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We investigate the automation of a Mars aerobraking vehicle that uses reaction
wheels for attitude and angular momentum control during atmospheric flythrough.
In a previous study, single-axis control laws were developed for minimum onboard
instrumentation to compensate for large variations in entry time and atmospheric
density. In this paper we test modifications of those control laws to provide two-axis
control in high-fidelity simulations that include six degrees of freedom, nearly ideal
reaction wheels, spherical harmonics, and oblate atmosphere. Preliminary results
indicate that our approach may be highly practical for an autonomous aerobraking
mission at Mars.

Nomenclature

A = Reaction wheel orientation matrix
C = Fully normalized tesseral coefficient
D = Direction cosine matrix
H = Total angular momentum, kg·m2/s
I = Spacecraft inertia matrix, kg·m2

J = Diagonal matrix of reaction wheel mo-
ments of inertia, kg·m2

KD = Reaction wheel drag torque coefficient
L = International Astronomical Union

(IAU) Latitude, deg
M = External moment acting on spacecraft,

kg·m2/s2

n = Number of reaction wheels
P = Fully normalized associated Legendre

function
q = Inertial attitude quaternion
r = Inertial position vector of spacecraft,

km
S = Fully normalized sectoral coefficient
U = Gravity potential, km2/s2

u = Reaction wheel control torques,
kg·m2/s2
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V = Inertial velocity vector of spacecraft,
km/s

x = State vector
α = Angle of attack, deg
β = Sideslip angle, deg
γ = Flight path angle, deg
θ = True anomaly plus argument of peri-

apsis, deg
λ = IAU Longitude, deg
µ = Gravitational parameter, km3/s2

ρ = Atmospheric density, kg/km3

χ = θ - γ, deg
ψ = Roll angle, deg
Ω = Reaction wheel angular rates, deg/s
ω = Spacecraft angular rates, deg/s

Subscripts

A = Affinor of rotation
atm = Atmospheric
Q = Quaternion kinematical matrix
rel = Relative

Superscripts

e = Equilibrium
i = Inertial

cm = Center of mass

Introduction

AEROBRAKING saved the Mars Global Sur-
veyor (Fig. 1) 1200 m/s of propulsive ∆V in
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Fig. 1 The Mars Global Surveyor Spacecraft

Fig. 2 Orbit decay using aerobraking.

placing a spacecraft into a low-energy orbit around
Mars.1–5 Similar aeroassisted techniques in the lit-
erature also provide reduction in propulsive maneu-
vers.6–8 The tradeoffs in using aerobraking include
increased time before the science phase can begin,
increased communications requirements9 to monitor
aerobraking progress, and the necessary dumping of
angular momentum accumulated during each drag
pass.10

Description of Problem
An aerobraking spacecraft uses the atmosphere to

reduce the energy of the orbit (Fig. 2). The at-
mospheric drag force provides the desirable ∆V to
effect the orbit change. During each orbit, the space-
craft also accumulates angular momentum from sev-
eral external torques (e.g. aerodynamic, gravity
gradient, solar radiation pressure). Traditionally,
the spacecraft reaction wheels absorb this angular
momentum, allowing the spacecraft itself to remain
in an inertial attitude. As the reaction wheels be-
come saturated, propellant is used to eliminate the
acquired angular momentum.9

In our scenario, we use the atmospheric moment
to our advantage. Instead of acquiring additional
momentum during the drag pass, the spacecraft ob-
tains a free desaturation of the reaction wheels by
torquing against the atmosphere. Our goal is to de-
vise a control law for the reaction wheels such that
the net spacecraft momentum after each flythrough
is driven to zero. Ideally, the spacecraft would have

Table 1 Reference spacecraft parameters

Parameter Reference value
mass 1000 kg
CD 1.9
CMx -0.01 deg−1

CMy -0.00366 deg−1

Aref 17.44 m2

Lref 8.73 m
max rw torque 0.18 N·m

rw capacity 27.0 N·m·s
Ixx 814 kg·m2

Iyy 410 kg·m2

Izz 695 kg·m2

J 0.0645 kg·m2

sufficient instrumentation available to measure every
state variable. Unfortunately, such instrumentation
comes at the expense of additional hardware cost
and mass to the mission. We therefore choose to
find a controller which will only rely on angular rate
feedback.

Modeling assumptions

• The only measurable states are spacecraft and
reaction wheel angular rates, and the inertial
quaternion vector.

• The Martian gravity field is evaluated up to
10th order and degree from a spherical har-
monic model.

• The spacecraft has n ≥ 3 reaction wheels, which
span R3.

• The reaction wheels are aligned in arbitrary
(possibly non-orthogonal) orientation, subject
to the R3 constraint.

• The reaction wheels are nearly ideal.11

• The atmosphere rotates as a rigid body along
with Mars.

• The atmosphere is modeled as oblate and lo-
cally exponential (using MarsGRAM COSPAR
data12, 13).

• The controller provides control about the two
aerodynamically stable axes only (pitch and
yaw). (I.e., no attempt is made to control rota-
tion about the roll axis.)

• The reference spacecraft properties are given in
Table 1.
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Equations of Motion
Orbital

The inertial position of the spacecraft is described
in Cartesian coordinates by the International As-
tronomical Union (IAU) convention.14 The inertial
X−Y plane is fixed in the equatorial plane of Mars,
with the X direction defined by the intersection of
the ecliptic and the equator. The Z direction is
along the Martian north pole.

The three position Equations of Motion (EOMs)
are simply:

ṙ = V (1)

The 3 velocity EOM’s may be written as:

V̇ = ∇U +
ρArefCD

2m
‖Vrel‖Vrel (2)

where the relative wind on the spacecraft is:

Vrel = Vatm − V (3)

and where the atmospheric velocity Vatm is given
by:

Vatm = −ωatmyx̂ + ωatmxŷ (4)

The gravity potential U is given by:

U =
µ

r

{
1 +

∞∑
n=1

n∑
m=0

(
R

r

)n
Pnm(sinL)

× [Cnm cosmλ+ Snm sinmλ]

}
(5)

We evaluate the gravity potential up to 10th order
and degree, which is needed to resolve the orbital
perturbations caused by Olympus Mons.

Attitude

We can express the spacecraft’s attitude either in-
ertially (using quaternions), or in terms of relative
wind angles (such as angle of attack and sideslip an-
gle). The spacecraft itself will not be able to measure
these relative wind angles; but they are important
from an analytical point of view, since the momen-
tum EOMs are coupled with the relative wind angle
EOMs.

Both sets of attitude EOMs require angular rate
information, which is obtained from the momentum
EOM. The total system angular momentum consists
of two components — one due to the angular rate of
the spacecraft relative to the inertial frame, and the
other due to the reaction wheels rotating relative to
the spacecraft frame. The total momentum is thus:

iHcm = Iω +AJΩ (6)

Since the reaction wheels can only spin about one
principal axis, only a single moment of inertia is
needed to describe a reaction wheel. The J matrix is
an n×n diagonal matrix of reaction wheel moments
of inertia. The A matrix (which is size 3 × n) maps
unit vectors from the individual reaction wheels to
the body-fixed frame.

To develop the attitude EOMs, the momentum
vector in Eq. 6 is differentiated with respect to the
inertial frame to yield:

iḢcm = Iω̇ +AJΩ̇ + ωA (Iω +AJΩ) (7)

The matrix ωA is the “affinor of rotation”, which is
the skew-symmetric matrix equivalent to the cross
product operation:

ωA ≡

 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0


 (8)

With reaction wheel drag torques present, we
have:

JΩ̇ = u −KDΩ (9)

Now we apply Euler’s Law, combining Eqs. 7 and
9 to yield:

Mcm = Iω̇ +A(u −KDΩ) + ωAIω

+ωAAJΩ (10)
ω̇ = I−1 (Mcm − ωAIω − ωAAJΩ

−A(u −KDΩ)) (11)
ω̇ = I−1 (Mcm − ωAIω − ωAAJΩ

−Au +AKDΩ) (12)
Ω̇ = J−1u − J−1KDΩ (13)

In this study, the external moment Mcm is simply
the atmospheric torque. For the MGS model,5 the
+X axis has a moment proportional to β, and the
+Y axis has a moment proportional to α. Thus, the
atmospheric torque term is:

Mcm =
1
2
ρV 2

relArefLref


 CMX (β)
CMY (α)

0


 (14)

The final form of the momentum EOMs is given
by Eqs. 12,13, and 14.

Inertial EOMs
The spacecraft’s inertial attitude is determined

from:

q̇ =
1
2
ωQq (15)
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where

ωQ =




0 ωz −ωy ωx
−ωz 0 ωx ωy
ωy −ωx 0 ωz
−ωx −ωy −ωz 0


 (16)

Relative EOMs
Since the momentum EOMs are a function of the

aerodynamic angles α and β (from Eqs. 12 and 14),
we need to derive equations of motion for these
angles to conveniently analyze the behavior of the
system. These EOMs we will derive are not actu-
ally integrated in the simulation, since the inertial
attitude and position are sufficient to calculate the
α and β. The motivation for this analysis is to lin-
earize the relative attitude EOMs for use in a linear
feedback controller.

We note that the relative wind angles α and β
can be thought of as two Euler angles. These angles
are measured relative to the relative wind vector.
With α = β = 0, the spacecraft is pointing directly
into the wind. The third Euler angle needed to com-
plete the sequence is roll (ψ, about the +Z spacecraft
axis), which must be the first rotation in the se-
quence. By choosing the second and third rotations
as angle of attack (α) and sideslip (β), respectively,
the aerodynamic properties of α and β are preserved.
This 321 Euler sequence is oriented with respect to
the relative wind, which is not inertially fixed. Thus
we must include another rotation to transform in-
ertial unit vectors into relative wind vectors. This
is accomplished by two coaxial rotations — the first
rotating the spacecraft along its orbit through an
angle of θ from some inertially fixed point (e.g., the
ascending node), and the second rotating the space-
craft’s attitude to point along its velocity vector (a
rotation through the flight path angle γ). We define
the net rotation by the value χ ≡ θ − γ.

The inertial frame directions are chosen to match
the spacecraft attitude when α = β = ψ = 0. This
means that x̂1 points to the ascending node of the
orbit, ŷ1 points away from the orbital momentum
vector, and ẑ1 completes a right-handed sequence by
pointing to a location in the orbital plane 90 degrees
ahead of the ascending node. With this definition
χ̇ = −χ̇ŷ1.

The direction cosine matrix mapping from inertial
coordinates to body-fixed coordinates is:

D = Dβ ·Dα ·Dψ ·Dχ (17)

where

Dχ =


 cosχ 0 sinχ

0 1 0
− sinχ 0 cosχ


 (18)

Dψ =


 cosψ sinψ 0

− sinψ cosψ 0
0 0 1


 (19)

Dα =


 cosα 0 − sinα

0 1 0
sinα 0 cosα


 (20)

Dβ =


 1 0 0

0 cosβ sinβ
0 − sinβ cosβ


 (21)

The expression for the angular rates is given by:

ω = β̇ + α̇+ ψ̇ + χ̇ (22)

=


 β̇

0
0


 +Dβ


 0
α̇
0


 +DβDα


 0

0
ψ̇




−DβDαDψ


 0
χ̇
0


 (23)


 ωx
ωy
ωz


 =


 1 0 −sα

0 cβ cαsβ
0 −sβ cαcβ





 β̇
α̇

ψ̇




−

 cαsψ

sαsβsψ + cβcψ
sαcβsψ − sβcψ


 χ̇ (24)

This system is then solved for the Euler angular
rates to yield:


 β̇
α̇

ψ̇


 =


 1 sβ tanα cβ tanα

0 cβ −sβ
0 sβ/cα cβ/cα








 ωx
ωy
ωz




+χ̇


 cαsψ

sαsβsψ + cβcψ
sαcβsψ − sβcψ




 (25)

From Vinh,15 we deduce that

χ̇ =
µ cosγ
r2V

(26)

Equations 25 and 26 form the relative attitude
equations of motion.

The natural motion of the relative wind angles
can be examined by setting ω to 0, and setting the
sideslip angle β and roll angle ψ to 0 as well. Equa-
tions 25 and 26 collapse to:

 β̇
α̇

ψ̇


 =


 0
χ̇
0


 (27)

We note from Eq. 26 that χ̇ > 0 during the drag
pass. Thus, the angle of attack will naturally tend
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to increase as the spacecraft orbits the planet. The
exact solution to the attitude EOMs will have an os-
cillating component, but without any control along
the pitch axis, the angle of attack would be biased
in the positive direction. From Eq. 14, we conclude
that with an uncontrolled attitude, momentum will
tend to accumulate along the pitch axis during each
drag pass. An attitude control is necessary to pre-
vent the buildup of momentum.

Reaction Wheel Control Laws
The reaction wheel control laws can be divided

into two types — exoatmospheric and atmospheric.
In exoatmospheric flight, the reaction wheels are
commanded to maintain an inertial attitude. For at-
mospheric flight, we investigate 3 control laws: spin
down, affine partial state, and two stage.

Inertial Attitude Hold Controller

In normal spacecraft operation, the spacecraft is
held in an inertially fixed attitude to either conduct
science experiments or communicate with Earth. In
our scheme, the spacecraft prepares for a drag pass
by slewing into a new inertially-fixed attitude such
that the spacecraft is pointing into the relative wind
upon entry. As the spacecraft descends towards pe-
riapsis, the angle of attack increases, and the total
system angular momentum changes as it is subjected
to a growing aerodynamic torque. Since the reac-
tion wheels are commanded to maintain an inertial
attitude, the change in momentum is transferred to
the reaction wheels. Thus, the spacecraft senses at-
mospheric entry when the commanded torque mag-
nitude exceeds some threshold. (In our simulations,
we use a threshold of 5% maximum torque.) Af-
ter this threshold is exceeded, the reaction wheel
switches to an atmospheric control mode. (Here we
note again that the only instrumentation assumed
are gyros to measure the angular velocities. It seems
clear, however, that an accelerometer would signifi-
cantly aid in the detection of atmospheric entry.)

Once atmospheric entry is detected, an onboard
timer is started. This timer’s purpose is to count-
down the time until the spacecraft should reach
periapsis (which is needed for some control laws)
and also to countdown the time until the spacecraft
should exit the atmosphere. Upon atmospheric exit,
the reaction wheels once again switches modes —
this time, back to the inertial attitude hold mode.

These timed events can be predicted by a simple
polynomial curve fit, as a function of orbit period. If
the atmospheric density is higher or lower than the
nominal case, then the sensed entry will be sooner or
later than expected, which will slightly alter the tim-

ing of events. Timing errors have the largest impact
in low-density, high-period orbits since a significant
percentage of the flythrough time is used up before
atmospheric entry is sensed. A low torque threshold
will guard against this kind of timing error (but if
the threshold is too small, other perturbations may
prematurely activate the atmospheric controller).

Spin-Down Controller

This control law despins the yaw and pitch re-
action wheels during the atmospheric flythrough.
Upon reaching zero-spin rate, the applied reac-
tion wheel torques are shut off. After exiting the
atmosphere, all residual spacecraft momentum is
transferred back to the reaction wheels.

This mechanism works because the spacecraft can
torque against the atmosphere. The atmosphere
tends to keep the spacecraft in place, (the angle of
attack and sideslip angles oscillate about zero) while
the wheels are desaturated. This control law works
best if started near periapsis, where the atmosphere
is densest. Before the spacecraft reaches its esti-
mated periapsis, the commanded torque is zero, thus
allowing the spacecraft to weathervane (undamped)
back and forth into the relative wind. Shortly before
periapsis, the pitch and yaw axis reaction wheels are
despun at maximum available torque. Afterwards,
the commanded torque is again set to zero until exit.
To ensure the reaction wheels have enough time to
despin, each reaction wheel begins its momentum
dump such that the dump will be half completed
during the estimated periapsis passage.

Since the roll axis has no opposing external mo-
ment to torque against, any change in momen-
tum along that axis will not be altered by the at-
mosphere. Any momentum storage along the roll
axis will either have to be removed propulsively, or
by creating an external moment by rotating the solar
panels.

This control law has the advantage of being simple
to implement, and being independent of spacecraft
and planetary parameters. It is also one of the best
performing control laws for the six DOF case.

Affine Partial-State Controller

For this approach, we wish to devise a linear state
feedback controller to drive the total system momen-
tum to zero. We first need to linearize the attitude
EOMs, then pick a feedback gain matrix K to pro-
duce a stable closed-loop system, using only the
measurable states (ω, Ω) as feedback. The deriva-
tion of this controller is as follows:
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Linearization of Equations of Motion
The angular momentum from Eq. 6 is a linear

combination of the spacecraft and reaction wheel an-
gular rates. The EOMs for the spacecraft angular
rates (Eq. 12) is a function of the Euler wind angles.
Thus, we need to linearize Eqs. 12, 13, and 25.

The first step in linearization is to choose the
desired equilibrium conditions, and to redefine the
state variables as appropriate. One such set of equi-
librium conditions is:

αe = βe = ψe = 0 (28)

ωe =


 0

−χ̇
0


 (29)

Ωe
ls = J−1AT (AAT )−1I


 0
χ̇
0


(30)

ue = KDΩe (31)

Let E be the column vector of Euler angles:

E =


 β
α
ψ


 (32)

The state variables are then redefined by subtract-
ing out their equilibrium values. Let x be the column
vector of state variables, and δx ≡ x − xe, where
x ≡ [E,ω,Ω]T .

The linearized system of equations can be written
as:

δẋ = A(ρ)δx +Bδu (33)
H = Cδx (34)

Alternatively, we can write the system in affine form
using the original state variables as:

ẋ = A(ρ)x +Bu + F (35)
H = Cx (36)

where

A =


 −ωeA 13×3 03×n
I−1 ∂M

∂E −I−1ωeAI A23

03×3 03×3 −J−1KD


(37)

A23 = I−1(AKD − ωeAAJ) (38)

B =


 03×n

−I−1A
J−1


 (39)

C =
[

03×3 I AJ
]

(40)

F =


 −ωe

03×1

0n×1


 (41)

The control law is in the form of δu = Kδx, or,
in terms of original state/control variables:

u = Kx−Kxe + ue (42)

K is the feedback control gain of the form

K =
[
KE Kω KΩ

]
(43)

For a spacecraft with n reaction wheels, we have
6 + n states and thus n2 + 6n feedback gains to
choose. Because we cannot measure the Euler an-
gles, we set the 3n parameters from KE to zero. We
need a method to pick the remaining n2 + 3n feed-
back gains to stabilize the closed-loop system. Since
momentum cannot be removed from the roll axis, we
set those coefficients to zero. Also, since the pitch
and yaw axes are uncoupled in the linearized model,
we set the cross terms to zero as well. This leaves us
with 4 coefficients to choose (two for the pitch axis,
and two for the yaw axis).

Since our A matrix is time-varying, negative in-
stantaneous eigenvalues are insufficient for stability.
To achieve stability in the nonlinear time-varying
system, we take a minimax approach, where we pick
the gain matrix such that the maximum real part of
the closed-loop eigenvalues is a minimum. We note
that the equilibrium conditions in Eqs. 29 and 30
are functions of χ̇, which is itself a function of the
orbit. To avoid having the spacecraft update this
parameter after every drag pass, we tune the equilib-
rium point to the particular orbit corresponding to
an eccentricity of 0.4. Alternatively, the equilibrium
point could be retuned each orbit, but results indi-
cate that a statically tuned equilibrium point works
sufficiently well.

Two-Stage Controller

The affine partial state controller performs nearly
all of its work by the time the spacecraft reaches pe-
riapsis. In thick atmospheres, the controller quickly
drives the system to the equilibrium condition. In
thin atmospheres, the affine partial state controller is
too sluggish to fully desaturate the reaction wheels.
However, the spin-down controller can rapidly de-
spin the wheels. Furthermore, the spin-down con-
troller performs best when activated near periapsis.
The advantages of these two controllers inspire us
to define a two-stage control law, which is a com-
bination of the two laws. The first stage uses the
affine partial state control law, and is activated upon
atmospheric entry. The second stage uses the spin-
down logic, and is activated at estimated periapsis.

In the cases where the first stage is able to com-
pletely remove the system momentum, the space-
craft and reaction wheels have a nonzero equilibrium
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Table 2 Reference simulation parameters

Parameter Reference value
Eccentricity 0.4

Dynamic pressure at periapsis 0.5 N/m2

Stored momentuma 13.5 kg·m2/s
Entry angle of attack 0 deg
Entry sideslip angle 0 deg

a along pitch (+Y) axis

angular rate (Eqs. 29 and 30). We modify the spin-
down stage to spin down to the affine partial state
equilibrium point. Thus, in the nominal cases, the
two-stage controller performs as well as the affine
partial state controller.

Results
We judge the effectiveness of a particular control

law by the angular momentum reduction achieved
during the drag pass. There are several parameters
which influence the performance of our control laws.
As we consider the variations in the most influential
parameters, we find it convenient to establish a set
of reference parameters, which are listed in Table 2.

The initial orientation of the stored momentum
has a substantial effect. Figure 3 illustrates the frac-
tional momentum remaining after a drag pass (using
the two-stage control law) as a function of the direc-
tion of the initial stored momentum vector. The
color indicates the fractional momentum magnitude
remaining, where blue (0%) is the desired result, in-
dicating all stored momentum has been annihilated.
The color red (100+%) indicates the spacecraft’s
momentum magnitude has remained constant or in-
creased as a result of the drag pass. We note that
momentum is not removed from the roll (Z) axis,
since there are no external moments along that axis.
The corresponding plots for the other two control
laws (spin-down and affine partial state) yield re-
sults very similar to Fig. 3, and are therefore not
shown.

The most important parameters that affect our
control laws are the atmospheric density and orbit
eccentricity. Figures 4, 6 and 8 illustrate the perfor-
mance of the three control laws. The height of the
mesh represents the fractional momentum remaining
after a drag pass. The spin-down case (Fig. 4) usu-
ally removes about 90% of the stored momentum. It
is somewhat less effective in a thin atmosphere. In
this case, the spacecraft does not sense atmospheric
entry until relatively late in the drag pass. As a re-
sult, the periapsis timer is started late, and the spin-
down controller barely has enough time to complete

Fig. 3 Fractional momentum remaining after
a drag pass as a function of initial momentum
orientation, using the two-stage control law.

its momentum dump. However, if the controller is
started too early in the nominal or thick atmosphere
cases, there will not be enough external torque to
oppose the spacecraft’s angular momentum. This
condition will result in high-amplitude oscillations
about the pitch and yaw axes, which will cause the
spacecraft to gain momentum instead of to lose it.

The affine partial state control law (Fig. 6) is able
to remove nearly 100% of the total momentum in
most cases. It has trouble in the low density case,
but still works better than the spin down. In the
worst case (log10 ρ/ρ0 = −1, e = 0.9), spin down
removes only 20% of the stored momentum, while
the affine partial state removes about 65% of the
momentum.

The tuning of the affine partial state about an
eccentricity of 0.4 is also evident in Fig. 6 as a slight
upward slope in the mesh surface away from the line
e = 0.4.

Finally, the two-stage control law (Fig. 8) demon-
strates the best of both previous controllers. The
mesh is flat like the affine partial state, but without
the slope. In the worst case, the controller removes
over 80% of the stored momentum.

Figures 5, 7, and 9 show another performance
characterization. In these plots, the fractional re-
maining momentum is shown as a function of entry
angle of attack (α) and sideslip angle (β). The
sideslip angle will typically be known to within a
degree, and angle of attack within 15 degrees. All
three controllers are able to meet this tolerance in
the blue region. In terms of acceptable entry atti-
tudes, the two-stage controller is the most robust,
since it performs the best overall, as the entry atti-
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Fig. 4 Fractional momentum remaining after a
drag pass for the spin-down controller. Relative
density and eccentricity are shown as indepen-
dent variables. A relative density of 0 is nominal,
-1 is 10% nominal, and 0.3 is 200% nominal.
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Fig. 5 Fractional momentum remaining after a
drag pass for the spin-down controller. Indepen-
dent variables are angle of attack (α) and sideslip
angle (β) at entry.

tude uncertainty increases.
The control laws also perform better with nega-

tive entry angles of attack. As the spacecraft orbits
the planet, the natural motion (i.e., the tendency for
the attitude to remain inertially fixed) causes the an-
gle of attack to increase. Thus, when the spacecraft
enters the atmosphere with a high negative α, the
atmospheric controller is triggered quickly, and the
angle of attack increases naturally. Conversely, with
a positive angle of attack at entry, the natural mo-
tion is to continue increasing — a behavior which

0.1
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Fig. 6 Fractional momentum remaining using
the affine partial state controller.
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Fig. 7 Fractional momentum remaining using
the affine partial state controller.

the spacecraft has difficulty counteracting.
We present an extreme case in Figs. 10-12. These

plots show the fractional momentum remaining for
the three control laws when the initial momentum
wheel (along the pitch axis) is 100% saturated.
All three control laws are able to substantially re-
duce the momentum for every eccentricity and at-
mospheric density considered.

All three control laws perform well under a vari-
ety of conditions. Table 3 summarizes the average
and worst-case performance of the three laws. The
spin-down and affine partial state controllers have
similar performance for low saturations, while the
affine partial state is usually better for higher initial
saturations. The two-stage controller is uniformly
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Fig. 8 Fractional momentum remaining using
the two-stage controller.
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Fig. 9 Fractional momentum remaining using
the two-stage controller.

the best control law in almost all test cases.

The Roll Axis
If the solar panels are attached at an angle relative

to the Y − Z plane, the relative wind can induce
a “propeller torque” on the body +Z axis (the roll
axis). Since the torque on the roll axis will always be
in same direction, the angular momentum buildup
will be secular.

The current practice is to use propellant to man-
age the spacecraft’s momentum. With our two-axis
control laws, propellant would only be needed to
manage the roll axis momentum. Another scheme
to manage the roll axis momentum is to articulate
the solar panels to control the rolling moment. This
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Fig. 10 Fractional momentum remaining using
the spin-down controller. Initial stored momen-
tum along the pitch (+Y) axis is 27 kg·m2/s
(100% capacity).
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Fig. 11 Fractional momentum remaining using
the affine partial state controller.
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Fig. 12 Fractional momentum remaining using
the two-stage controller.
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Table 3 Performance summary of control laws

Initial Final saturation [%]
Saturation spin affine two

[%] down stage
0% mean 0.9 1.1 0.3

max 3.1 2.6 1.4
25% mean 2.9 2.0 1.1

max 11.1 12.1 6.8
50% mean 2.5 2.0 0.8

max 12.2 16.4 8.8
75% mean 2.6 1.8 1.3

max 12.6 7.9 9.0
100% mean 3.6 3.2 2.0

max 28.2 26.5 15.6

controller would control the pitch angle of the “pro-
pellor blades” (solar panels) to first annihilate the
roll-axis momentum, and then null out the rolling
moment.

Conclusions
All three of the considered control laws are capa-

ble of managing the spacecraft angular momentum.
The spin-down case is conceptually the simplest of
these three control laws, and has the advantage of
being independent of spacecraft properties. How-
ever, the spin-down controller does require timing
information on periapsis, which is particularly criti-
cal for high eccentricity orbits and high initial stored
momentum.

The affine partial state controller is the easiest to
implement, needing only 5 constant parameters to
fully describe it. These parameters are functions of
spacecraft inertia, aerodynamic moment coefficients,
and projected atmospheric density. Since this con-
troller does not require any timing information, it is
the least memory-intensive controller of the three.

Finally, the two-stage controller provides perfor-
mance superior to its two component laws, but at
the combined complexity of the two.
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