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Abstract

Tracking a spacecraft near the Sun provides unique opportunities to estimate gravity param-
eters and to test fundamental theories of physics. We develop a detailed covariance analysis of
such trajectories, analyzing the uncertainty distribution of the first order Parameterized Post-
Newtonian parameters (γ and β) and the solar quadrupole (J2) moment based on radiometric
measurements. Our analysis includes the effect of station-location uncertainties and stochas-
tic accelerations acting on the spacecraft. We present realistic estimates of these parameters
considering both heliocentric and Mercury-centric trajectories.

Introduction

The theory of General Relativity (GR) can be tested by precisely measuring small changes in
a spacecraft trajectory. Two possible trajectory design options for testing GR in a sub-light speed
regime are: 1) a trajectory originating near the Sun; and 2) an orbit about the planet Mercury. The
novel feature of these trajectories is the possibility of estimating the Parameterized Post-Newtonian
(PPN) parameters (γ and β) and the solar quadrupole moment (J2) separately, since previous GR
experiments generally cannot clearly disentangle γ, β, and J2 from each other [1]. Precisely knowing
the parameters γ, β, and J2 allows us to determine how well GR describes the physical world.

One may consider the tests we are investigating as an extension of Mercury’s perihelion shift
or the deflection of light by the Sun. However, tracking spacecraft trajectories near the Sun is
fundamentally different from these previous GR tests. The precession of Mercury’s perihelion was
based on the secular effect of GR over long timespans. In actuality, the transient oscillations of
Mercury’s orbit due to GR are much larger (over one orbit) than the secular effect; however, their
amplitudes are small in absolute terms, and their effect averages out over time. Hence, only the
secular effects can be measured over very long time baselines, and these provide estimates of linear
combinations of γ and β, such as the perihelion advance effect (2 + 2γ − β) or the Nordtvedt effect
(η = 4β − γ − 3). In contrast, the transient deviations in the trajectory due to GR over a short
period of time allow us to discriminate between the gravity parameters. Moreover, light bending
experiments can only provide very accurate estimates of the parameter γ from the calibration of the
radiometric data [2] [γ = 1+(2.1±2.3)×10−5]; however, the parameters β and J2 are unobservable
with these tests.

A potential sub-light GR test has been proposed by Longuski et al. [3] (2001) where they
place the spacecraft on a heliocentric hyperbolic trajectory with perihelion at four solar radii. Later
studies [4, 5] investigated how well the gravity parameters could be measured from this test via a
detailed covariance analysis. Considering foreseeable improvements in tracking capability and drag-
free technology, that analysis gives unbiased estimates of σγ = 8.90×10−5 and σβ = 4.09×10−4. This
paper revisits those earlier studies and considers the effect of different spacecraft orbit orientations
has on our predicted uncertainties of γ, β, and J2.

Tracking the orbit of a spacecraft in orbit about Mercury provides another design option for
testing GR. The idea is similar to the heliocentric case; however, there is a critical difference in
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this experiment. The effect of GR on Mercury is much smaller than for the heliocentric case, and
hence, one may expect poor estimates of the gravity parameters by tracking a Mercury orbiter.
The significant distinctions from the heliocentric and Mercury-centric cases are that the stochastic
perturbations acting on Mercury are much less than those acting on the spacecraft. Of course, a
Mercury orbiter will itself be under influence of large stochastic perturbations, but we are using the
spacecraft to measure Mercury’s state to extract the gravity information. In other words, one may
view this case as a spacecraft heliocentric orbit (i.e., a spacecraft following Mercury’s trajectory)
with very small stochastic perturbations and accurate a priori information.

Overview of the Covariance Analysis

Initial State Covariance Analysis

Our filter model is based on ordinary first-order least-squares approximation theory and is car-
ried out using modern orbit determination procedures [6, 7]. The state vector we estimate in our
analysis can be represented as y = [ xT pT qT ]T , where x is the dynamics vector (T represents
transpose), p is the parameter vector (e.g., γ and β), and q is the measurement model parameter
vector (e.g., station-location vector). The dimensions of x, p, and q are n, m, and l, respectively. If
we consider y as a Gaussian random vector with mean (nominal) vector (ȳ) and covariance matrix
(P), the probability density function (fY) and the probability of y lying in a region Γ can be defined
as:

fY(y) =
e−

1
2 (y−ȳ)T P−1(y−ȳ)

(2π)(n+m+l)/2
√

detP
, (1)

Pr(y ∈ Γ) =
∫

Γ
fY(y′)dy′. (2)

Hence, studying the covariance matrix essentially provides us with the behavior of the uncertainties
in the state y. Moreover, if we let Po be the initial covariance matrix, the covariance matrix at tk
can be obtained by computing,

Pk = Φ(tk, to)PoΦT (tk, to), (3)

where Φ(tk, to) is the state transition matrix (STM) which maps the state perturbations from to to tk
as a function of time and is defined by the initial spacecraft state vector [i.e., Φ(tk, to; ro,vo, γ, β)].
Under ideal conditions (i.e., no stochastic perturbation), studying Pk or Po gives essentially the
same uncertainty information for the parameters (i.e., γ, β, and J2). For the given state vector, the
time propagated STM can represented as,

Φ(tk, to) =
∂y(tk)
∂y(to)

, (4)

with Φ(to, to) an identity matrix. The time derivative of the STM is a simple linear relation,
Φ̇(tk, to) = AΦ(tk, to), where the linear mapping matrix A is given by,

A(t) =
∂

∂y

(
dy
dt

)
. (5)

Numerical precision is often lost in the computation of covariance due to numerical integration and
matrix inversion error. A method for retaining precision is to use the Square Root Information Filter
(SRIF) [7]:

Λ(to; tk, to) = RT (to; tk, to)R(to; tk, to). (6)

Here Λ(to; to, tk) is the initial state information matrix in the interval from to to tk, and R(to; tk, to)
is the initial state SRIF matrix which we propagate, instead of the information matrix, to update
data in each time increment. The SRIF matrix is related to the adjoint of the state transition matrix
(STM) and ideally maps as

R(tk; tk, to) = R(to; tk, to)Φ(to, tk). (7)
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Let TH be an orthogonal Householder transformation matrix such that the updated SRIF matrix is
defined as

R(to; tk+1, to) = TH

[
R(to; tk, to)

Σ−1Htk+1Φ(tk+1, to)

]
=

[
RH(to; tk+1, to)

0

]
, (8)

where Σ is the measurement noise matrix with corresponding values from Table 1, Hk+1 is the
measurement partial matrix computed at tk, and RH is an upper triangular matrix. In the com-
putation, we adopt QR-factorization as the Householder transformation [7]. After the Householder
transformation is applied, the updated information matrix becomes

Λ(to; tk+1, to) = RT
H(to; tk+1, to)RH(to; tk+1, to), (9)

and the updated covariance matrix is

P(to; tk+1, to) = Λ−1(to; tk+1, to) = R−1
H (to; tk+1, to)R−T

H (to; tk+1, to), (10)

which represents the evolution of the a priori uncertainties in the state vector.

Table 1 Summary of Measurement Accuracies

Tracking σR
a (m) σV

b (nrad) σD
c (mm/s)

System (for 1 minute count time)
X-band 1 1 0.1
K-band 0.1 0.1 0.01

a. Range measurement accuracy.
b. VLBI measurement accuracy.
c. Doppler measurement accuracy.

Current State Covariance Analysis

The perturbations due to process noise (stochastic accelerations) can most easily be included
in the current state covariance analysis [8]. Therefore, we directly solve for the current state SRIF
matrix to include time-correlated random accelerations. We define the current-state information
matrix and related quantities as

Λ(tk; tk, to) = RT (tk; tk, to)R(tk; tk, to), (11)
P(tk; tk, to) = Λ−1(tk; tk, to), (12)
Ṙ(tk; tk, to) = −R(tk; tk, to)A(tk). (13)

The current state covariance matrix (Eq. 12) represents the uncertainties in the state variables at
current time tk, whereas the previous definition was for the a priori estimates. Again, the resulting
γ, β, and J2 uncertainties do not change since they are not dynamical variables. In the absence
of stochastic perturbations, the two definitions of covariance matrices can be mapped into each
other by Eq. (3); however, this ideal relation is no longer preserved in the presence of stochastic
perturbations. The time derivative of the perturbed SRIF matrix is [8],

Ṙ(tk; tk, to) = −R(tk; tk, to)A(tk)− 1
2
R(tk; tk, to)BPωBT RT (tk; tk, to)R(tk; tk, to), (14)

where

Pω = 2τσ2
aI3×3. (15)

Here, B is a matrix mapping the process noise into the spacecraft velocity space, τ is the correlation
time of the process noise, σa is the steady-state stochastic acceleration, and the linear map A is
defined as earlier. We assume that the stochastic accelerations are not being estimated during
the orbit-determination process and that these accelerations continuously affect the state. For this
reason, we map the covariance due to the process noise (Pω) only into the spacecraft velocity space
using the matrix B. In the actual computation the correlation time τ is set to 0.5 days and we vary the
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steady-state acceleration noise to study its impact on estimates of the gravity parameters. Between
these measurements, the SRIF matrix is propagated by solving the above differential equations, and
each measurement is incorporated into the SRIF matrix by

R(tk+1; tk+1, to) = TH

[
R(tk+1; tk, to)

Σ−1Htk+1

]
=

[
RH(tk+1; tk+1, to)

0

]
. (16)

The current-state covariance matrix is then obtained by computing,

P(tk+1; tk+1, to) = R −1
H (tk+1; tk+1, to)R −T

H (tk+1; tk+1, to), (17)

which represents the a posteriori estimates of the state vector at t = tk+1.

Extracting Estimate Uncertainties

Each component in a covariance matrix (Pij = σij) represents either the squares of standard
deviation in the state or the correlation between two state variables. Hence, we can obtain the
uncertainty estimates (i.e., standard deviations) of p by computing σi =

√
σii, i = n + 1 · · ·n + m.

The unique opportunity of the heliocentric and Mercury-centric tests is the potential of separately
estimating γ, β, and J2; hence, it is of interest to analyze how these two parameters are correlated.
We thus also find the correlation between γ, β, and J2 by computing (σγβ/

√
σγγσββ) = (σγβ/σγσβ),

(σγJ2/
√

σγγσJ2J2) = (σγJ2/σγσJ2), and (σβJ2/
√

σββσJ2J2) = (σβJ2/σβσJ2), which can range be-
tween −1 and 1. A value of zero represents a purely uncorrelated measurement whereas values close
to 1 or -1 represent highly correlated or anti-correlated measurements.

Measurement Data Types

We only consider radiometric data types in this analysis and the possibility of implementing
optical measurements is not considered. The first data type is two-way radar range measurements,

ZR = |ρ| = ρ, (18)

which measure the distance between the spacecraft and the tracking station based on the travel
time of the up-link and down-link signals. Here, ρ is the vector from the Earth tracking station
(Goldstone in our example) to the spacecraft.

The second data type we consider is Very Long Baseline Interferometry (VLBI) measurements,
ZV . VLBI measures the longitudinal and latitudinal angles of the spacecraft trajectory in the plane
of sky of the tracking station [9]. Combined with range measurements, the 3-dimensional position
of the spacecraft can be obtained. We represent this measurement as a set of angles,

ZV = [ Zm Zn ]T , (19)

where Zm and Zn are the longitudinal and the latitudinal angular measurements, respectively.
The final data type we consider are Doppler measurements, ZD,

ZD = ρ̂ · ρ̇, (20)

which are widely used for interplanetary missions. Here, ρ̂ is the unit vector of ρ. This data type
gives range-rate via Doppler frequency shifts in the transmitted signals and, due to the Hamilton-
Melbourne effect [10], provides angular information on the trajectory as well.
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Error Sources

Station-Location Errors

The only measurement parameter vector we consider is the station-location vector, which is
defined as

rsl =




RE sin δ
RE cos δ

α


 , (21)

where RE is Earth mean radius (6378 km), α is the right ascension (243.17◦), and δ is the declination
(54.67◦).

The only information needed are the partials of the observation vectors with respect to rsl.
Taking partials of range measurements with respect to the station-location vector results in

∂ZR

∂rsl
= −ρ̂T

(
∂rts

∂rsl

)
. (22)

Taking partials of the VLBI measurements with respect to the station-location vector yields




∂Zm

∂rsl

∂Zn

∂rsl


 =




−m̂T
o

ρ

(
∂rts

∂rsl

)

− n̂T
o

ρ

(
∂rts

∂rsl

)


 . (23)

Finally, the partial derivatives of Doppler measurements are

∂ZD

∂rsl
= − ρ̇T

ρ

(
I3×3 − ρ̂ρ̂T

) (
∂rts

∂rsl

)
− ρ̂

(
∂vts

∂rsl

)
, (24)

where vts is the time derivative of rts.
Uncertainties in the station-location corrupt the quality of radiometric measurements, and hence

can significantly degrade the accuracy of our estimates of γ, β, and J2. To analyze this effect, we
assume that the uncertainty in the station-location vector is constant, and do not estimate rsl in the
covariance computation. Hence, this is in a sense a worst-case approach since we completely ignore
the possibility of estimating rsl.

Occultation Effects

When the spacecraft passes in front of (or behind) the Sun or Mercury, we cannot obtain radio-
metric measurements. Since the trajectory originates close to the Sun, this can be an important
effect in the experiments. For solar occultation, we assume no range measurements are taken when
Sun-Earth-Probe (SEP) angle ≤ 5.27◦ and no VLBI and Doppler measurements were taken when
SEP ≤ 0.77◦. Also no radiometric measurements were taken when the Mercury-Earth-Probe angle
(MEP) ≤ 0.0016◦.

Trajectory Models

Heliocentric Trajectory

The spacecraft trajectory originating near the Sun is sensitive to GR. In this study, we consider
the trajectory condition analyzed in Ref. [3], where the spacecraft is on a heliocentric hyperbolic
trajectory (Figure 1) with perihelion located at four solar radii rp = 4R¯ (where R¯ = solar radii =
6.96× 105 km) with periapsis velocity vp = 311 km/s. In this paper we will consider a larger range
of possible orbit geometries, allowing for inclined orbits for the spacecraft. Let the state vector to be
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Figure 1: Heliocentric Spacecraft Trajectory.

estimated be y =
[

rT
s vT

s γ β J2

]T , where rs and vs are the spacecraft state vectors with
the following acceleration model [11]:

as =
∂

∂rM

{
µ¯
rM

[
1 +

R2
¯J2

2r4
M

(r2
M − 3z2

M )
]}

(25)

+
µ

c2r3
s

[
2(γ + β)

µ

rs
rs − γv2

srs + 2(γ + 1)(rs · vs)vs

]
,

where rs and vs are the magnitudes of rs and vs, respectively, µ¯ is the Sun’s gravitational constant
(1.327× 1011 km3/s2), c is the speed of light (3× 105 km/s), and J2 is the solar quadrupole moment
(J2 = 2×10−7) [1]. In this case, we ignore the measurement parameters (i.e., station-location vector
rsl) as discussed in Refs. [4, 5, 12] in great detail. We note that the GR perturbation only acts in
the orbital plane, and therefore inclination and argument of ascending node are unchanged. The
largest change in orbital elements due to γ and β occurs very early in the trajectory and essentially
disappears after a few days. This is expected since the GR perturbation is at its maximum in
close proximity to the Sun. One outcome of this observation is that it is highly desirable to extend
radiometric tracking as close to the Sun as possible. Furthermore, Refs. [4, 12] discuss the importance
of the partial derivatives of the orbital elements with respect to the GR parameters as the spacecraft
travels along its trajectory. An important conclusion from these studies is that the partials of
argument of periapsis, ω, with respect to β and γ are distinct. The ratios of these partials, which
represent the correlation between β and γ, converge to a constant value more slowly than the ratios
of the other orbital elements, indicating that there is sufficient information to disentangle γ and β
by tracking the spacecraft close to perihelion.

The Earth’s orbit is assumed to be circular with radius rE = 1 AU and we assume the initial
Earth location to be along the Vernal Equinox. The spacecraft trajectory is obtained by numeri-
cally integrating the two-body equations of motion given in Eq. (25). Our hypothetical trajectory
approaches perihelion on an elliptic orbit (with aphelion at Jupiter ∼ 5.2 AU), then boosts into a
hyperbolic escape trajectory (using a perihelion maneuver of ∆V ∼ 3 km/s at 4R¯). Hence, to
constrain the initial velocity error, we assume the presence of accelerometers to measure the large
perihelion burn. At epoch the conservative initial uncertainties (variances) for the initial covariance
matrix are given in Table 2 with zero correlations. The a priori uncertainties of γ and β are set
at high values that assume no initial information. The a priori uncertainty of J2 is an order of
magnitude better than Mercury-centric case, this is because the heliocentric mission will likely to be
carried out after the Mercury orbiter mission (i.e., such as the Solar probe mission).

Table 2: Initial Values of the Covariance Matrix (Heliocentric Case)

σrs (km) σvs (m/s) σγ σβ σJ2

diag(1) diag(1) 1 1 10−8
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We consider all three types of radiometric data types for this case and the resulting measurement
partials are as follows:

hR =
[

ρ̂T 01×5

]
, (26)

hV =




m̂T
o

ρ
01×5

n̂T
o

ρ
01×5


 , (27)

hD =
[

ρ̇T

(
∂ρ̂

∂rs

)T

ρ̂T 01×2

]
, (28)

where we define

l̂o = ρ̂, (29)

m̂o = l̂o × n̂o, (30)

n̂o =
ẑ− (ẑ · l̂o)̂lo
|ẑ− (ẑ · l̂o)̂lo|

, (31)

∂ρ̂

∂rs
=

1
ρ

(
I3×3 − ρ̂ ρ̂T

)
, (32)

ẑ = [ 0 0 1 ]T and ρ̂ is the unit vector of ρ. The measurements partial matrix and measurement
noise matrix are then

H =




hR

hV

hD


 , (33)

Σ =




σR 0 0
0 σV 0
0 0 σD


 . (34)

For more discussion, the reader is referred to Refs. [4, 5, 12]

Mercury-centric Trajectory

In this case we track the Mercury-centric orbiter to measure Mercury’s state and extract infor-
mation on the Sun’s gravity field. Figure 2 shows a schematic of the Earth, Mercury, and spacecraft
orientations. Unlike the heliocentric case, both the transient and secular effect of GR become of
importance in estimating the gravity parameters. The changes in Mercury’s orbital elements due to
GR are shown in Figure 3 [13]. The changes in the semi-major axis ∆a and eccentricity ∆e oscil-
late over time, but the changes in argument of perihelion ∆ω and mean anomaly ∆M have secular
deviations from the mean value in addition to their transient oscillations. An important advantage
of using Mercury’s orbit is that the stochastic perturbations acting on it are small. The spacecraft
itself is under the influence of stochastic perturbations (on the order of σa = 10−12 km/s2). While
non-gravitational perturbations (due to solar radiation, reflected solar radiation, planet thermal ra-
diation, and solar wind, and other effects discussed by Longuski et al. [14]) are relatively large
on a typical spacecraft, these perturbations are negligible on the planet because its area-to-mass
ratio is vanishingly small as compared to a spacecraft. It is the large area-to-mass ratio of a space-
craft that makes the vehicle susceptible to non-gravitational forces. Ideally, we would like to put
a transponder on the surface of Mercury to directly and precisely measure the planet’s state. We
assume that Mercury’s equations of motion are governed by the PPN metric and the spacecraft
equations of motions are governed solely by Mercury’s gravity field (Newtonian). Figure 3 shows
the geometry of the Earth, Mercury, and the spacecraft. Let the state to be estimated be denoted
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Figure 2: Mercury-centric Spacecraft Trajectory.

as y =
[

rT
M vT

M rT
s vT

s γ β J2 rT
sl

]T , where the dynamic variables are rM , vM , rs, and
vs, the parameters are γ, β, and J2, and the measurement parameters are rsl. Here, rM and vM are
Mercury’s state vectors and rs and vs are the spacecraft state vectors. The accelerations of Mercury
and the spacecraft are given as follows:

aM =
∂

∂rM

{
µ¯
rM

[
1 +

R2
¯J2

2r4
M

(r2
M − 3z2

M )
]}

(35)

+
µ¯

c2r3
M

[
2(γ + β)

µ¯
rM

rM − γv2
MrM + 2(γ + 1)(rM · vM )vM

]
,

as = −µM

r3
s

rs, (36)

where µM is Mercury’s gravitational parameter (µM = 22030 km3/s2). The initial conditions for
Mercury and the spacecraft are assumed to be at perihelion with orbital elements given in Table 3.

Table 3: Initial Orbital Elements of the Mercury and Spacecraft

ao eo io ωo Ωo M
Mercurya 0.387 AU 0.206 7◦ 77◦ 48◦ 0◦

Spacecraftb 10136.2 km 0.740 80◦ 60◦ 0◦ 0◦

a. Orbital elements with respect to the Sun.
b. Orbital elements with respect to the Mercury.

The initial values of the covariance matrix are given in Table 4 with zero initial correlation, where we
assume recent estimates of the parameters γ and J2. Also assumed are station-location accuracies on

Figure 3: Changes in Mercury’s orbital elements due to the effect of GR.
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the order of 1 cm. We note that the station-location vector is not estimated in this analysis; however,
its effect is included when radiometric measurements are updated. We assume more accurate initial
uncertainties on the spacecraft state since the spacecraft state must be known accurately for capture
at Mercury.

Table 4: Initial Values of the Covariance Matrix (Mercury-centric Case)

σrM (km) σvM (m/s) σrs (km) σvs (m/s) σγ σβ σJ2

diag(0.1) diag(0.1) diag(0.1) diag(0.1) 10−4 10−1 10−7

The linear mapping matrix A is given as

A(t) =
∂ẏ
∂y

, (37)

A(t) =




∂ẋM

∂xM

∂ẋM

∂vM

∂ẋM

∂(γ, β, J2)T

∂ẋM

∂rsl

∂ẋs

∂xM

∂ẋs

∂vM

∂ẋs

∂(γ, β, J2)T

∂ẋs

∂rsl

∂(γ̇, β̇, J̇2)T

∂xM

∂(γ̇, β̇, J̇2)T

∂vM

∂(γ̇, β̇, J̇2)T

∂(γ, β, J2)T

∂(γ̇, β̇, J̇2)T

∂rsl

∂ṙsl

∂xM

∂ẋsl

∂vM

∂ẋsl

∂(γ, β, J2)T

∂ẋsl

∂rsl




. (38)

We propagate the SRIF matrix including the stochastic acceleration perturbations acting on the
velocity of the spacecraft (i.e., current state analysis, Eq. 14). In this case, we only consider the
range and Doppler measurements with following measurement partials:

hR =
[

ρ̂T 01×3 ρ̂T 01×6
∂ZR

∂rsl

]
, (39)

hD =
[

ρ̇T

(
∂ρ̂

∂rM

)T

ρ̂T ρ̇T

(
∂ρ̂

∂rs

)T

ρ̂T 01×3
∂ZD

∂rsl

]
, (40)

where

∂ρ̂

∂rM
=

∂ρ̂

∂rs
=

1
ρ

(
I3×3 − ρ̂ ρ̂T

)
. (41)

Now the measurement partial matrix H can be stated as

H =
[

hR

hD

]
, (42)

with the measurement noise matrix

Σ =
[

σR 0
0 σD

]
. (43)

Results

Heliocentric Trajectory

Assuming no error sources are present, unbiased estimates of σγ = 8.90 × 10−5 and σβ =
4.09 × 10−4 are achievable from the heliocentric trajectory [5]. Figure 4 shows uncertainties in γ
and β (ignoring effect of J2) and their correlations as functions of the phase angle φ (i.e., initial
Earth-Sun-probe angle). In this example, a zero degree inclination is considered and the estimates
are taken at the end of 10-day timespan with all three measurement capabilities. It shows that
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Figure 4: Heliocentric mission: accuracies of the parameter γ and β and their correlations for i = 0◦

as functions of the phase angle φ.

the solar occultation becomes an important error source, which requires careful trajectory design
considerations to minimize this effect.

For this phase of our analysis, we repeated runs for a series of different inclinations, to determine
how this changes the results. We expect this to have an influence, as it becomes possible to minimize
solar occultations for some geometries. A highly inclined orbit can be achieved using a Jupiter flyby.
For the following examples, we assume no error sources are included and present the effect of the
spacecraft trajectory orientations on the estimates of γ, β, and J2 using X-band tracking capability.
Figures 5-10 show uncertainties of γ, β, and J2 as functions of ω and Ω for inclinations of 45◦ and
90◦. All the estimates are taken at the end of a 10-day timespan with 15-minute measurement
update. Table 5 summarizes the best (minimum) and worst (maximum) estimates of these gravity
parameters with corresponding orbit elements ω and Ω. The estimates of γ, β, and J2 vary 1-3
orders of magnitude by changing orientation of the spacecraft orbit.

Table 5: Best and Worst Estimates of γ, β, and J2 for i = 45◦ and i = 90◦.

i Best ω Ω Worst ω Ω
(deg) Estimate (deg) (deg) Estimate (deg) (deg)
45 σγ = 6.59× 10−5 35 5 σγ = 3.00× 10−3 330 105
90 σγ = 1.04× 10−4 225 5 σγ = 7.40× 10−3 75 85
45 σβ = 1.27× 10−4 280 0 σβ = 4.06× 10−3 150 285
90 σβ = 8.42× 10−5 300 0 σβ = 1.11× 10−2 195 270
45 σJ2 = 7.65× 10−9 250 0 σJ2 = 5.11× 10−8 330 105
90 σJ2 = 3.21× 10−9 250 355 σJ2 = 1.95× 10−7 10 90

One important result to note is that σγ , σβ , and σJ2 are highly sensitive to spacecraft orbit
orientations, analogous to the sensitivity of σγ and σβ to the initial phase angle (φ for the planar
problem (i.e., i = 0◦, Figure 4) [4, 5, 12]. When solar occultation effects are included, the range
of uncertainties change, but the basic trend of the uncertainty distributions remains the same. For
i = 90◦ the estimates become highly degraded near Ω = ±90◦. One clear explanation comes from the
fact that the spacecraft orbit is perpendicular to the Earth line-of-sight, decreasing the information
content of both range and Doppler. Moreover, there are regions where i = 45◦ case gives better
estimates of γ, β, and J2 than i = 90◦ case. This indicates that the spacecraft trajectory must be
designed optimally in order to carry out this mission.
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Figure 5: Heliocentric mission: accuracies of the parameter γ for i = 45◦; the white areas correspond
to accuracies on the order of 7× 10−5.
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Figure 6: Heliocentric mission: accuracies of the parameter γ for i = 90◦; the white areas correspond
to accuracies on the order of 2× 10−4.
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Figure 7: Heliocentric mission: accuracies of the parameter β for i = 45◦; the white areas correspond
to accuracies on the order of 2× 10−4.
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Figure 8: Heliocentric mission: accuracies of the parameter β for i = 90◦; the white areas correspond
to accuracies on the order of 9× 10−5.
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Figure 9: Heliocentric mission: accuracies of the parameter J2 for i = 45◦; the white areas correspond
to accuracies on the order of 8× 10−9.
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Figure 10: Heliocentric mission: accuracies of the parameter J2 for i = 90◦; the white areas corre-
spond to accuracies on the order of 4× 10−9.
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Mercury-centric Trajectory

The simulation of the Mercury orbiter was carried out for a period of 100 days with 15-minute
measurement updates assuming X-band capability for both range and Doppler data. Figures 11-
13 show the evolution of the uncertainties in Mercury’s position (σrM

=
√

σ2
x + σ2

y + σ2
z) and the

gravity parameters (σγ , σβ , J2) as functions of time for σa = 10−10 km/s2. These uncertainties (σ’s)
represent the 1-σ level standard deviations. The result shows that we will not be able to obtain
meaningful estimates of the gravity parameters for such a large value of stochastic accelerations
(i.e., σa = 10−10 km/s2). However, when we consider σa = 10−12 km/s2 as shown in Figures
14-16, the parameter β can be measured to a significant accuracy (even if we only consider the
Doppler measurements). For the current interplanetary missions, σa is assumed to be on the order
of 10−12 km/s2 [14]. These levels of uncertainties on the gravity parameters can also be reduced
if we consider a longer timespan. As expected, the correlations between all three constants are
very high and further analysis is needed to disentangle gravity information from these radiometric
measurements. Table 6 summarizes the estimates of γ, β, and J2 by showing the a posteriori taken
at the end of a 100-day timespan. These results are directly related to the MESSENGER mission,
which was launched on August 3, 2004 and will arrive at Mercury in 2011 after series of flybys. The
steady-state stochastic acceleration for the MESSENGER mission is assumed to be between 10−12

km/s2 and 10−10 km/s2 and is equipped with the X-band tracking capability. The most challenging
problem in this study will be to minimize the uncertainty in the solar radiation pressure, which is
the largest non-gravitational force acting on the spacecraft. We note that the Bepi-Colombo mission
(future ESA mission to Mercury) has σa on the order of 10−12 km/s2 and has the K-band tracking
capability, which can provide improved estimates of the gravity parameters γ, β, and J2.

Table 6: Estimates of γ, β, and J2 for σa = 10−10 km/s2 and σa = 10−12 km/s2 taken at
the end of a 100-day timespan.

σa (km/s2) Measurement Type σrM
(m) σγ × 105 σβ × 103 σJ2 × 108

10−10 Range Only 15.96 9.88 1.72 9.43
10−10 Doppler Only 329.82 9.99 5.37 9.89
10−10 Range and Doppler 8.66 9.59 1.44 8.43
10−12 Range Only 3.18 8.90 0.83 6.02
10−12 Doppler Only 10.40 9.72 1.55 9.04
10−12 Range and Doppler 0.71 6.90 0.33 3.76
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Figure 11: Mercury orbiter mission: accuracy of Mercury’s Position for σa = 10−10 km/s2.
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Figure 12: Mercury orbiter mission: accuracies of the gravity parameters γ, β, and J2 for σa = 10−10

km/s2.
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Figure 13: Mercury orbiter mission: correlations of the gravity parameters γ, β, and J2 for σa =
10−10 km/s2.
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Figure 14: Mercury orbiter mission: accuracy of Mercury’s Position for σa = 10−12 km/s2.
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Figure 15: Mercury orbiter mission: accuracies of the gravity parameters γ, β, and J2 for σa = 10−12

km/s2.
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Figure 16: Mercury orbiter mission: correlations of the gravity parameters γ, β, and J2 for σa =
10−12 km/s2.

Conclusions

In this paper, we have analyzed how well the PPN parameters and solar quadrupole moment
can be estimated from spacecraft radiometric tracking data such as range, VLBI, and Doppler
measurements.

In the heliocentric mission, the spacecraft originates from its perihelion (rp = 4R¯) with vp = 311
km/s and we obtain radiometric measurements as it propagates along the heliocentric trajectory.
The uncertainties in γ, β, and J2 are estimated using the initial state covariance analysis and
resulting accuracies of these parameters for i = 45◦ and i = 90◦ are presented. As it was shown in
Table 5, the uncertainties in the gravity parameters vary 1-3 orders of magnitude by changing the
orbit orientations, and hence, the spacecraft trajectory must be carefully designed in order to ensure
significant estimates.

Also discussed is the possibility of estimating these gravity parameters by tracking a Mercury
orbiter. Gravity information is extracted from the range and Doppler radiometric measurements
while the spacecraft orbits Mercury over a long timespan. The results show that the parameters γ,
β, and J2 can be estimated to a significant level. An important item to note is that the parameters β
and J2 have never been measured directly. One usually assumes GR as a valid theory of gravitation
and measures J2; or measures the PPN parameters based on a given solar model. Hence, this
indicates that the MESSENGER mission to Mercury can provide significant measurements of both
GR and the Sun.

We have demonstrated, under ideal conditions, the feasibility of carrying out GR experiments
with currently available technology. For the heliocentric case, the spacecraft must be equipped
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with either drag-free technology or accurate accelerometers, and the trajectory must be designed
optimally in order to minimize the parameter uncertainties. The challenge for the Mercury orbiter
case is to reduce the stochastic perturbations acting on the spacecraft as much as possible.
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