates.
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Table 6. Dependence of Outcome on Coordinate System for Earth-Mars-Ceres
Rendezvous Case

Coordinate System Exit Condition Convergence/Exit Time

Spherical OSFa 3.2 sec.

Cartesian with ε = 10−10 km2/s2 OSFa 23 sec.

MC MILEb 20 min.

MDV with dl = du = 1 MILEb 29 min.

MDV with dl = .1 and du = 10 “OSF”c 24 sec.

MDV with dl = 1 and du = ∞ “OSF”c 24 sec.

a Optimal Solution Found (mf = 414.0 kg).
b Major Iteration Limit (2000) Exceeded, but the final solution is nearly feasible and optimal.
c Optimal Solution Found, but the “optimal” final mass is less than 414.0 kg.

4. Earth-Mercury Rendezvous Mission

We also wanted a test case where the spacecraft makes multiple revolutions of the Sun (so that the ∆V vec-
tors also make multiple revolutions). We chose an Earth-Mercury rendezvous mission where the launch V∞

is zero. Figure 6 shows a plot of the trajectory. The dots are the segment midpoints and the line segments
emanating from the dots indicate the direction and magnitude of the ∆V vector on the associated segment.
During the 6.3-year flight time, the spacecraft makes almost 12 revolutions of the Sun. Table 7 summarizes
the key characteristics of the Earth-Mercury rendezvous mission. Another important characteristic of this
test is that we used 244 segments, so the number of optimization variables is significantly larger than in the
other tests. We consider this test as being difficult for the optimizer. We note that the initial guess was
created by taking an optimal solution and then moving the arrival time 0.1 days later (rather than 1 day
later as we did for the other cases). All of the characteristics in Table 7 were held frozen during optimization.
The outcomes when using different coordinate systems are summarized in Table 8.

Table 7. Earth-Mercury Rendezvous Mission

Characteristic Value

Power available to the spacecraft at 1 AU 10 kW

Launch date March 21, 2007 at 12:00 UTa

Launch V∞ 0 km/s

Initial mass, m0 660 kg

Arrival date Aug. 22, 2013 at 14:24 UTa,b

a Universal Time.
b The initial guess came from an optimal solution that arrived on Aug. 22, 2013 at
12:00 UT (0.1 days earlier).

The optimizer was only able to converge when spherical coordinates were used, and even then it took
8.3 minutes. All other runs were terminated by the user because they had taken too long and had not been
making any progress.
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Figure 6. Earth-Mercury rendezvous trajectory.

Table 8. Dependence of Outcome on Coordinate System for Earth-Mercury Ren-
dezvous Case

Coordinate System Exit Condition Convergence/Exit Time

Spherical OSFa 8.3 min.

Cartesian with ε = 10−10 km2/s2 RTBUb > 12 hrs.

MC RTBUb > 12 hrs.

MDV with dl = du = 1 RTBUb > 28 hrs.

MDV with dl = .1 and du = 10 RTBUb > 28 hrs.

MDV with dl = 1 and du = ∞ RTBUb > 20 hrs.

a Optimal Solution Found (mf = 371.7 kg).
b Run Terminated by User.

C. Convergence Speed when the Initial Guess is from STOUR-LTGA

Finding an initial guess trajectory for optimization can be a daunting task (especially if there are multiple
gravity-assist maneuvers). Petropoulos et al.22 developed an approach that assumes the low-thrust arcs
belong to a low-dimensional family of curves, thereby enabling fast, automated, and comprehensive searches
of the design space. Their approach was implemented in a program named STOUR-LTGA (the Satellite
Tour design program for Low-Thrust Gravity-Assist trajectories).23–25

We often use STOUR-LTGA to find an initial guess trajectory. In this section, we describe convergence
tests on two initial guesses found using STOUR-LTGA: An Earth-Mars-Ceres rendezvous and a Earth-Jupiter
flyby.

1. Earth-Mars-Ceres Rendezvous

This test is similar to the Earth-Mars-Ceres rendezvous case used earlier, except the arrival date and some
power-model parameters are different. Of course, the initial guesses of all the ∆V vectors are different as
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well, since they came from STOUR-LTGA rather than a nearly optimal solution. Table 9 summarizes the
key mission characteristics, all of which were held frozen during optimization. Table 10 summarizes the
outcome when using different coordinate systems.

Table 9. Earth-Mars-Ceres Rendezvous Mission

Characteristic Value

Power available to the spacecraft at 1 AU 10 kW

Power used by the spacecraft 0 kW

Minimum power usable by the engine 0.649 kW

Launch date May 6, 2003

Launch V∞ 1.6003 km/s

Initial mass, m0 568 kg

Mars flyby date Feb. 1, 2004

Lower bound on Mars flyby altitude 200 km

Arrival date June 12, 2006

Table 10. Dependence of Outcome on Coordinate System for Earth-Mars-Ceres
Rendezvous Mission with STOUR-LTGA Initial Guess

Coordinate System Exit Condition Convergence/Exit Time

Spherical OSFa 6.2 sec.

Cartesian with ε = 10−10 km2/s2 OSFa 5.4 min.

MC MILEb 1.5 hrs.

MDV with dl = du = 1 “OSF”c 1.7 min.

MDV with dl = .1 and du = 10 IPNIMd 13 min.

MDV with dl = 1 and du = ∞ “OSF”c 1.0 min.

a Optimal Solution Found (mf = 435.3 kg).
b Major Iteration Limit (5000) Exceeded.
c Optimal Solution Found, but the “optimal” final mass is less than 435.3 kg.
d Infeasible Problem, Nonlinear Infeasibilities Minimized.

Once again, using spherical coordinates led to the shortest convergence time. We note that one of the runs
using MDV coordinates led to the exit condition “Infeasible problem, nonlinear infeasibilities minimized,”
which is clearly not true, since we know that a feasible (and optimal) solution exists.

2. Earth-Jupiter Flyby

Our second test using an initial guess from STOUR-LTGA is for an Earth-Jupiter flyby mission. The engine
and power models for this test are significantly different from our other tests. We assume that the engine
thrust is constant at 2.26 N and the engine Isp is constant at 6000 s. Such parameters could be achieved,
for example, by a large electric thruster being powered by a nuclear reactor. Table 11 summarizes the key
trajectory characteristics (which were all held frozen). Table 12 shows the outcomes when using the different
∆V coordinates.

Spherical coordinates are clearly the coordinates of choice when the initial guess is nearly optimal or from
STOUR-LTGA. We are not sure why. The fact that using spherical coordinates leads to an optimization
problem with fewer optimization variables and fewer nonlinear constraints is probably a factor, but Cartesian
coordinates tie with spherical coordinates on those counts. We suspect that part of the explanation is
that when using spherical coordinates, the optimization variables associated with the ∆V magnitudes are
decoupled from the optimization variables associated with the ∆V directions. Since the changes in spacecraft
mass depend only on the ∆V magnitudes, the mass calculations are decoupled from the optimization variables
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Table 11. Earth-Jupiter Flyby Mission

Characteristic Value

Engine Thrust 2.26 N

Engine Isp 6000 s

Launch date April 21, 2022

Launch V∞ 0.4 km/s

Initial mass, m0 20,000 kg

Arrival date Dec. 11, 2028

Table 12. Dependence of Outcome on Coordinate System for Earth-Jupiter Flyby
Mission with STOUR-LTGA Initial Guess

Coordinate System Exit Condition Convergence/Exit Time

Spherical OSFa 3.7 sec.

Cartesian with ε = 10−10 km2/s2 MILEb 23 min.

MC MILEb 43 min.

MDV with dl = du = 1 MILEb 18 min.

MDV with dl = .1 and du = 10 MILEb 25 min.

MDV with dl = 1 and du = ∞ MILEb 40 min.

a Optimal Solution Found (mf = 15, 101 kg).
b Major Iteration Limit (5000) Exceeded.

associated with the ∆V directions. Optimization problems with fewer couplings are generally easier to solve.
(It is easier to solve a system of equations where some of the variables do not appear in some of the equations,
i.e. where the Jacobian matrix of derivatives has some zero elements.)

D. Convergence Speed when the Initial Guess is Very Poor

So far, all of our tests have used an initial guess trajectory with ∆V vectors being nearly optimal or fairly
good. We wanted some tests with very poor initial guesses for the ∆V vectors. To construct a very poor initial
guess, we took a nearly optimal initial guess (as described in section V. B.) and corrupted its ∆V vectors.
To corrupt a ∆V vector, we 1) changed its magnitude to a value sampled uniformly randomly between its
lower and upper bound, and 2) changed its direction to a random direction distributed uniformly on the
surface of a sphere (accomplished by sampling from a three-dimensional standard normal distribution and
then normalizing). All other characteristics of the mission, such as the launch date and launch V∞ were held
frozen during the optimization.

We wanted to determine which coordinate system to use to quickly find a fairly feasible solution. (Once
we find a feasible solution, we have already determined that spherical coordinates should be used to get quick
convergence to an optimal solution.) To find a “fairly” feasible solution, we set the feasibility tolerance to
10−4 (rather than the usual 10−6). We also directed the optimizer (NPOPT) to find a “feasible point only”
(and to ignore the objective function). The major optimality tolerance was set quite large (e.g. 100) so it
would be met easily.

1. Earth-Mars Flyby

Our first test with a very poor initial guess (for the ∆V vectors) is based on the Earth-Mars flyby mission
whose key characteristics were given in Table 1. The test outcomes are shown in Table 13. We note that
there are two runs with spherical coordinates, one with angles bounded and one with angles unbounded.

In this test, a fairly feasible solution was found fastest when using Cartesian coordinates. MC coordinates
came in second and spherical coordinates with angles unbounded came in third. (This is the first time
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Table 13. Dependence of Outcome on Coordinate System for Earth-Mars Flyby
Mission with Very Poor Initial Guess

Coordinate System Exit Condition Convergence/Exit Time

Spherical, angles bounded FPFa 27 sec.

Spherical, angles not bounded FPFa 19 sec.

Cartesian with ε = 10−10 km2/s2 FPFa 2.7 sec.

MC FPFa 17 sec.

MDV with dl = du = 1 IPNIMb 0.2 sec.

MDV with dl = .1 and du = 10 FPFa 66 sec.

MDV with dl = 1 and du = ∞ FPFa 19 min.

a Feasible Point Found.
b Infeasible Problem, Nonlinear Infeasibilities Minimized.

spherical coordinates did not win.) Figure 7 shows how the ∆V magnitudes changed between the (very poor)
initial guess and the (fairly feasible) solution found with Cartesian coordinates. As mentioned earlier, we
expect that the feasible solution can be quickly optimized using spherical coordinates (and the corresponding
optimal ∆V magnitude plot would exhibit a smoother profile).
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Figure 7. Earth-Mars flyby ∆V magnitudes on the segments (for fairly feasible solution).

2. Earth-Tempel 1 Rendezvous

Our second test with a very poor initial guess (for the ∆V vectors) is based on the Earth-Tempel 1 rendezvous
mission whose key characteristics were given in Table 3. The test outcomes are shown in Table 14.

As with the Earth-Mars flyby test case, a fairly feasible solution was found fastest when using Cartesian
coordinates. Unbounded spherical coordinates came in second, but took ten times longer than Cartesian.
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Table 14. Dependence of Outcome on Coordinate System for Earth-Tempel 1
Rendezvous Mission with Very Poor Initial Guess

Coordinate System Exit Condition Convergence/Exit Time

Spherical, angles bounded FPFa 2.8 min.

Spherical, angles not bounded FPFa 2.5 min.

Cartesian with ε = 10−10 km2/s2 FPFa 15 sec.

MC FPFa 4.1 min.

MDV with dl = du = 1 FPFa 3.2 min.

MDV with dl = .1 and du = 10 FPFa 4.0 min.

MDV with dl = 1 and du = ∞ MILEb 2.5 hrs.

a Feasible Point Found.
b Major Iteration Limit Exceeded.

When using spherical coordinates with the angles bounded, the final (fairly feasible) solution had many ∆V

vectors with angles on their lower or upper bounds (which is undesirable because angles tend to get stuck
to their bounds).

3. Earth-Mars-Ceres Rendezvous

Our final test with a very poor initial guess (for the ∆V vectors) is based on the Earth-Mars-Ceres rendezvous
mission whose key characteristics were given in Table 5. The test outcomes are shown in Table 15.

Table 15. Dependence of Outcome on Coordinate System for Earth-Mars-Ceres
Rendezvous Mission with Very Poor Initial Guess

Coordinate System Exit Condition Convergence/Exit Time

Spherical, angles bounded IPNIMa 5.9 sec.

Spherical, angles not bounded FPFb 1.0 min.

Cartesian with ε = 10−10 km2/s2 FPFb 8.0 sec.

MC FPFb 4.4 min.

MDV with dl = du = 1 FPFb 13 sec.

MDV with dl = .1 and du = 10 IPNIMa 2.5 min.

MDV with dl = 1 and du = ∞ FPFb 46 sec.

a Infeasible Problem, Nonlinear Infeasibilities Minimized.
b Feasible Point Found.

Once again, convergence to a fairly feasible solution was fastest with Cartesian coordinates. The “solu-
tion” found using spherical coordinates with angles bounded had many angles stuck to their bounds.

We note that in the three test cases with a very poor initial guess for the ∆V vectors, ε (the fudge factor
associated with Cartesian coordinates) was set to 10−10 km2/s2. Since we were not too concerned with the
accuracy of the solution, we could have set ε much larger, thus reducing the convergence time. Despite our
small value for ε, when we used Cartesian coordinates for the ∆V vectors, the optimizer converged from a
very poor initial guess to a fairly feasible solution the quickest. The reason for this may be that Cartesian
coordinates never have the problem of some coordinates becoming meaningless. (Recall that when using
spherical coordinates, the clock angle θ becomes meaningless when the vector is on the z-axis, and both
angles become meaningless when the magnitude is zero.)
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VI. Future Work

Changing the coordinate system used to parameterize the ∆V vectors is an example of changing the rep-
resentation of the design space. In the future, we would like to investigate the utility of other representations.
Possibilities include:

1. Using a reference frame that rotates with the spacecraft orbit (for the ∆V vectors). Such a feature
would make it easy, for example, to move an optimal Earth-Mars transfer one synodic period later
(because the ∆V vectors in the spacecraft-rotating frame would be a good initial guess for the optimal
trajectory one synodic period later). Also, by using a spacecraft-rotating frame, it is easy to create an
initial guess in which all ∆V vectors are along the direction of the spacecraft velocity vector.

2. Using parametric functions of time (e.g. polynomials or Fourier series) to calculate the coordinates
of the ∆V vectors (with one function per coordinate and with the function parameters being the
optimization variables). The number of function parameters could be smaller than the number of
segments, thus reducing the number of optimization variables (but potentially making the problem
infeasible).

3. Using different observers, reference frames, or coordinate systems for the spacecraft velocity vectors
(such as the incoming velocity at a flyby). For example, by changing the observer of an incoming
velocity from the Sun to the flyby planet, one can constrain the flyby V∞ simply by putting bounds
on the optimization variable associated with the V∞ magnitude.

VII. Conclusions

1. The four coordinate systems we considered (Cartesian, spherical, MC, and MDV) all have problems.

2. When using Cartesian coordinates for the ∆V vectors, the value of the fudge factor ε strongly affects
convergence time and the accuracy of the optimal final mass. (However, one can calculate a good
estimate of the “true” final mass.)

3. When a good initial guess is available, spherical coordinates should be used to get fast convergence to
an optimal solution.

4. When using MDV coordinates, the optimizer often finds an “optimal” solution with a final mass that
is not as good as was found using spherical or Cartesian coordinates.

5. When the initial guess is not feasible and not very good, Cartesian coordinates should be used first
to find a fairly feasible solution. Once a fairly feasible solution is found, spherical coordinates may be
used to finish the optimization process.

6. When using spherical coordinates, bounds on the angles are not required.
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