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A three-dimensional simulation of an aerobraking maneuver is investigated using a dissipative time-
stepping algorithm.  The system modelled consists of an atmospheric probe connected to an orbiter 
by a thin, elastic tether.  A dissipative time-stepping scheme, developed from the generalised-alpha 
method, is used to accurately predict the highly nonlinear dynamics of the flexible system.  The 
simulations include atmospheric and gravitational models corresponding to an oblate planetoid.  A 
three-dimensional aerobraking maneuver is simulated for a tethered system orbiting Mars. 

 
 

INTRODUCTION 

Flexible systems have inherent modeling 
complexities that can result in unstable solutions to the 
equations of motion integrated with respect to time.  An 
accumulation of momentum and energy is often evident 
in these systems, which ultimately results in poor model 
accuracy.  The generalized-alpha method is one of 
several schemes that have been proposed to address this 
problem through dissipation of high-frequency 
vibrations. Developed from the Newmark method, the 
generalized-alpha method evaluates system forces at a 
fraction αf of a cycle and the inertia terms at a fraction 
αm.  Kuhl and Crisfield1 apply an implicit version of the 
scheme to problems involving finite deformations and 
finite rotations.  In a recent paper, Daniel2 outlines an 
explicit form of the generalized-alpha method that can 
mesh with the implicit form.  It is an explicit variant 
that is implemented in the current research to propagate 
the highly nonlinear dynamics of a tethered system.  

Bauchau et al.3 and Armero and Romero4 present 
alternative approaches to the nonlinear dynamics of 
elastic systems.  The robust scheme outlined by 
Bauchau et al.3 is shown to be energy and momentum 
conserving in the nonlinear case but requires significant 
computation per time step.  

The potential applications for tethered systems that 
interact with the atmosphere of a planet are numerous.  
Phenomena and properties of regions in Earth's upper 
atmosphere that can be investigated using a probe 
tethered to an orbiting mass.5, 6  In addition, an 
aerothermodynamic testing facility,7 an upper stage of a 
launch system,8 and dust collection from the Martian 
atmosphere9,10 using tethers have also been proposed.  
Complementing the breadth of concepts that relate to 
atmospheric applications of tethered systems is the 
research conducted into modeling this class of missions.  
No and Cochran11, 12 and Bae et al.13 develop dynamic 
models of flight vehicles tethered to orbiting masses.  
Consideration of the aerodynamic effects on a tethered 
system in the flow regimes in which the system 
operates is addressed in recent work.14, 15 

Aeroassisted orbital maneuvering of tethered 
satellite systems is the focus of several research efforts.  
Longuski and Puig-Suari16 successfully demonstrate the 
implementation of aerobraking and aerocapture 
maneuvers at Mars using a tethered satellite system 
with a dumbbell configuration.  This work is extended 
to include locations throughout the solar system17 and 
optimized to minimize the tether mass.18  Biswell19 
develops a three-dimensional hinged-rod model of an 
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elastic tether to predict the behavior and performance of 
the aerocapture maneuver in detail.    In addition, recent 
work demonstrates aerogravity assist maneuvering of a 
tethered satellite system20 during a flyby of Mars. 

This paper presents the implementation of an 
explicit time-stepping algorithm derived from the 
generalized-alpha method.  Specifically, the algorithm 
is applied to tethered systems performing aeroassisted 
orbital maneuvers.  The dissipative properties of the 
algorithm produce a stable simulation of aerobraking 
maneuvers.  The simulations further demonstrate the 
propellant-free adjustment of a tether system using 
planetary atmospheres. 

 

Figure 1: Elastic tethered system configuration. 

SYSTEM MODELING 
The system investigated consists of an atmospheric 

probe connected by a thin tether to a primary orbiting 
mass.    For modeling purposes, the tether is discretized 
into a series of nodes.  Figure 1 depicts a deformed 
tether after interaction with an atmosphere.  The orbiter 
mass, mo, and probe mass, mp, are assumed to be 
concentrated at a point.   

The mechanical properties of Spectra 2000 are 
used in the simulations of the elastic tethered systems.  
Table 1 outlines the relevant properties of this material. 

Table 1: Tether material properties 

Tether Tensile Strength 3.5 GPa 

Tether Modulus of Elasticity 124 GPa 

Tether Material Density 970 kg/m3 

 

The Dissipative Time-Stepping Algorithm 

The time-stepping algorithm used in the current 
research is an explicit, predictor-multi-corrector 
algorithm.   In each time step, this variant of the 
generalized-alpha method first predicts the new velocity 
and the change in displacement of a system element 
using 

 ( ) ( )mfnnn tavv αα −−∆+=+ 12
1

1  (1) 

 1n n nu u v t+ = + ∆ . (2) 

Here, αf and αm are the parameters of the generalized-
alpha method.  For the simulations of the aeroassisted 
orbital maneuvering of tethered systems, the forces are 
evaluated at the midpoint of a cycle (i.e. αf = 0.5). This 
has the advantage of conserving angular momentum in 
each cycle.  During each time step, un is set to zero by 
updating the reference axes.  The acceleration 
parameter, αm, is defined as  

 ( ) ( )112 +−= bbm ρρα  (3) 

where, ρb is the minimum spectral radius, which is a 
measure of the high-frequency numerical damping.  A 
ρb value of 1 corresponds to no numerical damping and 
value of 0 to the maximum available to the algorithm. 

The prediction of the new state values is corrected 
over multiple iterations using the Newmark equations, 
which are defined as 
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To maintain the same eigenvalues of the amplification 
matrix and the same dissipative properties of the 
method presented by Chung and Hulbert,22 gamma and 
beta are defined as 

(4a) 

.(4b) 
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The acceleration is updated by 
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where, Fint, Faero and Fgrav are the internal, aerodynamic 
and gravitational forces acting on the system, 
respectively.  Mcorr represents the effective system 
mass, which is corrected for damping due to 
aerodynamic forces and is defined as 

( )( ) tvFMM mfwindaerocorr ∆−−+= −− γαα 11 112 .(7) 

The predicted value is corrected until the error between 
the new prediction and the old prediction of the 
displacements reaches a desired value.  The error, e, is 
determined using 

 ( ) 22
1

−
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The algorithm is second order accurate for ρb equal to 1 
and has a minimum stability limit associated with ρb 
equal to 0 of  

 1
maxmax 2 −=∆ nt ω . (9) 

The maximum time step shown in Eq. 9 is the worst 
case corresponding to the maximum possible numerical 
damping being present in the algorithm. 

Internal Forces 

The internal forces present in the tethered system 
are a function of the generalized mid-point Green 
strain.  As presented by Kuhl and Crisfield1, the internal 
forces can be calculated by 

(((( )))) (((( )))) (((( )))) (((( )))) (((( ))))[[[[ ]]]]nfnfoo f
lEA uuxAF εαεαα ++++−−−−==== ++++1int 1  

  (10) 
where, ε(u) represents the modified Green strain, which 
is a function of the displacements of an element’s end 
points.  xαf is a vector containing the coordinates of the 
end points of a tether element at a fraction αf of a cycle 
relative to a reference position, and the vector u 
contains the displacements of the end points.  The terms 
Ao, lo and E represent the undeformed cross-sectional 

area of the element, the undeformed length and elastic 
modulus of the material, respectively.  As mentioned 
previously, αf is specified to be 0.5 to evaluate the 
forces at the mid-point of a cycle.  A is a matrix of 
third-order identity matrices and is defined as 
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Gravitational Forces 

We adopt a non-spherically symmetric 
gravitational field model for determining the 
gravitational forces.  Ignoring terms that are 
longitudinally dependent, the gravitational potential 
takes the form23 
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kk
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where µ is the gravitational constant for the planet, R is 
the radius of the planet, Jk are constant coefficients, φ is 
the colatitude and Pk are the Legendre polynomial 
functions.   The gravitational potential is determined for 
terms with k equal to two. 

An algorithm that estimates the equations of 
motion at the midpoint of a cycle will conserve energy 
for a force associated with a potential21, V, if the 
estimate of the force is 
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where Fn+½ is the force evaluated at the midpoint of a 
cycle.  Rn+½ represents the vector from the center of the 
planet to the center of the object at the midpoint of a 
cycle and R n+½ is the corresponding magnitude.    

Aerodynamic Forces 

The atmosphere is assumed to rotate with the 
planet at an angular velocity Ω for calculating the 
aerodynamic forces.  In addition, an exponential model 
for the density distribution in the atmosphere is 
adopted.  For a body at radius Rk, the density is 
determined by 

 (((( ))))[[[[ ]]]]HRRH plkrrefk ++++−−−−==== expρρ . (14) 

In this equation ρref is the reference atmospheric 
density, Hr represents the model reference height, H is 
the scale height and Rpl is the radial distance to the 

(5a) 

(5b) 
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surface of the planet.  The planetoid is treated as an 
ellipsoid described by 

 

,cos
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=

=

=

  

where, Req is the equatorial radius of the planet, Rpole is 
the polar radius, θ is the longitude of the planet and φ is 
the colatitude. x, y and z represent the Cartesian 
components of Rpl The aerodynamic forces are 
calculated when the system is within 300 km of the 
surface of Mars.  For the aerodynamic force 
calculations, the radial distance of a mass at the 
midpoint of a cycle is used.   

Aerodynamic Drag 

The aerodynamic drag acting on the orbiter, tether 
and probe is assumed to follow 

  VF VSCdρ2
1−= , (16) 

where Cd is the drag coefficient, S is the frontal area of 
the body and V is the velocity relative to the 
atmosphere.  The drag force acting on the orbiter is 

 ooodoodo VSC VF ρ2
1−= , (17) 

where Cdo, So , ρo and Vo represent the drag coefficient, 
frontal area, atmospheric density and relative velocity 
corresponding to the orbiter, respectively.   

For the aerobraking scenario, the atmospheric 
probe is assumed to be a sphere.  The aerodynamic drag 
calculation, therefore, is of the same form as the orbiter.  
With the appropriate subscript substitution, the drag on 
the probe during an aerobraking maneuver is calculated 
using 

 1
2dp p dp p p pC S Vρ= −F V . (18) 

To determine the aerodynamic drag acting on the 
tether the frontal area of the tether is lumped to the 
nodes.  The aerodynamic drag is calculated for each 
lumped area using the atmospheric density and relative 
velocity at the node.  The drag force acting at the ith 
node can be represented as 

 iiidtidi VSC VF ρ2
1−= , (19) 

where,  Cdt denotes the drag coefficient of the tether and 
Si represents the tether frontal area lumped at the node.   

NUMERICAL RESULTS 

Two sets of results are presented here for the 
numerical simulations of elastic tether systems.  It is 
important to note that no attempt has been made to 
incorporate the mission elements identified by 
Longuski et al.17 to improve the dynamic response of 
the system.   In this way, it is possible to test the ability 
of the simulation model to accommodate non-ideal 
mission scenarios. 

 

Figure 3: Single-link tethered system 

Algorithm Comparison 

To test the performance of the modified 
generalized-alpha method presented in this paper, a 
benchmark problem is modeled.  The scenario adopted 
for the comparison consists of an orbiter and a probe 
connected by a single-link, massless, elastic tether.  
This system is put into an elliptic orbit about Mars with 
the assumption that there are no atmospheric forces 
acting.   Figure 3 depicts the configuration of the tether 
system used for the algorithm comparison.  The orbit 
properties and the physical properties of the system are 
presented in Table 2 and Table 3, respectively. 

Tether 

Probe 

Orbiter 

15(a) 

15(b) 

15(c) 
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The single-link configuration is easily implemented 
using the mid-point modification of the generalized-
alpha method.   For comparison, the equations of 
motion for a system consisting of two masses connected 
by a simple spring have been derived using Lagrange’s 
equation, which is defined as 

 0d L L
dt q q
∂ ∂− =
∂ ∂

. (20) 

The resulting nonlinear equations of motion are 
propagated in time using an explicit Runga-Kutta 
numerical solver in MATLAB.   

 

Table 2: Initial orbit properties for the benchmark 
scenario 

Periapse Altitude 180 km 

Eccentricity of Initial Orbit 0.5 

Mars Radius 3397 km 
 

Table 3: Physical properties of the tether system for 
the benchmark scenario 

Orbiter Mass, mo 1000 kg 

Probe Mass, mp 1000 kg 

Tether Length 150 km 

Tether Diameter 5 mm 
 

 
Figure 4: System orbit propagated using the 

dissipative time-stepping algorithm. 

 
Figure 5: System orbit propagated using a Runga-

Kutta numerical solver. 

 

 
Figure 6: Strain history using the dissipative time-

stepping algorithm. 

 
Figure 4 and Fig. 5 show the trajectories of the 

orbiter and probe for the dissipative algorithm and the 
MATLAB numerical solver, respectively.  At this level, 
there is no discernable difference between the two 
results.  In both simulations, the tether system spins at 
the same rate with the orbiter and probe trajectories 
crossing at the same positions.  Figure 6 displays the 
strain history of the tether for the simulation using the 
dissipative time-stepping algorithm.  As can be seen in 
the figure, a stable response is produced with some high 
frequency vibration during the first stages of the orbit 
due to the initial conditions.   
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Figure 7: Trajectory of a tethered system during an aerobraking maneuver. 

 
Figure 8: Trajectory of a tethered system during an aerobraking maneuver. 
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Aerobraking Maneuver 

A representative aerobraking maneuver is 
simulated for an uncontrolled elastic tethered system 
using the dissipative time-stepping algorithm.  Table 4 
contains the physical properties for the tether system in 
the simulation.   In this scenario, the tether is 
discretized into six segments.  The probe and orbiter are 
idealized as spheres for the purpose of determining the 
aerodynamic forces.   Table 5 shows the characteristics 
of the arbitrary initial orbit.  The simulation commences 
at apoapse and terminates 3.88 hrs (flight time) later.   
The numerical damping in the algorithm (spectral 
radius) is set to 0.9. 

Table 4: Physical properties of the tether system for 
the aerobraking scenario  

Orbiter Mass 1000 kg 

Probe Mass 500 kg 

Tether Length 180 km 

Tether Diameter 2 mm 

Orbiter Drag Coefficient 2 

Tether Drag Coefficient 2 

Probe Drag Coefficient 1 

Probe - Frontal Surface Area 1 m2 

Number of Tether Segments 6 
 

Table 5: Initial orbit properties for the aerobraking 
scenario 

Periapse Altitude 200km 

Eccentricity of Initial Orbit 0.5 

Mars Radius 3397 km 

Assumed Mars Atmosphere 
Altitude Limit 

300 km 

 
The effect of the interaction between the system 

and the atmosphere of Mars on the initial orbit can be 
clearly seen in Figs. 7 and 8.  After penetrating the 
atmosphere, the apoapse of the tethered system’s orbit 
is lower than its initial altitude and the system begins 
rotating.  Figures 7 and 8 clearly show the ability of the 

modeling technique to represent the three-dimensional 
behavior of a tethered system undergoing orbital 
maneuvers.   

Strain information for each of the tether links is 
used to update the internal forces and the location of the 
tether nodes.  This information is recorded as the tether 
system is propagated in time.  Figures 9 and 10 
represent the strain history of the links attached to the 
probe and orbiter, respectively. 

 
Figure 9: Strain in the tether element connected 

to the probe. 

 
Figure 10: Strain in the tether element 

connected to the orbiter. 

The strain histories represented in Figs. 9 and 10 depict 
responses that are beyond the capabilities of the 
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material implemented in the simulation.  In the link 
connected to the orbiter and the link connected to the 
probe, the strain exceeds the 3% limit of the Spectra 
material.  Correspondingly, the stresses in these links 
exceed the tensile strength of the material.  In both 
links, the strain becomes negative, indicating that the 
tether becomes slack.  This is a highly undesirable 
situation, which is ignored by the algorithm as all 
negative strains are set to zero. 

CONCLUSIONS 

The ability of a dissipative time-stepping algorithm 
derived from finite element theory is shown to be 
capable of simulating the three dimensional behavior of 
an elastic tethered system.  A representative simulation 
is completed over an elliptic orbit corresponding to 
several hours flight time and considers the effect of 
atmospheric breaking and a non-spherical gravitational 
potential field.  The strain history profiles clearly 
indicate the need to include suitable control techniques. 
With appropriate validation and refinement, the 
modeling technique presented here will become a 
valuable and flexible simulation tool. 
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