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We introduce a new analytical technique directly related to Tisserand's criterion,
which permits us to quickly identify all viable gravity-assist sequences to a given
destination from an energy standpoint. The method is best presented by a simple
graphical technique. The graphical technique readily demonstrates that VEE,
VEME, and VEEJ (gravity assists via Venus, Earth, and Jupiter) are tremendously
effective sequences. Estimates are made for the shortest flight times for a given
launch energy to each planet. This graphical technique should provide mission
designers with a potent tool for finding economical gravity-assist trajectories to
many targets of high scientific interest in the Solar System.

Introduction

MISSIONS to the outer Solar System and
to Mercury can be expensive both in

terms of launch cost and travel time. The
technique of gravity assist has been key to
making these targets accessible. Missions
from Mariner 10 to Cassini have used gravity
assists for deep space exploration.

In the 1800s, studies by Leverrier (see
Broucke1) and Tisserand (see Roy2) into the
perturbations of the orbits of planets and
comets laid the foundation for the gravity-
assist technique. In the 1950s, Battin3

proposed using a planetary gravity assist to
return a spacecraft to Earth without the use of
propellant. Later, several investigators4"7

studied the potential of gravity-assist swingby
maneuvers for planetary exploration.

Well-known classical paths such as the
VEEGA (Venus-Earth-Earth Gravity-Assist)
trajectory that was used by the Galileo
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spacecraft have proved very effective. Yet, it
is unclear whether or in what situations a
better path might exist. Non-classical paths
such as the VEME (Venus-Earth-Mars-Earth)
proposed by Petropoulos et al.,8 can sometimes
exceed the VEEGA's performance.

In this paper, we use an energy-based
method to investigate the potential and to
establish the performance envelope of various
gravity-assist paths. We develop a method to
assess all patched-conic trajectory alternatives.

Approach
STOUR (Satellite Tour Design Program) is

a software tool that was developed by JPL for
the Galileo mission tour design. This program
has been enhanced and extended at Purdue to
enable the automated design of gravity-assist
tours in the Solar System as well as the
satellite system of Jupiter.10"13 STOUR uses
the patched-conic method to calculate all
gravity-assist trajectories meeting specified
requirements.

Given a path, or sequence of gravity-assist
bodies STOUR can step through a range of
launch dates to find all gravity-assist
trajectories that follow the path. The searches
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can be computationally intense, sometimes
requiring weeks of computer time for wide
launch windows and multiple flyby paths.

A path of gravity-assist bodies must be
specified prior to executing an STOUR run.
Often the computational time required renders
an exhaustive search of all possible paths
infeasible. What we need is a method to
identify the most promising paths prior to
conducting an STOUR search. Also a method
is needed to identify all viable paths. Ideally,
we want a method that generates, the best
trajectory (in terms of low launch energy and
short flight time) to a given planet for any
given launch period.

Graphical Method
The "P-rp" plot developed for the Europa

Orbiter mission design14 offers a method for
selecting a ballistic path of gravity-assist
bodies for computation in STOUR. This is an
energy-based method similar to the Gravity
Assist Potential (GAP) plots described by
Petropoulos et al.8 The P-rp graph uses energy

contours related to Tisserand's criterion (see
Roy2) to illustrate gravity-assist trajectories.

A P-rp plot for Venus, Earth, Mars, and
Jupiter is shown in Fig. 1. This is a graph of
heliocentric orbits in the ecliptic as period, P,
versus periapsis, rp. Assuming the planets are
in circular, coplanar orbits, contours of
constant V«, for each planet are drawn using
patched-conic theory. A gravity assist rotates
the VTO vector of the spacecraft along one of
these contours to modify the orbit about the
Sun. Each contour represents orbits with the
same energy relative the given planet. A flyby
of a planet may change the energy of a
spacecraft relative to the Sun and other
planets, but not relative to the flyby body.

The furthest point to the upper right on the
Voo contour corresponds to positive alignment
of the spacecraft's velocity vector with the
planet's velocity. (This point represents the
highest heliocentric energy possible for
encounter with the planet. Thus, the encounter
is at perihelion.) Rotation of the VTC vector

Contours start in the lower right
corner with a V of1 km/sec.
They increase towards the upper
left corner by steps of 2 km/sec.

10'
RP[AU]

Fig. 1 P-rp plot. A single point represents an orbit about the Sun. Movement along a \L contour
represents the effect of a flyby. Tick marks separate 200 km flybys at Venus, Earth, and Mars, and
5 Jovian Radii flybys at Jupiter. VM contours have values of 1, 3,5,7, etc. km/sec.
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away from this alignment corresponds to
moving from right to left on the VTO contour
towards negative alignment with the planet's
velocity vector. (This point corresponds to the
lowest heliocentric energy, an encounter at
aphelion.)

The contours in Fig. 1 start next to each
planet's name at a V« of 1 km/sec, then
increase in steps of 2 km/sec towards the upper
left of the plot. The point where contours from
different planets intersect represents a
potential transfer orbit between those two
planets. Comparing these contours gives the
values of Vro at each gravity-assist body for
this transfer orbit. We can string together
tours of different planets by connecting the
contours. We use flybys to move along a
contour until it intersects another contour, and
then fly through the transfer orbit at the
intersection of the contours to get to the next
planet. This process tells us if a tour is
possible from an energy standpoint, but not
from a phasing (timing) point of view. (I.e. we
assume that each planet is always located at
the proper position for the flyby to take place.)
In this way we can assess the potential
performance of a tour prior to the laborious
calculations by a tool such as STOUR (which
does solve the phasing problem).

In Fig. 1, we constrain the flybys to have a
minimum altitude of 200 km above the surface
of each terrestrial planet and an altitude of 5
Jovian radii at Jupiter by limiting how far we
can travel along a contour in one flyby. This
is illustrated on the plot by tick marks (shown
as dots on the plot). From one tick mark on a
contour we may move a maximum of the
distance to the next tick mark (either up or
down that contour) before violating the
altitude constraint. When not starting at a tick
mark, the nearby tick mark spacing is used to
estimate the distance.

The P-rp plot can be used to easily find and
evaluate paths for gravity-assist trajectories
such as the VEEGA (Fig. 2). The VEEGA
allows a low Earth launch energy (here a Voo of

Second Earth Flyby
V = 9 km/sec

First Earth Flyby
V = 9 km/sec

Perihelion [AU]

Fig. 2 Illustrating a VEEGA with a P-rp plot
(Venus-Earth-Earth Gravity Assist).

only 3 km/sec) to place a spacecraft on a
Jupiter-bound trajectory. The VEEGA starts
by launching into an orbit with a perihelion
low enough to reach Venus. A single Venus
flyby is then used to increase the spacecraft's
V<» at Earth high enough to reach Jupiter (i.e. 9
km/sec). Two Earth flybys are then needed to
rotate the spacecraft's VM vector so that it
reaches Jupiter. (The distance to Jupiter along
Earth's V<*, contour is greater than the tick
mark spacing for one flyby.) We see that a
VEEGA is effectively the same as launching
from Earth with a higher energy (9 km/sec
verses 3 km/sec).

In 1889, Tisserand discovered an invariant
quantity that held for comets before and after
perturbations of their orbit by Jupiter. He used
this criterion to identify a comet with a new
orbital period and perihelion as the same
comet observed at an earlier date. The
contours on the P-rp also represent orbits with
the same Tisserand constant. Here we are
using planets to intentionally perturb the
spacecraft's orbit about the Sun. Tisserand's
criterion has long been used as a check of the
assumptions made in designing trajectories
with patched-conic analysis.15 This invariant is
given by:

T = rplan la + 2[a( 1 - e2 )/rplan f2 cos i (1)
where rpian is the distance from the Sun to the
flyby planet, a is the semimajor axis of the
spacecraft orbit, e is the eccentricity and i is
the inclination.
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A plot of period verses periapsis can only
depict elliptic and circular orbits. However, if
we change the y-axis from period to specific
energy we get another graph that can show
hyperbolic and parabolic orbits as well. This
"E-rp" plot can then represent all heliocentric
orbits. Henceforth, we will formally refer to
these graphs as Tisserand graphs. Since we
are assuming the planets to be in circular
coplaner orbits, the argument of periapsis and
longitude of ascending node of the heliocentric
orbit have no effect on VTC and flight path
angle. If we wished to consider orbits outside
of the ecliptic, we would need to add
inclination as a third axis on these graphs, and
our Voo contours would become surfaces.

The relative scaling of the energies and
distances of the inner planets in comparison to
the outer planets makes generation of one
readable E-rp plot impractical for the entire
Solar System. It is more convenient to group
the inner planets and outer planets separately
as in Figs. 3 and 4. Figure 3 shows horizontal

dash-dotted lines for the energies of orbits that
are able to reach each of the outer planets.
Contours that cross the line labeled "Jupiter"
are able to reach Jupiter; contours that cross
the next line may reach Saturn; etc. The V,*,
contours start at 1 km/sec and increase in steps
of 2 km/sec towards the upper left of the plot.
The tick mark spacings are for 200 km altitude
flybys of the terrestrial planets.

Figure 4 shows vertical dash-dotted lines
for orbits with periapses that can reach the
various inner planets (Y for Mercury, V for
Venus, E for Earth, and M for Mars). On this
plot the Vro contours also start at 1 km/sec
and increase towards the upper left by steps of
2 km/sec. However, the tick mark spacing is
different for each planet. Jupiter's (altitude)
tick marks are spaced at 5 Jovian radii to avoid
radiation. Saturn's tick marks are spaced at 2
Saturnian radii to avoid the rings. Uranus's
and Neptune's tick marks are spaced by one
planetary radii to avoid rings as well, and
Pluto's tick marks are spaced at 200 km.
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Fig. 3 E-rp plot for the inner planets. Tick marks separate 200 km altitude flybys. VTC contours
have values of 1, 3, 5, 7, etc. km/sec. The horizontal dash-dotted lines denote orbits that reach
Jupiter, Saturn, Uranus, Neptune, and Pluto.
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-150

Fig. 4 E-rp plot for the outer planets. Altitude tick marks separate flybys of 5 Rj at Jupiter, 2Rs at
Saturn, 1 radii at Uranus and Neptune, and 200 km at Pluto. V» contours have values of 1, 3, 5, 7,
etc. km/sec. The vertical dash-dotted lines denote orbits that reach Mercury, Venus, Earth, and
Mars.

Although these two plots can be combined
to design tours, it is often much easier to
generate a new plot with only the 4 or 5
planets of interest for the tour (such as the
destination planet, Venus, Earth, Mars, and
sometimes Jupiter).

Figure 5 shows a plot to design tours to
Mercury with V«, contours incremented by
steps of 2 km/sec. Two paths are shown

Fig. 5 Mercury E-rp plot. V.. steps of 2 km/sec.

launching from Earth with a V=o of 3 km/sec.
One path is EVEY (Earth-Venus-Earth-
Mercury) and arrives at Mercury with a VTC of
10 km/sec (this value is interpolated between
the 9 km/sec and 11 km/sec Mercury Voo
contours). The second path is EVEVY and
arrives at 9 km/sec.

Figure 6 shows Vex, contours for Venus,
Earth, Mars and Jupiter for design of missions
to the outer planets. Although the arrival Vo=
at a planet whose contours are not shown on
the plot cannot be read, the value can be
interpolated by remembering that lower V«,s
are toward the bottom right of the plot.

For a launch V« of 3 km/sec we can
identify several paths that get to Jupiter from
Fig. 6: EVEEJ, EVEMEJ, EVEVEJ, EVEEMJ,
EVEVVVJ, EMEMEEJ, etc. In addition, we
can see that once any trajectory gets to Jupiter
from Earth or Venus, it can reach any of the
outer planets via a single Jupiter gravity assist.
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Fig. 6 E-Tp design plot. Altitude tick marks separate flybys of 5 Rj at Jupiter, and 200 km at
Venus, Earth and Mars. V« contours have values of 1, 3, 5, 7, etc. km/sec. The dash-dotted lines
denote orbits that reach Mercury, Saturn, Uranus, Neptune, and Pluto.
If tick marks are stoplights, then Jupiter
contours must be freeways.

If we start with the simplest of the Jupiter
trajectories, the VEEGA, we can increase its
effectiveness by adding a leveraging flyby
with Mars or Venus between the two gravity
assists. Although Mars has closer tick marks
than Venus (i.e. it has less gravity), a
leveraging flyby of Mars sends us further up
an Earth V*, contour, enabling us to achieve a
higher final heliocentric energy than with
Venus as a leveraging body. We can also see
cases where pumping down (i.e. decreasing
heliocentric energy) at Mars gives a larger V«,
at Venus or Earth which can get us to Jupiter
when 2 or 3 Mars pump-ups (i.e. flybys that
increase heliocentric energy) cannot get us to
Jupiter.

By generating these plots for a specific
problem, we can easily determine the
minimum launch energy to fly a given path, or
the minimum number of flyby bodies needed
to reach a destination for a given launch
energy. However, we would like to be able to

compare the flight time for different paths.
We would like to know if a high-energy 5-
body path is faster than a lower energy 3-body
path.

Flight Time
Flight time can be estimated for a tour

found by the graphical method. Given the
periapsis and specific energy of the transfer
orbit, there is a finite set of arcs that connect
the two planets on the transfer orbit. If we
limit our consideration to orbits which
complete less than one revolution about the
Sun, there are eight arcs which connect two
planets for a given periapsis and energy.

A point where two V«, contours intersect is
an orbit that crosses the orbits of two planets.
This orbit can be used to travel from the planet
nearer the Sun to the planet further out, i.e.
"up". It can also be used to travel from the
outermost planet to the planet closer to the
sun, or "down". Additionally, each of the two
planetary encounters may be on either an
outbound (i.e. after periapsis and before
apoapsis) or an inbound (i.e. before periapsis)
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leg. The eight permutations of these
possibilities give rise to eight possible transfer
arcs between two planets for a given specific
energy and periapsis.

Figure 7 illustrates the possible transfers.
An up transfer that leaves the innermost planet
outbound and arrives at the second planet
outbound goes from tj to ^- Similarly a
transfer from -t2 to t\ would be a down
transfer leaving inbound and arriving
outbound.

Table 1 shows the flight time for these
combinations. In this table, "I-I" denotes a
transfer leaving the first planet inbound and
arriving at the second planet inbound, "O-I"
leaves the first planet outbound and arrives at
the second inbound, etc. Here P is the period
of the orbit, r/ is the time from periapsis of the
orbit at the inner planet encounter and 12 is the
time for the outer planet encounter. The first
two rows in the table are for elliptic arcs only,
as they require flying through apoapsis.

Table 1 Flight times for possible arcs
Up
I-I
O-I
I-O
o-o

Down
0-0
O-I
I-O
I-I

Flight Time
P + t,-t2

 a

P-t,-t2
a

tj + t2

t2-t,

a This arc is not possible for hyperbolic or parabolic
orbits as it requires flying through apoapsis.

When stringing these arcs together into a
tour, we must be careful that when we arrive at
a planet inbound that we also leave the planet
inbound and when we arrive outbound we also
leave outbound. The one exception is when
we are able to overturn our velocity vector to
get the same heliocentric flight path angle but
inbound rather than outbound or vice-versa.
This happens at the far left and right ends of a
V» contour when we have enough turning to
go all the way to the end; further turning
reverses our direction of travel on the V^
contour. (We come back down the contour
with the opposite heliocentric flight path
angle.)

-t

Fig. 7 Illustration of possible transfer arcs.
Here ti is the time from periapsis of the
transfer orbit to its crossing of the inner
planet's orbit and t2 is time to its crossing of
the outer planet's orbit. An I-I transfer up
would go from -tt to -t2. An I-O transfer
down would go from -t2 to f7.

The time of flight estimate is calculated by
a program, which connects contours on a plot
into tours. This program selects the minimum
time possible to get to a given planet for a
given launch energy. The phasing (timing)
problem is ignored in these calculations, so the
results can range from optimistic to infeasible.

Automated Traversal of E-Rp Plots
To automatically search for possible tours

on an E-rp plot, the plot is discretized. This is
done by selecting a set of Vro contours for each
planet. Where these contours intersect is a
node of the grid, i.e. a possible transfer orbit
for a tour. Additional nodes are added for
specified resonant orbits at each planet.

A set of nodes on a launch V^ contour is
chosen to start the traversal of the plot. A
second level of nodes is comprised of all nodes
that can be reached in a single flyby from the
initial set of nodes. The flight time is
calculated from each initial node to each node
on the second level, and the fastest flight time
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and the initial node for that flight time is then
saved for each node on the second level. This
gives the first two flyby bodies in a path.

After the fastest path to all nodes on the
second level has been computed, a third level
is investigated comprised of all nodes that can
be reached with one flyby from the nodes on
the second level. The fastest flight time to
each node on the third level is saved along
with the initial node and the node on the
second level comprising the path to the node
on the third level. This process is continued
until the fastest path to every node on the grid
has been computed. If from the third level or
higher it is possible to reach a node on the
second level faster than from the first, the
faster path is used and that node is then moved
up to the fourth level or higher (based on how
many flybys were needed to get that low cost).

An added complexity to the process is that
the actual flight time from one node to another
depends on whether we encounter each planet
inbound or outbound and whether we are
going up or down (see Table 1). To address
this, two cost functions are tracked for each
node. One is the time of flight for a path
whose final flyby is outbound, the other
inbound.

Using this algorithm we find the fastest
path to every planet on the grid for discrete
VooS. The fastest path for a specified arrival
Voo contour is also calculated.

For a destination planet and a launch Vo»
contour, this method predicts the fastest path
to that planet from an energy point of view.
The required location of the planets (i.e. the
phasing required to actually fly this path) may
occur rarely or never. Visual inspection of a
Tisserand graph already tells us the minimum
number of flyby bodies to reach a planet or if a
given path can reach a planet.

This method has application beyond the
design of purely ballistic trajectories. Johnson
and Longuski1 have used Tisserand graphs to
assess the performance of aerogravity-assist
trajectories. Future work may include the

analysis of maneuvers between gravity assists
such as in AV-EGA trajectories.

Results
Table 2 shows the potentially fastest path to

each of the nine planets for launch V^ values
of 3, 5, 7, 9, and 11 km/sec (ignoring phasing).
This was generated on a grid of Vco contours
separated by 1 km/sec. Paths were truncated
after the fifth body. (When no limit on flybys
was imposed 15-and 17-body paths to Pluto
were found for which the needed phasing
would never occur.) The lowest Hohmann VTO
to any other planet is used as the lower bound
for each planet's contours and the upper bound
is set based upon the most energetic

Table 2 Potentially fastest paths
(ignoring phasing)

Launch V«
EVEVY

EV
EVEM

EVEVEJ
EVEEJS
EVEEJU
EVEEJN
EVEEJP

Launch V^
EVY
EV
EM

EMEMJ
EMEMJS
EMEMJU
EMEJSN
EMSJSP a

= 3 km/sec
O.Syr.
0.3 yr.
0.7 yr.
2.4 yr.
7.5 yr.

13.0 yr.
20.0 yr.
27.8 yr.

= 7 km/sec
0.2 yr.
0.1 yr.
0.3 yr.
2.0 yr.
3.7yr.
6.6 yr.
9.9 yr.
12.3 yr.

Launch V«,
EVY
EV
EM
EMJ

EMJS
EMEJSU
EMEJSN
EMEJSP

Launch VM
EVY
EV
EM

EVEVEJ
EVMVES
EVEMJU
EVEEJN
EVEEJP
Launch V^

EVY
EV
EM

EMEJ
EMEJS

EMEJSU
EMEJSN
EMEJSP

= 11 km/sec
0.2 yr.
0.1 yr.
0.2 yr.
1.3 yr.
2.6 yr.
4.7 yr.
6.9 yr.
8.7 yr.

= 5 km/sec
0.3 yr.
0.2 yr.
0.3 yr.
2.1 yr.
4.2 yr.
S.lyr.
11.3yr.
13.7yr.

= 9 km/sec
0.2 yr.
0.1 yr.
0.2 yr.
1.7yr.
3.1yr.
5.5 yr.
7.9 yr.
9.9 yr.

'This path is not possible due to the phasing of two
Saturn flybys.
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heliocentric hyperbola that can be created with
gravity assists starting from an elliptic orbit.
Resonant orbits of up to 6:1 (i.e. 6 planet revs
to 1 spacecraft rev) were considered for all of
the inner planets, as well as 3:2, 1:2, 1:3, and
for Earth, Venus, and Mars.

Table 2 should be interpreted as a
performance envelope for the flight time
needed with a given launch energy. This
analysis assumes that the planets are in the
correct position for the best flyby (in terms of
flight time) and, as such, probably
underestimates the flight time required for
most paths. Paths containing sequences such
as VMV or MEM may never occur due to the
requirement that a planet be in the proper
position for a second flyby. Clearly the path
EMSJSP for the launch Vo= of 7 km/sec is
infeasible for this reason.

Table 3 shows flight times to the outer
planets for a sampling of paths at various
launch energies. We notice that paths such as
VEEGA perform very well for low launch
energies but begin to offer diminishing returns

as we increase launch energy to the point
where an increase of launch V*. from 5 km/sec
to 7 km/sec offers no improvement (within 0.1
year).

These tables can be used in conjunction
with the Tisserand graphs to give a ballpark
estimate of the flight time for different paths.
However a tool such as STOUR is needed to
compute realistic trajectories. Petropouplos et
al.8 found that all of these paths reach Jupiter
in the span of 1999-2030 with the exception of
the EVEVEE and EVEMEE paths which they
did not investigate. The flight times for the
actual trajectories are 1 to 3 years longer than
the estimates in this table.

Conclusion
Tisserand graphs facilitate the assessment

of potential gravity-assist paths. Both arrival
and launch VM may be studied for such a path.
The graphs also make many characteristics of
a possible path highly conspicuous.

This is a powerful tool, based on
Tisserand's criterion, which permits us to

Table 3 Flight times for potential gravity-assist paths (ignoring phasing)
Path

EVE...
EVEE...
EVEE...
EVEE...
EVEE...
EVVV...
EVEM...
EVEEM...
EVEVE...
EVEVE...
EVEME...
EVEME...
EVEVEE...
EVEMEE...

Paths
EJ...
EJ...
EVEJ...
EVWJ...
EVEEJ...
EVEEJ...
EVEEJ...
EVEVEJ...
EVEVEJ...

Launch Vex,
6 km/sec
3 km/sec
4 km/sec
5 km/sec
7 km/sec
6 km/sec
5 km/sec
5 km/sec
3 km/sec
5 km/sec
3 km/sec
5 km/sec
3 km/sec
3 km/sec

Jupiter
2.3 yr.
4.8 yr.
3.9 yr.
3.8 yr.
3.8 yr.
5.8 yr.
2.2 yr.
3.8 yr.
2.4 yr.
2.1 yr.
2.7 yr.
3.3 yr.
4.2 yr.
4.7 yr.

Saturn
—
—

6.8 yr.
6.5 yr.
6.5 yr.

—
—

6.3 yr.
—

5.0 yr.
—

6.7 yr.
6.9 yr.
8.0 yr.

Uranus
—
—

13.6 yr.
12.4 yr.
12.4 yr.

—
—

11.9yr.
—
—
—

12.0 yr.
12.7 yr.
14.8 yr.

Neptune
—
—
—

19.0 yr.
19.0 yr.

—
—

19.5 yr.
—
—
—

20.2 yr.
18.2yr.

—

Pluto
—
—
—

25.8 yr.
25.8 yr.

—
—

27.5 yr.
—
—
—

28.2 yr.
23.5 yr.

—
With Jovian Gravity Assist

9 km/sec
1 1 km /sec
6 km/sec
6 km/sec
3 km/sec
5 km/sec
9 km/sec
3 km/sec
5 km/sec

5.0 yr.
2.7 yr.
4.7 yr.
7.9 yr.
7.5 yr.
5.5 yr.
5.4 yr.
4.4 yr.
3.5 yr.

10.4 yr.
5.4yr.
9.2 yr.
11.7 yr.
13.0 yr.
8.5 yr.
8.4 yr.
7.9 yr.
6.2 yr.

17.4 yr.
8.4 yr.
14.8 yr.
16.0 yr.
20.0 yr.
ll.Syr.
11.2yr.
12.2 yr.
9.2 yr.

25.3 yr.
ll.Oyr.
20.8 yr.
19.5 yr.
27.8 yr.
13.7 yr.
13.7yr.
15.7 yr.
11.7yr.
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readily construct gravity-assist paths to any
destination in the Solar System. All paths so
constructed are feasible from an energy
perspective. Paths that do not exist on a
Tisserand graph are strictly infeasible. Thus
we can eliminate unnecessary searches and
confine path finding to those, which obey the
criterion. Estimates of flight time can be made
for a given launch V«,, thus providing another
criterion for candidate rejection. After
applying these criteria, the mission designer
can be assured that remaining candidate paths
are worth pursuing in the laborious calculation
that must follow to solve the phasing problem.
This last problem is well known and discussed
in great detail in the literature.
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