
(c)2000 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

AOO-39774

AIAA-2000-4031

DESIGN OF AEROGRAVITY-ASSIST TRAJECTORIES
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West Lafayette, Indiana 47907-1282

Aero-gravity assist (AGA) trajectories are optimized in the sense of maximizing AV
obtained by the fly by, maximizing aphelion, minimizing perihelion, and minimizing
the time of flight (TOF) for a particular destination planet. A graphical method
based on Tisserand's criterion is introduced to identify potential AGA trajectories.
To demonstrate the application of the theory, patched-conic AGA trajectories are
computed to each planet in the Solar System. For an L/D of 7, and a launch VQO of
6.0 km/s, Pluto may be reached in 5.5 years using a Venus-Mars-Venus AGA.

Nomenclature
E = heliocentric specific orbital energy,

km2/s2

R = semimajor axis of AGA body, km
Ra = aphelion distance, km
Rp — perihelion distance, km
rp = periapsis at AGA body, km
U = nondimensional heliocentric speed

t/oo = nondimensional excess velocity
V = heliocentric velocity of spacecraft,

km/s
Vpi = velocity of planet with respect to

Sun, km/s
VQO = excess velocity, km/s
a = angle between VOQ and Vpi, rad
6 = aerodynamic turn angle, rad
p, = gravitational constant, km3/s2

<j> = total AGA turn angle, rad

Superscripts
= pre-flyby superscript

+ = post-flyby superscript

Subscripts
n = path index subscript
0 — solar

Introduction

GRAVITY assist trajectories have become pow-
erful aids in enabling mankind to explore the

Solar System. The famous Voyager II mission de-
pended on gravity assists from multiple planets. The
Galileo spacecraft used Earth and Venus in order
to reach Jupiter; recently the Cassini spacecraft has
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used Earth and Venus on its way to Saturn. A much-
anticipated mission to Pluto, the Pluto-Kuiper Ex-
press, will require high launch energy, along with
a Jupiter gravity assist to reach Pluto in 8 years.
Many other trajectories to Pluto have been found,
requiring up to 4 fly by bodies, with flight times be-
tween 10 and 15 years1 (compared to the Hohmann
transfer time of 45 years). However, for a given
planet and flyby V^, there is a limit to the bending
(and thus AV) that gravity will supply. Further-
more, with each additional flyby, the total flight time
often increases and the required phasing of the plan-
ets becomes harder to meet.

Over the years, improvements on the gravity assist
idea have been proposed. One of these is to replace
the slower conic arcs between planets with faster
low-thrust arcs.2 Though this technique has merit,
as the VQO of the flyby body increases, the AV gained
becomes increasingly smaller (as in the case of the
conventional gravity assist). Another idea involves
flying a lifting body, (e.g., a waverider3), through the
atmosphere of the flyby planet. Aerodynamic forces
can augment the bending angle to arbitrarily large
values. Lewis and McRonald4 contend that the tech-
nology exists to build a waverider with L/D ratios
greater than 7. The AGA maneuver could dramat-
ically augment the gravity technique.5'6 An AGA
has the added advantage of yielding AV increases
with higher flyby VOQS.

Because the turn angle in an AGA is arbitrary,
an AGA can perform nearly as well in one flyby
as several conventional gravity assists. There will
be some energy losses due to drag, but this is more
than made up for by the years shaved from the flight
time, and the phasing is easier. Preliminary work
by Sims7 shows that with AGA, a spacecraft could
reach Pluto in 5 to 7 years, with minimal launch
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energy. Bonfiglio8 confirms the work of Sims by
calculating several AGA trajectories to Pluto with
the Satellite Tour Design Program (STOUR), which
Bonfiglio modified for the purpose.

In this paper we find the maximum possible AV
for an AGA maneuver, compute the performance en-
velope of AGA trajectories, apply a graphical tech-
nique to gain further insight into available AGA
trajectories, and compute theoretical bounds on the
minimum time of flight to each planet.

AGA Equations
A model relating pre and post flyby T^s is given

by:9

V+ = { (V~2 + n/rp) exp (~29/(L/D)\ - M/rp}1/2

(1)
For convenience, we nondimensionalize this equa-
tion, using Uoo = V00

2/(/i/rp) to obtain:

U+ = (U-+l)eXp[-2B/(L/D)]-l (2)

We calculate the AV, and then the more convenient
non-dimensional AU from

(3)

where <j) is the total turn angle (gravitational and
aerodynamic), and is given by

= sin"1 [(1 + + sin"1 [(1 + U+-1 +
(4)

Equations 2, 3, and 4 can be combined to yield an
expression for AU explicitly in terms of U^ and t/j+ :

AU

+ 1)] J5)

Figure 1 shows a graph of Eq. 5 for L/D=15.
Because of drag losses, [/+, < U^ in general. The
special case of U^ = U^ corresponds to a conven-
tional (pure) gravity assist, and is illustrated sep-
arately in Fig. 2. Note that there is a maximum
AU for all gravity assists. Maximizing Eq. 5 for the
pure gravity-assist case, we see that the maximum
AU is 1, and occurs when U^ = 1. For the AGA
case, however, the maximum AU is unlimited and
increases with increasing U^. The rippling effect in
Fig. 1 is caused by the Voo being rotated around
the planet through several revolutions. The main
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Fig. 2 A[7 as a function of f/oo in a gravity assist.

lobe corresponds to the optimal turn angle to maxi-
mize AU (and hence, AV) during the flyby. Further
aerodynamic turning decreases U^ to the first val-
ley, where V+j points in the same direction as V^,.
Turning beyond one revolution will again increase
the AU, but less than before because of drag. Addi-
tional revolutions could be completed until [/+, = 0,
at which point the spacecraft would be captured in
orbit about the gravity-assist planet.

Maximizing AV in a Single AGA
To maximize the AV obtained by a single AGA,

we find an analytic representation of the maximum
AU, as a function of U^. It is not obvious from
Eq. 5 that AU increases almost linearly, but Fig. 1
clearly suggests it. A different approach to this max-
imization is done by Elices,10 but with the insight
provided by Fig. 1, we find an alternate approx-
imation. Though Elices's approximation has the
advantage of being simpler, its accuracy decreases
with increasing L/D.

We start with the assumption that for the op-
timal turn angle, £/,+ « k2U^, where k is some
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unknown constant. Next, we make this substitution
into Eq. 3. We note that as U^ increases, the grav-
itational turn angles drop out of Eq. 5, and there is
a quadratic/logarithmic dependence of U^ on AU.
We then solve for k in the parameter optimization:

lim -
--*™ dk (6)

Because we are assuming U^ is very large, the grav-
itational turn angle tends towards zero. From Eq. 4,
we see that

= (l/2)(L/£>) In
w -(£,/£>) In fc

!)/([/+ +1)]

Equation 6 yields:

k - cos(» - (L/D) sin(<£) = 0

(7)

(8)

This transcendental equation will, in general, have
several roots which correspond to the locations in
Fig. 1 where a peak is reached. Since we are looking
for the maximum peak solution, we pick k to be the
value of the largest root. While Eq. 8 can be solved
numerically, an explicit form is desired. Intuitively,
the optimal turn angle will be somewhat less than
TT. Furthermore, as L/D —» oo, k —* 1. We use the
approximations:

cos((f>)
sin(^>)

Infc

-1
TT - = TT + (L/D) In k

Two terms are required for the In k term to solve for
k. (The linear expression is fairly inaccurate except
for very high L/D ratios.)

Substituting, we obtain a quadratic expression for
k:

-4
2TT
-T
D

= 0 (9)

Solving for the two roots in Eq. 9, we find that one
root is always less than 1, and the other is always
greater. By inspecting Eq. 7, we see that k < I, and
thus the higher root is extraneous. Also as L/D —>
oo, fc —> 1, as expected in both cases. Table 1 has a
summary of the errors in these three approximations
(Elices, the transcendental, and the quadratic) for
U^s ranging from 0 to 30.

In the quadratic and transcendental formulations,
AU is linearly related to U^ by:

AU = - 2fccos(c£) + fc2 (10)

Fig. 3 The AGA vector diagram.

Unsurprisingly, the transcendental version is the
most accurate at all L/D ratios. At low L/D ratios,
Elices's approximation is the next most accurate. At
about L/D = 4, the quadratic begins to do better.
Since the Taylor series expansion was done about
fc = 1 (which is the case for L/D —> oo), it is
expected that the two methods developed here as-
ymptotically reach zero error as L/D increases.

The first error listed in Table 1 is the maximum
percent error in the 0 < U^ < 30 comparison range.
In all cases the largest errors occur at high values
of [/oo; at high U^ and low L/D, none of the esti-
mators are accurate. A more representative error is
the mean error, which shows the average error for
all examined U^ is fairly small. Finally, the mean
squared error (MSE) is listed for all cases.

Optimizing for Perihelion or Aphelion
Clearly AGA can potentially yield dramatic im-

provements in attainable AV over conventional
gravity assists. But unless a maximum AV AGA
makes it easier to reach a desired destination, the
attainable AV is useless. The turn angle that re-
sults in the maximum AV may not necessarily be
the optimal turn angle for reaching the next body.
Indeed, one of the major points of the maximum
AV theory is to provide a benchmark for practical
AGAs (e.g., AGAs that actually get the spacecraft
somewhere).

To this end, we examine optimizing the turn an-
gles about the planets to maximize the spacecraft's
aphelion, or to minimize its perihelion, depending
on if the target body is farther from or closer to the
Sun. The spacecraft will then be able to reach any
body in the Solar System between these two bounds.
The derivations that follow assume circular coplanar
planetary orbits. Figure 3 presents a vector diagram
of the AGA maneuver.
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Table 1 Percent error in approximating maximum AGA At/ by different estimators

L/D

1
2
3
4
5
10
15

ElicesIU

Max
74.4
61.9
53.4
46.9
41.5
23.2
17.8

Mean
17.1
3.7
3.2
3.6
3.6
1.1
6.5

MSB"
3.3
0.4
0.3
0.2
0.2
0.1
0.5

Transcendental
Max
69.0
58.4
49.7
43.0
37.8
23.3
16.7

Mean
3.7
1.4
0.7
0.4
0.3
0.3
0.4

MSEa

0.7
0.3
0.2
0.1
0.1
0.0
0.0

Max
55.3
68.8
55.2
46.3
40.0
23.7
16.8

Quadratic
Mean
44.5
23.3
6.8
2.5
1.0
0.2
0.0

MSEa

21.6
5.7
0.6
0.2
0.1
0.0
0.0

a Mean Squared Error

L/D=oo case
The simplest case to consider is L/D = oo where

the spacecraft would not lose any V^ due to drag
during the aerodynamic turning. This case puts a
theoretical upper/lower bound on what any AGA
can accomplish. No matter how waverider technol-
ogy progresses, a waverider will never be able to
outperform this limit.

The arrival V^ at the AGA planet is computed
as:

cos(72)
,2 cos(7i)
,2 cos(7a)

can be computed as:

Ra,p = R2 [U/(2 - U)} (12)

+2Mo (R^1 - R~l)

VPI,I +1&2 + v£,i - 2(Ri/R2)vPi,iVpi,2
+2/J.Q (Rzl - Rl1} + 2^00,1^,1 cos(ai)

(U)

Now that we have an expression for the arrival V^
at the AGA planet in terms of departure conditions
at Earth, we can find the optimum ai to maximize
^00,2- The first and second derivative rules tell us
that a-i = 0° if R2 > RI, or aa = 180°, if R2 < RI.
In the R2 > RI case, we maximize aphelion, and
minimize perihelion in the other.

With a L/D of oo, a spacecraft can turn any de-
sired turn angle without losing V^. The Hohmann
transfer shows that a tangential AF is optimum
for maximizing aphelion or minimizing perihelion.
Thus, the optimum turn angle in this case makes
the VOQ parallel to the planet's velocity vector (this
is not true for the finite L/D case, as rotating the
VQO also decreases its magnitude). Since for a tan-
gential departure, maximizing heliocentric velocity
is equivalent to maximizing aphelion (and similarly,
minimizing heliocentric velocity is equivalent to min-
imizing perihelion), we know that V2

+ = Vpi,2±V00f2.
Thus, maximum aphelion or minimum perihelion

Equation 12 is derived assuming the spacecraft de-
parts Earth and executes an AGA at the next planet
in its path sequence. However, because (as shown in
Eq. 11) tangential Earth departures are optimal in
this sense, and because tangential AGA planet de-
partures are optimal, we can patch several of these
trajectories together to get the optimal multi-body
trajectory. This is done by departing each body tan-
gentially as to maximize the arrival T4o at the next
body. When the spacecraft arrives at the next body,
it turns so it leaves tangentially to go on to the next
planet.

Finite L/D case
Of course, infinite L/D ratios are impossible. A

parameter optimization problem can be set up for
the finite L/D case similar to the infinite L/D
case. However, V£ is now a function of V^ and B.
Launching tangentially from Earth is also not neces-
sarily optimal. For a single-body AGA, maximizing
aphelion or minimizing perihelion can be formulated
as a two-dimensional parameter optimization prob-
lem for a given L/D and launch V^. Each additional
AGA body in the path sequence adds another di-
mension to the problem (the aerodynamic turning
angle for that planet). An analytic solution appears
intractable, so a numerical solution is calculated.
The results are presented in Figs. 4 and 5.

Figure 4 illustrates the maximum aphelion and
minimum perihelion possible with a single AGA at
Venus for several different L/D ratios. The Venus
Gravity Assist (VGA) and Venus Aerogravity Assist
(VAGA) contours begin at a launch V^ of 2.5 km/s,
which corresponds to the Hohmann transfer. Note
that at this launch V^,, it is impossible to increase
aphelion, since the spacecraft arrives at Venus with
its VOQ aligned with the velocity vector of Venus
(i.e., a = 0). However, it is still possible to decrease
perihelion. The more turning that can be accom-
plished (i.e., the higher the L/D ratio), the lower the
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Fig. 4 Maximizing aphelion or minimizing perihelion using a single Venus aerogravity assist (VAGA).

perihelion can be. The ability to decrease perihelion
for the Hohmann transfer is the cause for the appar-
ent discontinuity in Fig. 4 — the Hohmann results
in a perihelion at Venus; but we can immediately get
additional bending to decrease it even further.

As the launch VTO increases, so does the arrival
VQO at Venus. Furthermore, a also increases. This
makes it possible to increase aphelion by rotating the
VOQ back towards a = 0. For launch VooS less than
3.2 km/s, a pure VGA is able to achieve maximum
turning (without overturning the VQO). Thus, an
AGA is not needed.

But for launch V^s higher than 3.2 km/s, a VAGA
more effectively increases aphelion. A pure VGA can
not even get to Jupiter for a launch T ,̂ of 15 km/s.
For a high launch V^, there is a correspondingly
high a at the VGA. But with high arrival VQO at
Venus, the maximum turn angle is insufficient to ro-
tate the Vco enough to increase the spacecraft's he-
liocentric velocity (and therefore, energy). A VAGA
does not suffer this disadvantage, since the V^ can
be rotated to an arbitrary direction. The aerody-
namic portion of a turn is responsible for most of
the turning at high arrival V^s, unlike low arrival
V^s where gravity dominates.

Since Figs. 4 and 5 represent aphelion and peri-
helion distances, the points where a contour inter-
sects a planet imply the spacecraft arrives tangen-
tially. Also, the L/D = oo case must always depart
Venus tangentially, since this provides the extremal
heliocentric velocity. Therefore, points where the
L/D = co contour intersect a planet are all identi-

cal to Hohmann transfers from Venus to that planet,
and may have fairly lengthy TOFs. For all finite
L/D contours, the departure a will be somewhat
larger. Thus, Venus will not be at perihelion (if
traveling upwell) or aphelion (if traveling downwell).
Although the TOFs will be shorter, they are not
much more so if traveling to the outer planets, and
come at the cost of increased launch V^.

In many ways, Mars behaves oppositely to Venus.
Figure 5 illustrates the Mars Gravity Assist (MGA)
and the Mars Aerogravity Assist (MAGA). At the
Hohmann launch VQO, it is impossible to decrease
perihelion; however, aphelion can still be increased.
Furthermore, the MGA is capable of full turning for
launch Vxs less than 3.2 km/s. The arc where grav-
ity alone is sufficient is smaller than that of Venus,
because Mars has lower gravity. Because of this
lower gravity, the MGA can barely rotate the V^ at
higher arrival VooS. However, the MAGA is still able
to, since the departure direction is unconstrained.
This is the reason behind the large gap in increas-
ing aphelion between the pure MGA case and the
L/D — 5 case. At the launch V^ for an MGA to
reach Jupiter, a MAGA is easily capable of escaping
the Solar System. In other words, a single MAGA
allows a spacecraft to reach Jupiter instead of re-
quiring the traditional 2 or 3 nybys of other planets.

A MAGA is also more capable of decreasing peri-
helion at higher launch V^s than a VAGA. Decreas-
ing perihelion is equivalent to reducing heliocentric
velocity during a flyby. For any gravity-assist body,
the goal is to rotate the spacecraft's VOQ to be paral-
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Fig. 5 Maximizing aphelion or minimizing perihelion using a single Mars aerogravity assist (MAGA).

lei, and opposite in direction to the planet's velocity
vector. Since the departure direction is arbitrary
for an AGA, and the heliocentric velocity of Mars is
much smaller than that of Venus, a MAGA is able
to reduce perihelion more than a VAGA can, for the
same flyby VOQ.

When there are more than one or two AGA plan-
ets to consider, this graphical method becomes cum-
bersome, and does not provide much insight. An-
other drawback is that this, approach does not pro-
vide the arrival VQO, nor does it provide the TOP.
An alternate method is developed instead.

E-Rp Analysis
A graphical tour design method based on Tis-

serand's criterion was developed to aid in searching
for paths for the Europa Orbiter mission.11'12 If
we assume that satellites are in circular, coplanar
orbits around a central body, then two orbital el-
ements completely describe the shape of the orbit.
For the Europa Orbiter case, period and periapsis
radius were selected. We use specific orbital energy
instead of period, since many conic arcs to the outer
planets are hyperbolic with respect to the Sun. Since
these two quantities provide the orbit shape, the
flyby conditions are known when that orbit crosses
a given body's path. In particular, the arrival V^
is known for a given E, Rp, and flyby planet. From
Fig. 3, we have that:

V% + 2E + 2fiQ/R

-2(flp/-R)^ ~~
2E +

2fj,Q/R
- 2(RP/R)

2E + 2fi0/R - 2VplV cos(7)

(13)

In pure gravity assists, the pre and post V^s are
the same, but the orbits (which are points on an E-
Rp plot) are different. This is graphically depicted
as following constant VOQ contours on an E-Rp plot,
as shown in Fig. 6. The distance on a contour that
can be traversed by a single flyby depends (in part)
on the radius of the flyby body (i.e., when a flyby ap-
proaches the surface, further turning is not possible).
The tick marks (dots) on the plot denote contour
distance at maximum turning. This plot illustrates
that Mars is not a very effective gravity-assist body,
since its tick marks are very close together. On the
other hand, Jupiter's tick marks are spread out, and
therefore much more capable of altering a space-
craft's orbit.

An AGA further spreads out the tick marks. Con-
sider the hypothetical L/D = oo case where the VQO
can be turned to any desired direction. This corre-
sponds to moving the tick marks to the endpoints
of the contours (or simply removing them). Finite
L/D values complicate matters because the VOQ does
not remain constant. As the aerodynamic turn an-
gle increases, the V+, decreases. However, this loss
may be worthwhile since the tick mark constraint is
no longer valid. Putting this all together, a sample
trajectory to Pluto is depicted in Fig. 7.

In Fig. 6, the VOQ contours start at the lower-right
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Fig. 6 The E-RP plot.
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Fig. 7 Illustration of an EVMVP trajectory using AGA.
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corner at Vx = 1 km/s for each of the planets. The
spacing between contours is also 1 km/s. In Fig. 7,
the contour spacings are at 2 km/s for better clar-
ity. This figure depicts a trajectory from Earth to
Pluto using AGAs, with a launch V^ of 6 km/s.
This launch condition is also on a Venus contour —
meaning that the spacecraft can coast from Earth
to Venus. If phasing works out, Venus will be there
when the spacecraft reaches Venus's orbit. Next,
the spacecraft goes on to Mars via a Venus AGA
(VAGA). This is graphically depicted as proceeding
up the first arc along the Venusian contours. If a
VGA were done instead, the spacecraft would be lim-
ited in its turning (it can cross only one tick mark).
With an AGA, the spacecraft can get some "free"
gravitational turning; but the rest of the turning will
result in loss of V^. In this case, the spacecraft ar-
rives at Venus with a V^ of about 12.3 km/s, but
leaves Venus with a V^ of only 10.7 km/s. This al-
lows the spacecraft to arrive at Mars with a V^, of
18.9 km/s. The spacecraft performs another AGA,
which lowers its Mars V^ to 16.0 km/s, but this al-
lows its perihelion to be drastically pumped down
to 0.086 AU. The spacecraft coasts to Venus, where
a final VAGA pumps up the heliocentric energy to
a hyperbolic orbit. From there, the spacecraft can
reach Pluto.

The E-Rp plot provides a valuable tool for ex-
amining GA or AGA trajectories. However, the
decaying V^ in the AGA maneuver complicates the
interpretation of the E-RP plot. For this reason, a
computer program was written to search through the
E-Rp contours to find the shortest TOF trajectory
from Earth to every other planet. The program cal-
culates both GA and AGA cases for any number of
flyby bodies. But because of the circular, coplanar
assumption, and the lack of phasing (timing) con-
siderations, any hypothetical trajectory still needs
to be verified by other means.

Because the orbital state — specific energy and
perihelion — is a continuous vector, we discretize
the E-Rp plot into a collection of nodes. The or-
bital state vector after a flyby is then mapped to
the nearest node. Thus, the finer the discretiza-
tion, the smaller the error in the algorithm. There
are up to 4 possible coast arcs from one planet to
another for each point in the E-Rp plot11 (only 2
possible arcs for hyperbolic trajectories). All possi-
ble arcs are considered, keeping the direction of the
trajectory consistent for each arc. There are liter-
ally billions of trajectories that must be considered.
To drastically cut back on search time, while ensur-
ing each optimal trajectory is found, we employ the
Viterbi algorithm.13 This algorithm finds the mini-

Table 2 Fastest potential AGA trajectories to
Mercury with L/D=7 (ignoring phasing). The
TOF is given in years.

VCQ Mercury
Path TOF

3
4
5
6

EVEVY
EVY
EVY
EVY

0.79
0.37
0.30
0.27

mum TOF path between any desired initial and final
condition in the minimal number of comparisons.

The AGA results for Mars and Venus are unre-
markable, since no gravity assists are needed to reach
them. (The one exception being a launch V^ higher
than the Earth-Venus Hohmann, but lower than the
Earth-Mars Hohmann. In this case, a Venus flyby
is required to get to Mars.) The optimal trajectory
from Earth to Mercury involves at least one flyby
at Venus. For launch V^s higher than 4, the TOF
savings with AGA is minimal. A summary of results
for trajectories to Mercury is presented in Table 2.

For a launch V^ of 3 km/s, a single VAGA is
insufficient to reach Mercury; furthermore, it is im-
possible to reach Mercury with only 2 flybys. The
fastest potential 3-flyby trajectory to Mercury uses a
Venus-Earth-Venus combination of AGAs for a TOF
of 0.79 years. Additional flybys beyond the third
increases the TOF, and thus are unnecessary. For
launch y^s of 4 km/s or higher, a single VAGA is
sufficient to reach Mercury. The TOF cannot be
improved with additional flybys.

The biggest advantage of AGA is in missions to
the outer planets. A summary of results is shown in
Table 3. Blank areas mean that no such trajectory
is possible (due to insufficient launch energy). For
example, no trajectory to Jupiter using only 1 or 2
flyby bodies exists for a launch VQO of 3 km/s.

Since this analysis does not take into account
phasing (however, it does allow for resonant flybys),
the existence of a trajectory that returns to a given
planet is not guaranteed. In general, the greater
the number of tunes a given planet is used (exclud-
ing resonant flybys), the less likely such a trajectory
will exist.

Our algorithm allows for an AGA at all planets
except Mercury and Pluto (which do not have ap-
preciable atmospheres). Interestingly enough, the
time-optimal trajectories rely most heavily on Venus
and Mars, and only occasionally use Earth. For
many of the cases, the optimal trajectory is an alter-
nating series of Venus, Earth, and Mars AGAs until
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Table 3 Fastest potential AGA trajectories to the outer planets with 'L/D—7 (ignoring phasing).
The TOF is given in years.

Voo

3

4

5

6

Jupiter
Path

EVEMJ
EVEVMJ

EVEVEMJ
EVMJ

EVEMJ
EVEMVJ

EVEMVEJ
EMJ

EVMJ
EVEMJ

EVEMVJ
EMJ

EVMJ
EVEMJ

TOF
1.99
1.64
1.56
2.20
1.43
1.36
1.32
2.46
1.46
1.24
1.23
1.68
1.27
1.11

Saturn
Path

EVEMS
EVEVMS

EVEVMVS
EVMS

EVEMS
EVEMVS

EVEMVES

EVMS
EVMVS

EVEMVS
EMS

EVMS
EVMVS

TOF
3.53
2.43
2.20
5.61
2.44
1.92
1.87

2.61
2.08
1.78
3.64
2.21
1.74

Uranus
Path

EVEMU
EVEVMU

EVEVMVU

EVMVU
EVEMVU

EVEMVEU

EVMU
EVMVU

EVEMVU
EMU

EMVU
EVMVU

TOF
8.21
4.24
3.46

4.71
3.20
3.14

5.52
3.53
3.04
14.16
4.41
3.00

Neptune
Path

EVEMN
EVEVMN

EVEVMVN

EVMVN
EVEMVN

EVEMVEN

EVMN
EVMVN

EVEMVN

EMVN
EVMVN

TOF
15.33
6.35
4.91

7.21
4.65
4.58

9.14
5.18
4.49

6.96
4.45

Pluto
Path

EVEMP
EVEVMP

EVEVMVP

EVMVP
EVEMVP

EVEMVEP

EVMP
EVMVP

EVEMVP

EMVP
EVMVP

TOF
23.08
8.21
6.18

9.44
5.93
5.85

12.45
6.63
5.76

9.23
5.72

the destination planet is reached. Because the inner
planets have such low semimajor axes compared to
the outer planets, using them exclusively (since we
can get arbitrary bending at them) is better than
hoping all the outer planets line up right. For exam-
ple, the best trajectory to Pluto with a launch V^o
of 6 km/s uses a Venus-Mars-Venus-Mars series of
AGAs, as opposed to using Jupiter, Saturn, Uranus,
or Neptune (even though AGAs are also allowed at
these planets). While Jupiter is a powerful gravity-
assist planet, it is too far away to effectively compete
with the inner planets. Another factor evident from
examining Fig. 6 is that if Jupiter is used to pump
up a spacecraft's energy, then its semimajor axis is
greatly increased. This lengthens the size and TOF
of the conic arc to the next planet, and thus, Jupiter
is not used. This means that we do not have to de-
pend on phasing with Jupiter to get to the outer
planets — only on the phasing of Venus, Earth, and
Mars.

Considering trajectories to Pluto for a launch V^
of 6.0 km/s, we see that adding a 3rd flyby lowers
the TOF to 5.7 years. This trajectory is, in fact, the
EVMVP discussed previously. However, the actual
TOF may be much shorter, since Pluto is currently
about 30 AU away from the Sun. while our algorithm
assumes a constant semimajor axis of approximately
40 AU.

This trajectory was examined in more detail us-
ing STOUR for a 40-year launch window (2000-2040)
and launch V^s ranging from 4.0 km/s to 6.0 km/s.
The results are shown in Fig. 8. The trajectory is
indicated by the PATH label, where the number n
corresponds to the nth planet from the Sun. The
LIFT/DRAG field gives the L/D ratios used at each
flyby planet. In this case, an L/D=7 was used dur-
ing the VMV. Finally, the plot itself is comprised
of several letters. Each of these represents a trajec-

tory with the indicated launch date and TOF. The
letter itself is an index for the launch V^s that are
searched. In this case, an "A" represents a launch
FOO of 4.00 km/s; a "B" represents a launch V^ of
4.50 km/s, and so on.

With the given conditions, the fastest trajectory
to Pluto has a launch Voo of 6.0 km/s, and takes only
5.5 years! If we use a launch V^ of only 5.5 km/s
instead, we can get there only slightly later. Further-
more, these trajectories are possible every few years.
These extremely low TOF trajectories to Pluto be-
gin to disappear as Pluto moves further away. Even
with a lower L/D ratio of 5, the VMV trajectory
still yields short TOFs, somewhat less than a year
longer than the L/D = 7 case. Earlier work by Bon-
figlio yielded AGA trajectories to Pluto that either
took 5 years longer for the same launch energy, or
took 4 years longer for an increased launch energy
of 7 km/s. Clearly, the E-Rp graphical method is a
powerful tool.

Another mission of interest is the Solar Probe
which will study the Sun from as close as 4 solar
radii. Reducing perihelion by that much by a di-
rect launch is very expensive, requiring a 25 km/s
launch V^ to offset the Earth's heliocentric velocity.
A pure GA trajectory to achieve the same goal re-
quires that the last gravity assist has a flat contour,
with tick marks far enough apart. Examining Fig. 6,
we see that the only practical choice for pure GA is
Jupiter. In theory, any planet could be used, but
several resonances are required, which drives up the
TOF to unreasonable values. Previously, we noted
that the VMV AGA trajectory to Pluto as graphed
in Fig. 7 has a very small perihelion of 0.086 AU af-
ter the MAGA. The second VAGA increases energy
and perihelion to get to Pluto. However, suppose
we use the second VAGA to reduce energy and per-
ihelion. Trajectories to 4 solar radii are computed
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Fig. 8 VMV AGA trajectories to Pluto.

using STOUR, and are shown in Fig. 9. Trajectories
with launch VooS as low as 4.50 km/s are possible,
the fastest having a 2-year TOP. For a launch V^
of 5.00 km/s to 6.5D km/s, many trajectories have
TOFs under 1.5 years. The quickest of these has a
TOF just under a year.

The proposed GA Solar Probe mission has a TOF
of around 6 years, and an aphelion of Jupiter's dis-
tance of 5.2 AU. The probe would have at least
a 4-year period, with an extremely fast perihelion
flyby. On the other hand, the AGA trajectories in
Fig. 9 all have perihelia near Venus. This corre-
sponds to about a 75-day period, with a slower flyby.
The AGA trajectories thus allow for more science re-
turn, since the spacecraft would return to the Sun
more frequently. As with the VMV trajectories to
Pluto, launch opportunities for a solar mission exist
every few years.

Discussion
Previously, we found the optimal atmospheric

turn angle to maximize AV; but, we also know that
this AV may not be pointing in the right direction
to get to the next planet. We can find the necessary
conditions for a maximum AGA AV to accomplish
this by inspecting the E-RP plot (Fig. 6).

If an AGA begins near one of the endpoints of a
Vx contour (far lower-left or far upper-right), then
a maximum AV AGA would drive the spacecraft
toward the other endpoint (but at a lower contour,
since some V^ is lost). However, a maximum AV
AGA maneuver that begins near the middle of a
Vx contour would follow the contour in one direc-
tion, then backtrack (overturn), only to end up near
where the maneuver began. (This results in a large

LAUNCH DATE (YY/MM/DD)
LAUNCH DATES SEARCHED: OO/ I/ 1 TO 10/ I/ ' BY 10.0 DAYS

TFMAX - 540.0 DAYS ( 1.5 YRS)

Fig. 9 VMV AGA trajectories to 4 solar radii.

change in the spacecraft's true anomaly, but little
change in the shape of the orbit itself. A smaller
turn angle gives an equivalent turn, but with less
loss of T4o.) Thus, the most efficient AVs possible
with an AGA are the ones that arrive and depart the
flyby body nearly tangentially. The limiting case oc-
curs when L/D = oo, where the spacecraft arrives
and departs tangentially. The near-tangential ar-
rival/departure condition is met in the previously
discussed EVMVP trajectory of Fig. 7. As seen in
the figure, all 3 AGAs are located near the endpoint
of a VOQ contour. However, arriving or departing
a contour near an endpoint is insufficient for max-
imizing AV for a given L/D. Because the optimal
turn angle is a function of L/D, higher L/D ratios
permit greater travel along the V^ contours. For
L/D = 7, Eqs. 7 and 9 yield <f> w 174 degrees, so
the AGA maneuver travels through about 97% of a
VQO contour. Clearly, the AGAs in Fig. 7 are not
AF-maximum, since the AGAs begin in the middle
of a contour. However, due to the geometry of the
contours, maximum-AV AGAs are not possible for
the EVMVP case at higher L/D ratios; i.e., an AGA
is capable of providing a AV in excess of what is op-
timal for reaching the next body. Therefore, a lower
L/D ratio exists such that a maximum AV AGA is
possible and optimal for a specific maneuver. The
AGAs in Fig. 7 do turn the maximum amount with-
out overturning. Moreover, even when a maximum
AV trajectory exists, it may not be time-optimal.
From Fig. 7, we see that an EVMP is possible using
a maximum AV AGA with a Mars V^ of 10 km/s.
However, from Table 3, we know that the EVMVP is
faster than the EVMP. Even with a series of AGAs
that do not use 100% of the possible AV, the tra-
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jectory can be faster than any comparable pure GA
trajectory.

Conclusions
An AGA can potentially yield much higher AVs

than a pure gravity assist, and the E-RP plot shows
when it is possible. The real power of AGA is appar-
ent when multiple AGA flybys are used, especially
when one body acts as a Voo-leveraging maneuver for
another (such as a VMV or MVM). These trajecto-
ries allow for extremely fast low-energy missions.

As seen from the E-Rp analysis, the Earth is not
used as often for AGA because it has only a mod-
erate effect on the orbit shape. On the other hand,
Mars and Venus can be quite effective. Venus is
typically most useful in changing the orbital energy
of a spacecraft, while Mars is typically most useful
in changing a spacecraft's perihelion. Earth can do
both, but neither quite as well as Mars or Venus.
The outer planets are too far away to be useful as
AGA bodies.

AGA provides three significant advantages. First,
trajectories do not have to rely on phasing of the
outer planets (aside from the target) but only on
Venus, Earth, and Mars. Second, TOFs are small.
Since the initial phase of an AGA trajectory will
usually rely only on Venus and Mars, the time re-
quired to build up the spacecraft's orbital energy is
kept to a minimum. Finally, fast trajectories to all
planets exist using low launch energy.

The AGA technique provides exciting new trajec-
tories to difficult targets in the Solar System. For
example, Pluto can be reached in only 5.5 years us-
ing a VMV AGA, for a L/D of 7, with a launch V^
of 6.0 km/s. The trajectories presented here supply
compelling reasons to develop high L/D hypersonic
vehicles (such as the waverider). The development of
AGA technology will enable deep space exploration
at low launch energy and for short flight time.
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