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FLOQUET SOLUTION FOR A SPINNING
SYMMETRIC RIGID BODY WITH CONSTANT

TRANSVERSE TORQUES
R. Anne Beck,* Marc H. Williams,* and James M. Longuski*
Purdue University, West Lafayette. Indiana 47907-1282

In this paper we analyze the problem of large angular excursions of the spin axis of a
rigid body using Floquet theory. This approach involves transforming the nonlinear equations
into a linear periodic system and then computing solutions using Fourier series expansions.
Numerical simulations confirm that the solutions are highly accurate when applied to typical
spacecraft maneuvers.

Introduction

Since Grammel1'2 defined the problem of the self-
excited rigid body, numerous investigators2"20 have
contributed approximate analytic solutions for its
motion. The body is free to rotate about a point
fixed in the body and inertial space under the ac-
tion of a torque vector arising from internal reactions
which do not appreciably alter the mass or mass dis-
tribution. The forced motion of a spacecraft due to
thruster torques is a particularly relevant, modern
example of the self-excited rigid body.

In the literature a number of simplifying assump-
tions are used to put the nonlinear differential equa-
tions involved into tractable form for analytic inte-
gration. In dealing with Euler's equations of mo-
tion most authors assume the body is axisymmetric
(or nearly axisymmetric) and that the body-fixed
torque components (which may act on up to three
axes) are constants. To solve the associated kine-
matic differential equations, the usual approach is
to use Eulerian angles and then to make small angle
approximations (say on two of the angles) in order to
obtain approximate, closed-form analytic solutions.
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Recently, interest has been stimulated in other atti-
tude representations (see the excellent survey paper
by Sinister21). A new parameterization developed
by Tsiotras and Longuski22'23 has been employed to
find an approximate solution18 for large angle mo-
tion of a symmetric or near-symmetric rigid body
due to constant torque about three body axes. No
exact solution is known (even for the axisymmetric
case) of constant torque on three axes.

In this paper we show that the axisymmetric case
of constant transverse torque (i.e. no axial torque) is
amenable to Floquet theory24'20 when Cayley-Klein
parameters21'26 are used for attitude representation.
We show that the ensuing standard eigenvalue prob-
lem, solved numerically, can provide an arbitrarily
accurate solution for all possible motion.

Analytic Solutions

Euler's Equations of Motion

The spin of a rigid body is controlled by Euler's
equations:

= Mz/Iz-[(Iy-If)/I,]LjlUy

(1)
(2)

(3)

where Mx, My, and Mz are torque components, ux,
uy, and uz are angular velocity components, and
Ix, Iy. and Iz are principal moments of inertia. We
assume that the applied torques are constant, and
purely transverse (M2 = 0). Such transverse torques
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often appear in spacecraft thrusting maneuvers, due
to center-of-mass offset and thruster misalignment.
In addition we assume that the mass distribution is
fixed (i.e.. the case of the self-excited rigid body1 '2),
and that the body is near symmetric [ (Ix — Iy}/Iz -C
1 ]. Thus the angular velocity about the 2-axis will
be essentially constant,

LJZ K 0

which is exact if Mz = 0 and Ix = Iy.

(4)

With this simplification, as discussed by Randall
et al.,19 Eqs. (1) and (2) reduce to a pair of lin-
ear, constant-coefficient, ordinary differential equa-
tions with constant forcing terms. The solution for
(^jx,uiy} is a simple sine wave, which we can write in
the compact form:

(5)

where

Ej = ei'kT (7)

r = uzt (8)

The constant k, determined by the mass distribu-
tion, is the transverse mode frequency in units of
uz. It ranges between k — 0 (a sphere) and k = 1
(a flat disk). The three nondimensional constants,
uij, are determined by the applied torques and the
initial conditions through the relations:

x = J(L-Iy)/Ix, Ky = J(lz-lx)/ly (9)

(10)

(11)

(12)k, = ( l / K t f - l / K r ) / 2

present a solution of the kinematic problem when
this is true.

Kinematic Equations

A classical method of expressing the attitude mo-
tion of a rigid body is to use a Type 1: 3-2-1 Eu-
ler angle sequence27. The corresponding kinematic
equations are

>x = wx + wv sin ©j; +w z cos (p
f>y = uy cos <pr — u>z sin ox

uiz cosd>x

(18)
(19)

(20)

where <$>x, oy, and 6Z are the Eulerian angles.
These equations are highly nonlinear, and seemingly
intractable for analytical solution, although much
progress has been made using linearization, e.g. by
assuming ®x and <py are small.11'14'16'19

An alternative and, for our purposes, preferable
representation of the kinematics is the Cayley-Klein
parameters,21,26 a, /3 ]. which are defined in terms
of the Euler angles bv

a = /<^\ i'Py\ • • 1 9x \ • /9y\( — ) cos (-J-) -ism(-) sin(-j-)
(21)

sin ( -

(22)
These two complex numbers obey the normalization
| a ~ + | 3 \~ = I as is easily confirmed from their
definition.

The inverse relation, giving Euler angles in terms
of Cayley-Klein parameters is:

= tan"_J 2/m(a0)
a J-

q>y = sin"1 [ 2 R e ( a J 3 ) }

(23)

(24)

F = [ iMx/(Ix Kx] - My/(Iy K

at t = 0

(13)

(14)
[ T / 9 •'S) \7m fa" — a")

(15)
(16)
(17)

It is important to keep in mind that this solution, in
which ux and uy are sinusoidal, relies on the effective
constancy of uz. The main point of this paper is to

The advantage of the Cayley-Klein representa-
tion is that [ a, j3 ] obey linear differential equations,
in sharp contrast to Eqs. (18)-(20):

a =

/? =

I ljjz I iu

~ a ~~
a —

(26)

(27)
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This fact allows us to use the principle of linear su-
perposition to construct general solutions for arbi-
trary initial conditions. Moreover, with the approx-
imation LJZ fa 0, the coefficients u (t) in Eqs. (26)-
(27) are periodic, so that the fundamental solutions
can be developed using Floquet theory, even for very
large angular displacements.

Floquet Formulation and Solution of
Kinematic Equations

We seek the general solution of Eqs. (26) and (27)
for the Cayley-Klein parameters. These equations
are second order, linear, and homogeneous, so there
are two independent solutions. Also, by inspection,
they have the symmetry that if [a, /?] is a solution,
then so is [/?, —a]. Hence the general solution must
have the form:

a = i + C2 /?i

/? = C\ /?i — Ci QI
where [QI,/?I] is any solution pair.

(28)

(29)

Finally, as seen in Eq. (5), the coefficients are
periodic in T with period T = 2 ir/k, so that Floquet
theory24'20 applies. The essence of Floquet theory is
that there will be solutions of the form

a = e~isTu(T) (30)

(3 = e-isTv(r) (31)

where u and v will be periodic with period T pro-
vided that s is suitably chosen.

It follows that the general solution of Eqs. (26)
and (27) can be written as:

a = i e - u + 2e
0 = de-isTv-C2ei

(32)
(33)

where Ci, Ci are determined by the initial condi-
tions, and where [ u , v ] are any pair of solutions of
the differential equations:

1 i w
r) u = — -— v

du_
d^~l(

dv ., 1. iu
— — i (s — —) v — ———u
//— v 9' 9 , ia i L L ujz

(35)

These equations have the symmetry that if [ u , v , s ]
is a solution then so is [v, —u, —s].

Because [ u , v ] are periodic, they can be repre-
sented by Fourier series:

(36)

Substituting this expansion into Eqs. (34) and (35),
we get a set of recurrence relations which determine
the Fourier coefficients [uj,Vj ] and the eigenvalue s:

j = (jk - -) Uj + (u!-i Vj-i + w0 Vj + u>i
(37)

vj — (jk + -)vj + (u-i +wo Uj
(38)

These relations can be arranged in the form :

s U = A U (39)

where U = [. . .Uj,Vj, . . .] and A is an infinite di-
mensional, pentadiagonal matrix:

= diag(D_3, £>_i, Do, D1} D3) (40)

where DO is the main diagonal, D\ the first super-
diagonal, D_i the first subdiagonal, etc. The ele-
ments of these diagonals are:

£>o = [ . . . (j* - 1/2, j* + 1/2) ...

>_i =D1 =
0)

(41)

(42)
(43)

It is easily seen that A is Hermitian, so that the
eigenvalues s must be real. Moreover, we can show,
(most easily from Eqs. (37) and (38)) that if s0 is
an eigenvalue, then so is ±SQ + N k where N is any
integer. So, although there are an infinite number
of eigenvalues of this infinite dimensional matrix A,
there is, in fact only one which is physically distinct.
(The other eigenvalues and eigenvectors arise from
a trivial renumbering of the Fourier modes.)

In practice, only a finite number of terms, j =
[—M,M], can be retained in the series, Eq. (36).
When this is done, the U vector will be of length
4 M + 2 and the matrix .4 will be square of the
same size. For example, the smallest such trunca-
tion. M = 1. yields the 6x6 matrix:

-k - 1/2
Wo

0

W0

-k + 1/2
W-l

0
0
0

0
W-l

-1/2

Wo

0
Wl

Wl

0
Wo

+1/2
W-l

0

0
0
0

W-l

k - 1/2
Wo

o -
0

Wl

0
Wo

fc + l /2_
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The truncated matrix will have 2 M+l equal and op-
posite pairs of real eigenvalues, but because the trun-
cation breaks the translational symmetry, the eigen-
values will not be precisely related by ±SQ + N k.
For any given M . some of the 4 M -I- 2 eigenvalues
will be more accurate than others.

The key questions are: how big must M be to
achieve a given accuracy, and how can the most ac-
curate eigenvalue be selected? These questions will
be answered in more detail in a later section, after
we have looked at some numerical results. However,
we can now give a rough estimate of the how big M
needs to be.

For very large j, the Fourier coefficients must
decrease. Assuming that | tfj+i | <C | v j \ <C Vj_i ,
we can easily deduce from the recurrence relations.
Eqs. (37) and (38). that the ratio of alternating v
coefficients, as j — > oo, is:

(44)

with similar expressions for u and for j —y -co. This
demonstrates two important properties:

1) The Fourier coefficients decay superexponen-
tially for large j.

2) We must have j > v / k before the coefficients
begin to decay, where v = (^2 \ ̂ j \~ )1//2 or
some other norm of the Fourier coefficients uij.

The first property says the series will converge
rapidly, so that not many terms will be needed. The
second property gives us a lower bound on a reason-
able truncation level:

v
k

(45)

Evidently, when v -C 1 only a very few terms will be
needed.

Small Torque Approximation

When the applied torque is small enough so that
v -C 1, the matrix A is essentially diagonal and we
can derive a simple approximate solution of Eq. (39).
The result is that the Fourier coefficients form an
asymptotic sequence in powers of v. The coefficients
for \j > I are O(vs] or smaller, so that to get O(i/~)
accuracy we only need to compute the terms for j —
[—1, 0,1]. This can be done recursively starting with
the scaling assumption VQ = 1, with the result:

.] (46)

1-k (47)

(48)

At this level of approximation [u, v] are simple har-
monic. The eigenvalue, s. to the same order, is given
by:

s ^^ _ 1
• + jk

1/2
(49)

It is evident that this solution fails when k = 0
(sphere) and k — 1 (plate), regardless of how small
v is. When k is close to either extreme, the ordering
of the coefficients changes, so that the j = 1 terms
may be as large as the j = 1 terms.

The approximate solution given here is asymp-
totically equivalent to an M = 1 truncation of
Eq. (39), but is algebraically simpler.

Numerical Results

Test Case

In order to test the Floquet solution we consider
a Galileo-like spacecraft maneuver. We will use an
axial thrusting maneuver discussed by Longuski et
al.13. We consider the symmetric case where Ix — Iy
with the following mass properties (similar to the
Galileo):

Ix = Iy = 3012 kg-m2, Iz = 4627 kg-m2 (50)

and initial conditions:

ux (0) = uy (0) = 0, w2 (0) = 0.33 rad/s (51)

ox (0) = <f,y (0) = </>„ (0) = 0 (52)

Transverse torque can arise from a center-of-mass
offset of the main engine. Here we select a very
large transverse torque (about 150 times that of the
Galileo) in order to demonstrate the theory for an
extreme case where the Euler angles (ox,<f>y) ap-
proach 90°:

Mx = 225 Nm, My = 0, Mz = 0 (53)

For this test case we note that the inertia parameter,
k = 0.5362 and Eqs. (15)-(17) yield the following
constant values

w0 = 0.6397 £, = -0.6397 z (54)
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Baseline Numerical Integration

Since we expect the Floquet solution to be highly
accurate, we need a very precise method to test it.
We employ an adaptive Runge-Kutta fourth/fifth or-
der integration method using double precision ac-
curacy for the following simulations. In each case
the accuracy is controlled by a relative tolerance of
1 x 10~12 and an absolute tolerance of 1 x 10~14.
For our baseline numerical integration we integrate
Eqs. (l)-(3) and (18)-(20). The errors in the baseline
numerical integration are on the order of 10~12 rad
for the Euler angles.

Discussion

The discussion which follows pertains to the test
case, Eqs. (50)-(52), with

From Floquet theory we know that the parameters
u and v are periodic with period T = 2 ir/k. In
Fig. 1 we plot the real (solid line) and the imaginary
(dashed line) parts of the solution for Eqs. (34) and
(35) for one period.

kt

Fig. 1: One period of u and v for test case.

The Cayley-Klein parameters, a and /?, obtained
using Eqs. (32) and (33) are not periodic in general.
The real and the imaginary parts of a and /3 are
plotted in Fig. 2 for two periods (2T/iuz). We note
that the plots satisfy the normalization constraint
that | a | 2 + ] / ? 2 = 1.

10 20 30 40 50 60 70

0 10 20 30 40 50 60 70 80t(s)
Fig. 2: Cayley-Klein functions a and /? for
test case.

0 10 20 30 40 50 60 70
a) Baseline and Floquet solutions.

10 20 30 40 50 60 70

b) Baseline minus Floquet solution.

Fig. 3: Euler angle <j>x for test case.

Fig. 3a shows two solutions for the Euler angle,
<px: the Floquet solution (obtained using the solu-
tions for Q and /? and Eq. (23)) and the baseline
numerical integration. Because the results are in-
distinguishable at this scale, we show the difference
between the results in Fig. 3b. The maximum error
is about 5.5 x 10~° rad out of 1.6 rad (at t = 16 s)
or about 0.003 %.
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A similar comparison for the spin angle, <pz, is
shown in Fig. 4. We note that oz is very large for
large values of time. For convenience we introduce
a smaller angle $2 , obtained by subtracting off the
linearized solution for <j>z:

(56)

In Fig. 4a we show the baseline solution for the angle
$2 and the Floquet solution obtained using a and 0
and Eqs. (25) and (56). To check the accuracy, we
again show the difference between the two solutions.
Here we see the error is about 3 x 10~6 rad out of
1 rad (at t = 9 s) or 0.0003%. Since the errors
in the baseline solution are (9(10~12), the difference
represents the true error in the Floquet solution.

0 10 20 30 40 50

a) Baseline and Floquet solutions.

b) Baseline minus Floquet solution.

Fig. 4: Angle <&z = oz — uizt for test case.

Accuracy Control

In order to study the effects of M on the accu-
racy of the Floquet solution, we conduct the follow-
ing parametric study. We first fix a value for M.
We then compute the baseline numerical integration
and Floquet solutions for <j>x using transverse torque
Mx in the range of 0 to 225 Nm. For each of these
trajectories, we compute the difference between the
two solutions. In Fig. 5 we plot percent error versus
the maximum absolute value, ;. As expected,

plateau at the bottom of the figure occurs due to the
errors in the baseline numerical integration and not
the Floquet solution. Also as 4>x approaches 90°, the
error increases rapidly due to the well-known Euler
angle singularity.

A similar study is conducted for the angle $z. In
Fig. 6, percent error versus the maximum absolute
value, | <3>z \max is plotted. Again, the error increases
as the angle increases and larger values of M result
in smaller errors. A similar numerical integration
plateau occurs.

1.5
(rad)

the error increases as the angle increases; larger val-
ues of M result in smaller errors. We note that the

Fig. 5: Percent error in maximum absolute
value of 4>x for various transverse torques
(symmetric case).

Figures 5 and 6 can be used to choose M to
achieve a given accuracy in the Floquet solution, but
only for the test case. For the general case it would
be useful to have a method which selects M for a
desired accuracy.

Eigenvector Selection

At any given truncation level, M, there are
2 M + 1 distinct values of s2 which arise from solv-
ing Eq. (39). Some of these values will be better
than others, so we must sort the wheat from the
chaff. The essential idea is that since we centered
the truncation about j = 0, then those eigenvectors
which are most nearly centered about j = 0 should
be most accurate. We illustrate this in Figs. 7 and
8, which show two of the 30 eigenvector spectra for

193



Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

10'

10 12 14 16 18 20 22

Fig. 6: Percent error in maximum absolute
value of $2 for for various transverse torques
(symmetric case).

•§10-=

.ato

J

Fig. 7: A suboptimal eigenvalue/eigenvector
selection of Mx — 225 Nm, M = 7.

an M = 7 truncation of the test case. In Fig. 7, the
peak occurs near the left edge of the window, so the
neglected terms in j < —7 are not small and the so-
lution is poor. In Fig. 8, the peak is near the middle
of the window, and the neglected terms on both the
left and right ( \ j \ > 7), are clearly less than 10~D in
magnitude. This is the best we can do with M = 1.

absu.
abs v.'i

Fig. 8: Optimal eigenvalue/eigenvector selec-
tion of Mx = 225 Nm. M = 7.

The above selection process can be automated by
measuring the error in a spectrum, e, from the size
of its end elements:

V-M VM (57)

There will be 4M + 2 values of e; the best solution
is the one for which e is minimum. For the test
case with M = 7, this optimal solution is shown in
Fig. 8. It is worth noting that the poor result in
Fig. 7 corresponds to s + 6k = 0.1183, which is 5%
off the target of s = 0.1245. The occurrence of errors
of this order is to be expected from the size of the
j = —7 Fourier coefficients (about 10"1) seen at the
left in Fig. 7.

Automatic Error Control

Having shown how to select the best eigensolu-
tion at a given truncation, we can easily see how to
automatically select M to give any specified accu-
racy in the solution:

1) Pick a tolerance 6max and the smallest reason-
able truncation : M = 1 + v / k.

2) Solve the truncated eigenproblem. selecting
that vector with minimum error, em!-n.

3) If fmin < tmax. Stop.
If emin > (max, increase M; repeat 2) & 3).

The assumption made in this algorithm is that
the errors in the solution (for u and v) are smaller
than the last retained Fourier coefficients.
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It is, naturally, wasteful to compute all 4 M + 2
eigensolutions when most of them are thrown away.
For this reason, a practical approach is to use an
iterative eigensolver which computes only a few of
the eigenvalues closest to the previous optimum. On
the first step, the center eigenvalue is set at s = 1/2,
based on the small-torque solution, Eq. (49).

Results for a Near-Symmetric Case

It is only natural to be curious as to what hap-
pens when the aforementioned Floquet solution is
applied to a more realistic case. We choose the fol-
lowing near-symmetric mass properties:

Ix = 3012 kg-m2, /„ = 2761 kg-m2

/2= 4627 kg-m2 (58)

with a moderately large transverse torque

Mx = 100 Nm, My = 0, M2 = 0 (59)

and use the same initial conditions as the previous
test case. Here we note that the inertia parameter,
k, is slightly larger with a value of

k = 0.6020 (60)

and Eqs. (15)-(17) yield the following smaller Uj val-
ues

w_i = 0.0036 i, w0 = 0.2461 z , w i = -0.2496 i (61)

We see in Fig. 9 that wz is periodic with a small am-
plitude fluctuation of 5%, not constant as assumed
from Eq.(4). Figures 10 and 11 show the results for
<$>x and $2 respectively. We notice that the Floquet
solution seems to track reasonably well for a while,
then diverges from the baseline solution. However,
the accuracy is significantly poorer (than the sym-
metric test case), even in the first oscillation. We
know that this error is not due to truncation, since
varying M from 2 to 10 makes no difference. The
reason for the inaccuracy lies in the fact that uz
is not constant. It is possible to improve the so-
lution by including perturbations to uiz due to the
neglected term in Eq. (3). We expect these addi-
tional terms to be periodic, however the analysis is
beyond the scope of the current paper.

Conclusions

In this paper we considered the problem of a spin-
ning symmetric spacecraft subject to large constant
transverse torques. The Floquet solution presented

0.3S

^0.345

2 0.34

0.335

0.330 2 0 - 4 0 60 SO 100 120 140 160
t(s)

Fig. 9: Angular velocity uz for near-
symmetric case.

0 20 40

Fig. 10: Euler angle <f>x for near-symmetric
case.

Fig. 11: Angle
symmetric case.

= <pz — uzt for near-

here. based on a Cayley-Klein formulation of the
kinematic equations, is much more accurate and ef-
ficient than any previously found linear solutions,
even when the angular excursion of the spin axis is
large. The major assumption is that the spin rate
is constant. This method is highly accurate for the
symmetric case; however, when the theory is applied
to the near-symmetric case, the error will be driven
by the variation in u>z. This solution may find appli-
cations in onboard computations of spacecraft ma-
neuvers and in maneuver analysis and optimization.
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