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Abstract
Recently, a new formulation has been introduced for the description of attitude kinematics, which

is based on two perpendicular rotations. The new parameterization bridges the gap between the Euler-
angle (three rotations) and Euler-Rodrigues (one rotation) parameterizations and sheds new light on
attitude kinematics. In this paper we present a slightly different derivation (again based on stereographic
projection of a column of the rotation matrix) with a different choice of variables. We show the relation
of the new parameterization to established formulations and cite examples in which the new description
presents special advantages in deriving analytic solutions and in designing control laws.

1 Introduction

In 1995, a new parameterization of the atti-
tude kinematics was reported.1 This new formula-
tion, which is based on two orthogonal rotations,
results in a set of kinematic equations which con-
tain quadratic nonlinearities (in the form of the Ric-
cati equation). Thus, the new kinematic equations
are "less" nonlinear than those associated with the
three-rotation Euler angles, which have trigonomet-
ric nonlinearities, and "more" nonlinear than those
of the one-rotation Eulcr-Rodrigues (quaternion) pa-
rameterization which are linear. This parameteriza-
tion appears to be a new result in the literature, at
least as far as the authors know. (See for example,
the excellent recent survey paper by Sinister.2)

The motivation for constructing such a formu-
lation issued from the search for closed-form ana-
lytic solutions of the self-excited rigid body, which
Grammel3 and Leinianis4 define as a body free to
rotate about a point fixed in the body and space,
when it is acted upon by a torque vector arising from
internal reactions which do not appreciably change
the mass or mass distribution. Many authors3"22

have contributed to the pursuit of such analytic solu-
tions of the self-excited rigid body and closely related
spacecraft attitude dynamics problems.
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Euler angles are the variables of choice in most
of these analytical investigations, in spite of their
notorious nonlinearities. This is because, in many
applications, the spacecraft does not make large an-
gular excursions from its initial orientation in inertial
space. Thus, small angles are assumed, and the re-
sulting kinematic equations are linear. On the other
hand, the linear kinematic equations of the Euler-
Rodrigues parameters, have not been quite so popu-
lar in this pursuit due to their time-varying nature.
There are a few examples, however. Analytic solu-
tions have been constructed for the special case of a
torque-free rotating body.11 Kane9 has obtained ap-
proximate solutions for an axisyrnmetric rigid body
subject to body-fixed transverse torques of constant
magnitude, by employing an averaging technique.
Similar approximate solutions are reported by Kane
and Levinson.18

A first step in developing the new parameteri-
zation was provided by Tsiotras and Longuski23 in
which an old, but relatively unknown method due to
Darboux24 is used to formulate the attitude problem
as the solution of a single but complex-valued Riccati
equation. An important characteristic of this equa-
tion is that when the quadratic terms arc dropped, it
reverts to the linearized form of the Euler angle kine-
matics. Thus, the quadratic terms contain the cor-
rection term for the large angle theory, a fact which
is exploited by Longuski and Tsiotras.25 It appears
that all analytic theories based on the small angle
assumption may be extended to cover large angular
excursions if the quadratic terms can be integrated.
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The final step was taken by Tsiotras and
Longuski1 where they introduced the third param-
eter, consisting of an initial rotation about a body
axis. It is interesting to note that this third parame-
ter first appeared in Tsiotras, Corless and Longuski26

with regard to control laws for an axisymmetric
spacecraft. In that paper it is conjectured that the
new variable could be used as an alternative new de-
scription of the kinematics of the attitude motion.
But the full import of the new variable and its phys-
ical interpretation were not completely recognized.

In this paper we derive the new parameteriza-
tion in a slightly different fashion from that of Tsio-
tras and Longuski.1 We also make a different choice
of variables in the stereographic projection which is
more convenient to remember. The kinematic equa-
tions appear in a form which may be slightly more
appealing than the ones reported in Ref. 1. We hope
that the derivation which follows will make these
equations more accessible and more widely available
to scientists and engineers.

2 The w Parameter

Consider a point (a, b, c) located on a unit sphere.
Let this point be represented by a stereographic pro-
jection (represented by a line through the point and
the south pole of the sphere) onto the complex plane
where each complex number is associated with the
ordered pairs ( w i , W 2 ) . For convenience we choose
the real axis to be aligned with x\ and the imagi-
nary axis with x%. From Fig. 1 it is clear that the
complex number, w, is given by

w = wi + i wi = a + i b
1 + c (1)

In previous work,1'23'25'26 the slightly less convenient
relation w = (b — i a)/(l + c) is used. Notice that w
and w are related by w = i w.

We want the point (a, b, c) to somehow represent
the final orientation of a rigid body frame (61, 62, ^3)-
Let us assume that the original orientation of the
b frame is coincident with a set of orthogonal unit
vectors ( i ( , i'2, i'3) and that the rotation is about an
axis restricted to the i\, i'.2 plane. (The reason for the
primes will be clear later when we discuss the third
parameter of the new parameterization).

Now let us consider a point (0, 0, 1) in the i'
frame which represents the initial orientation of one
of the body axes (say the z axis). The effect of the
rotation is to transform the original coordinates of
the b frame (0, 0, 1) to the new coordinates (a,6,c).

Fig. 1 Stereographic projection.

This transformation can be written as

(2)

where the notation for the rotation matrix, RZ(W),
will become apparent in the discussion of the third
parameter. It is obvious from Eq.(2) that the third
column of R^(w) must be (a,b,c)T. Another way
to express the meaning of Eq. (2) is by the vector
equation

i'3 = a bi + b 62 + c 63 (3)

That is, after rotation, the unit vector z'3 has coordi-
nates (a, b, c) in the b frame.

By symmetry, we can express the 63 unit vector
in the i' frame as

63 — —a i{ — bi'2 + ci'3 (4)

Figure 2 presents a sketch of the orientation of 63 in
the i' frame.

Also shown is the unit vector, u, which shows
the direction of the rotation axis through the angle
cos"1 c. It is readily computed by

i x bi( — a i'2
11*3 X 63||

b b\ - a b-i
(5)

Let the angular velocity of the b frame with re-
spect to the i' frame be represented by

(6)

We note that for general motion the b frame is free
to rotate about any axis (and so the single rotation
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Fig. 2 Orientation of body frame.

along w cannot be adequate for the complete param-
eterization). To find the time rate of change of i'3
with respect to the b frame, we write

= a 61 + b by + c 63

= 6w'" x z'o
dt

Substituting Eqs. (3) and (6) into Eq. (7) and notic-
ing that buj* = —l ub provides the system of differ-
ential equations

(8)

where

0

OJj 0
(9)

and where it is important to remember that ' H>) is
given in terms of b coordinates, i.e. as in Eq. (6). We
note that some authors define2 a matrix [' <2b x] =
— 5(''ws). Using Euler's formula,3'27'28 we can easily
now compute the rotation matrix which corresponds
to a rotation by an angle cos""1 c about the unit vec-
tor w:

R2(w) = I+sin(cos-1 c)5(w)+[l-cos(cos
(10)

where S ( - ) is defined by Eq. (9) and u is given by
Eq. (5). Carrying out the algebra and noting that

i(cos l c] — \/l — c2, we obtain

ab
1 + c

_.«»- 1 _ _»L. ft
1+c 1+c "

(11)

Eq. (11) is equivalent to Eq. (18) of Ref. 1. As ex-
pected from Eqs. (2) and (3), the third column of
RI(V?} is (a,b, c)T . Also, Eq. (11) verifies the cor-
rectness of Eq. (4).

3 The Kinematic Equation for w

We can obtain the corresponding kinematic equa-
tion for the complex parameter, w, by differentiating
Eq. (1)

W = ° ± L ™ (12)
Substituting for a, b, c from Eqs. (8) and (9) into
Eq. (12) provides (after some algebra)

U 2\- — + — w )

where we have defined

(j) — Ui + i OJ2

(13)

(14)

1 + w|2 1 + v/\ + w\
i(iv — w) 2w2

1 +
^ _

1 +

w|2 l + w2 + w2

H2 i - w 2 - w ^
vr 2 1 + W j + Wj

l^ioa;

(15b)

(15c)

and where we have made use of the inverse relations
based on Eq. (1)

2wi

6 =

where w|2 = ww, denotes magnitude of a complex
number.

4 The Third Parameter, z

We need a third parameter to complete the set
(we note that the complex variable, w, counts as two
parameters). It seems natural, at first, to perform a
second rotation — about the 63 axis. But this will
result in the appearance of the new variable on the
right hand side of all three kinematic equations —
destroying its "ignorablc" character. (Here we use
the term ignorable rather loosely to describe a vari-
able that does not appear explicitly in the differential
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where we have lub in lieu of ' tD6. Thus, our
kinematic equation for w has the identical form of
Eq. (13). The only difference is that the angular ve-
locity components are now interpreted to be those of
tub , namely

Fig. 3 Rotation through the angle z.

(22)

5 The Kinematic Equation for z

We next proceed to derive the kinematic equation
for z. First, let us write Rz(w) in terms of wi and
w2. Substituting Eqs. (15) into Eq. (11) we obtain

equations.) It turns out that it is best to perform a
rotation about the body z axis first and complete the
parameterization by a second rotation about w.

Let (ii, j-2, 13) represent a set of orthogonal unit
vectors, fixed in inertial space. Let (i\, j'2) i3) rep-
resent the orientation of the rigid body frame after a
rotation through an angle, z, about the i3 axis. Then
the associated transformation equation is

«3 J

where
cosz

— sinz
0

»2

sin 7, 0
cosz 0

0 1

(16)

(17)

Combining the first rotation implied by Eq. (16) with
the second rotation implied by Eq. (11) we deduce
the relation

61

62 = R(z, w)
n

where we define the transformation matrix

R(z, w) = R^wJR^z)

(18)

(19)

Here we note a crucial fact: the third column of
R(z, w) is (a, 6, c)T', i.e., identical with the third col-
umn of R I ( Z ) . This means that a point fixed in the
i frame at (0, 0,1) transforms to the point (a, b, c) in
the b frame after the two successive rotations. That

ia
Tantamount in this argument, we have

(20)

(21)

-2wi
h wf -
-2w2 1 - w\ -

(23)
Now, substituting Eqs. (23) and (17) into Eq. (19),
we find R(z, w)

fl(z, w) =

. — wl + w%)sz

-(1 + wl - wl)sz] +(1 + w? - wl)cz]

.where sz and cz denote sinz and cosz, respectively.
According to Kane et al.,29 R(z, w) obeys the follow-
ing equation

R(z, w} = S(iHt)R(z, w) (25)

which we recognize as a generalization of Eq. (21).
To find the differential equation for z, we make use
of Eq. (25) in the scalar form

tr[R(z, w)] = tr[S(i^b)R(z, w)] (26)

where t r ( - ) denotes the trace of the matrix. Taking
the trace of R(z, w) we obtain

tr[R(z, w)} =
— 2zsz 4(1
w\ + (1 + w\ +

(27)
We obtain w\ and w? from the real and imaginary
parts of Eq. (13) as

— (1 + w? - w%) (28a)
Li

+ — (1 - Wj + v/\) (28b)

517



Substituting Eqs. (28) into Eq. (27), we find

•tr[R(Z, w)] =

(29)
Using the definition of S('ub) from Eq. (9) and
Eq. (24) we compute the trace

tr[S(iub)Ri(w,ii)] =
— 2(cz

(30)
Equating Eqs. (27) and (30), in accordance with
Eq. (25), we obtain the kinematic equation for z

Z = OJs + Wi (31)

Rewriting Eq. (31) in terms of the complex variables
ui and w and restating Eq. (13), we finally obtain

-(uw + u>w)
Zi

w = _

(32a)

(32b)

Equations (32) describe the kinematic equations in
terms of the new parameterization (z, w).

(Here we note that this final formulation is
slightly different form that of Ref. 1, where instead
of defining w = (a + ib)/(l + c), we used w =
(b — za)/(l + c), resulting in

+ -(

w = -

(33a)

(33b)

The form of Eqs. (32) is perhaps a bit more appealing
since the first equation is real and doesn't display t
explicitly, while the second equation is complex and
has a common factor of i on the right-hand side.
But perhaps the best argument in favor of w — (a +
z6)/(l + c) is that it is easier to remember!)

6 Other Formulations

Equation (1) is only one of the possible defini-
tions of the parameter w. Other combinations will
provide different kinematic equations for w and z.
For example, we have seen that by defining w =
(b — ia)/(l + c), the corresponding kinematic equa-
tions are given by Eqs. (33). Table 1 summarizes
some of the possible choices for w from the stereo-
graphic projection and the corresponding kinematic
equations.

According to the specific application at hand, one
may choose the most convenient form for the attitude
kinematics from this table.

Table 1 Stereographic coordinate w and correspond-
ing kinematics.

Kinematics

1+c

b — ia
1 + c

b+ic
l + a

c—ib
l+a

a— ic
1+b

w =
z

z —

— UJVf)

W = —

Z = W2 +

7 Relation to Other
Pararneterizations

We now present the connection of the (z, w) pa-
rameters with some of the other standard kinematic
parameters.

7.1 Eulerian Angles

Consider a Type 1: 3-2-1 Euler angle sequence30

(tj>z, <j>y> 4>x), in which the rigid body frame is rotated
successively by angles <pz, (j>y and <f>x about the z,
y and x body axes, respectively. Then the rotation
matrix, Rm\(<S>i,<l>y,<l>x), corresponding to R(z, w) is
given by

i

S2Cj

Cj; + S. S Sy;

(34)

where s and c denote sine and cosine and subscripts
x, y and z denote (j>x, <f>y and <j>z, respectively.

To find the connection to the w parameter we
recall that the third column of any rotation matrix
can be set equal to (a,b,c)T. Thus

a + ib — sin <f>v + i cos <j
1 + COS </>y COS (,

(35)

To find the relation to the z parameter, we take the
trace of R(z, w)

t r [ R ( z , w ) ] =
1 — v/\ — + 2 cos z

1 + w? + w
= c+ (1 + c)cosz (36)

518



Taking the trace of Ryn(<j>7, , </>y

S z S y S x + CyCx

(37)
and equating Eq. (37) to Eq. (36) we have (noting
that c = cos tj)y cos <j>x)

__ C<j>zC<j>y + C<l>zC<j>x + S<j)zS<{>yS(l>x

1 + C<j>yC<j>x ^ '

The kinematic equations corresponding to this
Euler-angle sequence are31

<t>z = (w2 sin 4>x + w.3 cos iftx) sec <j>y (39a)
<j>y = u>2 cos <j>x — 013 sin <j>x (39b)
0x = wi + (w2 sin <j^ +w3cce^c) tan <j>y (39c)

which are "highly" nonlinear, as mentioned above.
We also note that the first rotation angle, (j)z, is the
"ignorable" variable because it does not appear ex-
plicitly in these equations.

Equations (39) can be linearized by assuming
that (f>x and <j>y are small angles. If we also assume
that the term u^'Px is small compared to ^3 (as is
usually the case for spin-stabilized bodies), then we
obtain the following linear system

fa = w3 (40a)
(j>y - w2 - U3<j>x (40b)

(40c)

(41)

By defining
$ = <j,x + i<j>y

the last two equations of Eqs. (40) become

<j> = -iw3<j> + u (42)

By comparing Eq. (42) with the linearized equivalent
of Eq. (32b), namely

LU
w = —iu>sw + i— (43)

we see that
wvi't (44)

This is confirmed by applying the small angle as-
sumption to Eq. (35). The most important conclu-
sion for the development of analytic solutions is that
small angle theories correspond directly to small w
theories and that any improvement obtained in inte-
grating the quadratic term in Eq. (32b) corresponds
to a large angle theory.25

After finding a solution for w, we can obtain the
solution for z by quadrature through the integration
of Eq. (32a), which corresponds to Eq. (40a). This
quadrature integral is always available because the
variable associated with the first rotation (z and ̂ )
always decouples from the kinematic equations (i.e.,
is "ignorable").

7.2 Euler-Rodrigues Parameters

The Euler-Rodrigues parameters are defined by

(45)

where $ is the principal angle of rotation and the e;
are the components of the principal unit vector. The
associated rotation matrix is

[go + gi
—92 — <

-9053) [9o-9i - ll]
9091) [9o-9i

(46)
Setting the third column of Eq. (46) equal to

(a,6,c)T, we obtain the relation to the w parame-
ter

a + ib ?o9l)

5o - 9? - ll + 33

Since

Eq. (47) simplifies to

i — 9o92

(47)

(48)

(49)

Setting the trace of R(qo, q\,qi, 9s) equal to the trace
of R(z, w) in Eq. (36) we obtain an equation for the
z relation

cos z = ^—% (50)
9o+9s

The kinematic equations for the Euler-Rodrigues
parameters consist of the linear system

92

93

0 —0)1

0

0

92

93

(51)
In spite of the much touted linearity of these equa-
tions, they are in fact quite difficult to apply in an-
alytic developments because of the time-varying u's.
The chief defect in these equations, in this regard,
is that there are no physical assumptions (analogous
to using the small angle assumption with the Euler
angle formulation) which can ease the analytic in-
tegration. This is the reason that most researchers
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pursuing analytic solutions prefer to work with Eu-
lerian angles.

Of course one very important strength of the lin-
ear system is that it allows for fast and accurate nu-
merical integration, in contrast to the Eulerian angle
kinematics, Eqs. (39), which require time-consuming
calculations of trigonometric functions. For this rea-
son Eqs. (51) tend to be preferred for onboard nu-
merical integration.30 But we hasten to add that the
kinematic equations for the new parameterization,
Eqs. (32), also provide a very efficient formulation
for onboard integration, compared to the Eulerian
angles, since they avoid the computation of trigono-
metric functions.

7.3 Principal Angle and Axis

The (w,z) parameterization is realized by two
successive rotations at angles z and 9 — cos"1 c
about the axes 43 and u, respectively (see Figs. 2
and 3). The angle 9 can also be expressed in terms
of w through the relationship

cos 0 —
1-

(52)

Recalling that the trace of any rotation matrix is
equal to 1+2 cos $, and using Eq. (37) we have imme-
diately the following equation for the principal angle
<3> in terms of w and z

cos# + (l + cos (9) cos z = 1 + 2cos$ (53)

where cos$ is given in Eq. (52). By adding 1 to
both sides of the previous equation and using the
trigonometric identity cos7 = 2cos2 J — 1, Eq. (53)
reduces to the simple formula

or that

— = cos - cos
2 2

$ z 9
cos - = cos - cos -

(54)

(55)

where the angles are — V < <I> < it, —w < z < IT, and
0 < 6 < IT. This equation indicates that the half-
angles <l>/2, z/2 and 6/2 are related through a right
spherical triangle as in Fig. 4.

The derivation of the equation for the unit vector
along the principal axis, e is somewhat more compli-
cated and it is deduced as follows. Recall first that e
is the eigenvector of the rotation matrix which cor-
responds to the eigenvalue +1. After some extensive
calculations, it can be shown that the eigenvector of
the matrix R(z, w) in Eq. (24) corresponding to the
+ 1 eigenvalue is given by

(56)W2CZ + WlSZ

cz — 1

Fig. 4 Right spherical triangle.

The unit vector e is then given by
ve =

where

(57)

(58)

is the magnitude of the vector v.

8 Control Applications

In this section we discuss some of the potential
advantages of the proposed (w,z) parameterization
in attitude control problems. In particular, the ad-
vantages of the (w,z) parameters become more ap-
parent when control of only one of the body axes is
required, as for axisymmetric bodies. In such cases,
the w parameter can be used to describe the devia-
tion of the axis from the desired position. There is
no need to keep track of the time history of the pa-
rameter z if only the alignment of the specific body
axis with the inertial axis is desirable. Because of
the ignorable character of z, one can then work only
with equation Eq. (32b), completely discarding any
reference to the z coordinate. Besides, this is the
main reason we chose z in a way such that it does
not enter into the right-hand side of the kinematic
equations.

In order to concretely demonstrate these ideas,
let the case of an axisymmetric spacecraft where it is
desirable to stabilize its symmetry (e.g., the 63) axis
along the inertial 23 axis. From Eq. (20) this implies
that we need a — b — 0 and c — 1. Consulting
Table 1 and choosing the first row of this table we
see that the previous requirement is equivalent to
w = 0. Moreover, the following system completely
describes the relevant dynamics

- u (59a)
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w = — (59b)

where a = (I?—I'A)/I\, u — W i + z u - 2 and 0*30 = wa(0).
The objective here is to choose a feedback control law
w = u(u, w) such that the closed-loop system has the
origin w = w = 0 as a stable equilibrium point.

It can be shown32 that the linear control

u = — k^ijj — i k - j w (60)

where k\ > 0 ,&2 > 0, globally asymptotically stabi-
lizes the system in Eqs. (59). Notice that the only
measurements required for feedback for this control
are wi and u>2 and the kinematic parameters wi and
W2. Moreover, only actuation along the two principal
axes perpendicular to the symmetry axis is necessary
to achieve the stabilization objective. We also men-
tion that the control law in Eq. (60) can be used to
stabilize nonsymmetric bodies. The only difference
with the axisymmetric case is that w3 is no longer
constant, i.e., fixed at its initial value WSQ, but is an
a priori unknown function of time. Due to the struc-
ture of the equation, however, the actual value of 103
has no effect on either the magnitude of u or w.

Other control laws for the system in Eqs. (59),
based on the theory of cascade systems, are also given
in Ref. 32. Additional applications of this system
in control applications, as well as its passivity and
optimality properties, have been reported in Refs. 26
and 33.

9 Conclusions

The new parameterization provides some inter-
esting insights into the description of attitude kine-
matics. It fits neatly between the two best known
parameterizations in the literature, namely the Eu-
lerian angles and the Euler-Rodrigues parameters.
It is presented here as a different formulation — not
necessarily as a better one — for its usefulness is
highly dependent on the application at hand.
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